



# Grove - Optical Rotary Encoder(TCUT1600X01)

The Grove - Optical Rotary Encoder(TCUT1600X01) is a transmissive sensor that includes an infrared emitter and two phototransistor detectors. Usually, the infrared emitter emits infrared rays, the phototransistor detectors receives the infrared rays, then the phototransistor is turned on, both of the output is High, the on-board LED indicators light up. When there is an obstacle blocking, the phototransistor can not receive the infrared rays, so the phototransistor will be turned off and both of the output will be Low, the on-board LED indicators fade away.

You can use this sensor as a rotary encoder to detect the speed or rotation, and thanks to the two phototransistor detectors, you even can detect the rotation direction.

## **Features**

- Double phototransistor detectors, can determine the direction of rotation
- On-board LED indicators
- Grove Interface

# **Specification**

| Item                      | Value           |
|---------------------------|-----------------|
| Operating voltage         | 3.3V / 5V       |
| Operating temperature     | -40°C to +105°C |
| Storage temperature Range | -40°C to +125°C |
| Emitter wavelength        | 950 nm          |
| Gap                       | 3 mm            |
| Interface                 | Digital         |

# Applications

- Automotive optical sensors
- Accurate position sensor for encoder
- Sensor for motion, speed, and direction
- Sensor for "turn and push" encoding

## **Hardware Overview**

Pin Map



SIG1: default High, output of channel 1, which connect to phototransistor detector 1

### Schemaitc

### Power



The typical voltage of TCUT1600X01 is 5V, so we use the MP3120 current mode stepup converter to provide a stable 5V. The input of MP3120 ranges from 0.8V to 5V, so you can use this module with your Arduino both in 3.3V and 5V.



When the phototransistor detectors receive the infrared signal, the output should be High, and when the obstacle blocks the infrared, the OUT1 and OUIT2 should be Low. However due to the leakage current, it won't be 0V. The leakage voltage varies with the input voltage.

# **Mechanical Drawing**





**Directional Detection** 



Тір

Thanks to the two phototransistor detectors, we can detect the moving direction. If the obstacle moves from the left to right, The output states change should be  $11 \rightarrow 01 \rightarrow 00 \rightarrow 10$ ; in the same way, if the obstacle moves from the right to left, it should be  $11 \rightarrow 10 \rightarrow 00 \rightarrow 01$ .

# **Platforms Supported**

| Arduino             | Raspberry Pi | BeagleBone | Wio | LinkIt ONE |
|---------------------|--------------|------------|-----|------------|
| $\bigcirc \bigcirc$ | B            |            |     |            |

### Caution

The platforms mentioned above as supported is/are an indication of the module's hardware or theoritical compatibility. We only provide software library or code examples for Arduino platform in most cases. It is not possible to provide software library / demo code for all possible MCU platforms. Hence, users have to write their own software library.

# Getting Started

# **Play With Arduino**

Hardware

## Materials required

| Seeeduino V4.2 | Base Shield | Grove - Optical Rotary Encoder           |
|----------------|-------------|------------------------------------------|
|                | - HILL      | A DE |

### Note

**1** Please plug the USB cable gently, otherwise you may damage the port. Please use the USB cable with 4 wires inside, the 2 wires cable can't transfer data. If you are not sure about the wire you have, you can click here to buy

**2** Each Grove module comes with a Grove cable when you buy. In case you lose the Grove cable, you can click here to buy.

- Step 1. Connect the Grove Optical Rotary Encoder to the D5 port of the Base Shield.
- Step 2. Plug Grove Base Shield into Seeeduino.
- Step 3. Connect Seeeduino to PC via a USB cable.



### Note

If we don't have Grove Base Shield, We also can directly connect this module to Seeeduino as below.

| Seeeduino | Grove - Optical Rotary Encoder |
|-----------|--------------------------------|
| 5V        | Red                            |
| GND       | Black                          |
| D6        | White                          |
| D5        | Yellow                         |

### Software

### Note

If this is the first time you work with Arduino, we strongly recommend you to see Getting Started with Arduinobefore the start.

• Step 1. Install the Encoder Library in the Arduino IDE. You can find this library by the following path: Sketch→Include Library→Manage Libraries

| e Edit S | ketch Tools Help                           | veora se     |                   |  |
|----------|--------------------------------------------|--------------|-------------------|--|
|          | Verify/Compile                             | Ctrl+R       |                   |  |
|          | Upload                                     | Ctrl+U       |                   |  |
| sketch   | Upload Using Programmer                    | Ctrl+Shift+U |                   |  |
| id set   | Export compiled Binary                     | Ctrl+Alt+S   |                   |  |
| // put   | Show Sketch Folder                         | Ctrl+K       |                   |  |
|          | Include Library                            | 3            | Δ                 |  |
|          | Add File                                   |              | Manage Libraries  |  |
| // put y | ) <b>{</b><br>our main code here, to run r | epeatedly:   | Add .ZIP Library  |  |
|          |                                            | 10411 - 145  | Arduino libraries |  |

Then search for the **encoder** in the pop-up window. Find the **Encoder by Paul Stoffregen**, choose the **Version1.4.1**, then click **Install**.

|                                        | ary Manager                                                                                                     |                                                                           |                                                              |                                                                                            |                                        |                                |                          |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------|--------------------------|
| ype Al                                 | ۰ ×                                                                                                             | Topic All                                                                 | ~ encod                                                      | r                                                                                          |                                        |                                |                          |
|                                        |                                                                                                                 |                                                                           | 1                                                            |                                                                                            |                                        |                                |                          |
| base6<br>Base6<br>base6<br>More in     | 4 by Densauger<br>4 encoder/deco<br>4 characters are<br>nfo                                                     | o<br>oder for arduino<br>e interpreted as p                               | <b>repo</b> Uses commo<br>adding,                            | n web conventions - '+' for                                                                | 62, '/' for 63, '='                    | for padding. Not               | e that invalid           |
| DeadR                                  | Reckoning-libra<br>wheel encoder d                                                                              | ry by Jae An<br>lata on a differer                                        | itial drive robot t                                          | estimate position. This lib                                                                | rary implements                        | dead reckoning (               | on a                     |
| differe<br>More in                     | ential drive robol                                                                                              | t using encoder t                                                         | ick count to estim                                           | ate the position of the robo                                                               | t real time.                           |                                |                          |
| Encode<br>Counts<br>are con            | ential drive robot<br>nfo<br>2<br>er by Paul Stoff<br>s quadrature pu<br>mmonly availab<br>nfo                  | t using encoder t<br>fregen<br>Ilses from rotary kr                       | ick count to estim<br>& linear position<br>lobs, motor or sh | ate the position of the robo<br>encoders. Encoder counts p<br>ft sensors and other positio | ulses from quadr<br>on sensors.<br>3 🔪 | ature encoded s                | ignals, which            |
| Encode<br>Counts<br>are con            | ertial drive robo<br>nfo<br>2<br>er by Paul Stoff<br>s quadrature pu<br>mmonly availab<br>nfo                   | t using encoder t<br>fregen<br>Jlses from rotary<br>ble from rotary kr    | ick count to estim<br>& linear position<br>tobs, motor or sh | ate the position of the robo<br>encoders. Encoder counts p<br>ft sensors and other positic | ulses from quadron sensors.            | Version 1 Version 1.4.1        | ignals, which<br>Install |
| Encode<br>Counts<br>are con<br>More in | ential drive robo<br>nfo<br>2<br>er by Paul Stoff<br>s quadrature pu<br>mmonly availab<br>nfo<br>Encoder by Day | t using encoder t<br>fregen<br>Ilses from rotary kr<br>ole from rotary kr | ick count to estim<br>& linear position<br>lobs, motor or sh | ate the position of the robo<br>ancoders. Encoder counts p<br>ft sensors and other positio | ulses from quadr<br>on sensors.        | Version 1.4.1<br>Version 1.4.0 | ignals, which            |

When the library is installed you will see **INSTALLED**, click **Close** then.

| oo Li                             | brary Manage                                                | et                                               |                                           |                                              |                                                                               |                                              |                  | ×   |
|-----------------------------------|-------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------|------------------|-----|
| Type                              | All                                                         | V Topic                                          | All                                       | ~                                            | encoder                                                                       |                                              |                  |     |
| bas<br>Mor                        | e64 characte<br><u>e info</u>                               | rs are inte                                      | rpreted as                                | padding.                                     |                                                                               |                                              |                  | ^   |
| Dea<br>Use<br>diffe<br><u>Mor</u> | adReckoning<br>es wheel enco<br>erential drive<br>e info    | -library by<br>oder data<br>robot usi            | Jae An<br>on a differe<br>ng encoder      | <mark>ntial drive ro</mark><br>tick count to | bot to estimate position. This libr<br>estimate the position of the robol     | ary implements dead reckonir<br>t real time. | ng on a          | -   |
| Enc<br>Cou<br>are<br><u>Mor</u>   | oder by Pau<br>ints quadrati<br>commonly a<br><u>e info</u> | <b>l Stoffrege<br/>ure pulses</b><br>vailable fr | en Version 1<br>from rotar<br>om rotary k | .4.1 INSTAL<br>/ & linear po<br>nobs, motor  | LED<br>ition encoders. Encoder counts p<br>or shaft sensors and other positic | ulses from quadrature encode<br>on sensors.  | d signals, which |     |
| Gro                               | veEncoder b                                                 | Install<br>y David A<br>ibrary Thi               | ntler<br>s library en                     | ables the Gr                                 | ve Rotary Encoder v1.2 to be con                                              | trolled by a basic Arduino                   |                  | -10 |
| Mor                               | <u>e info</u>                                               |                                                  |                                           |                                              |                                                                               |                                              | 2                | ~   |
|                                   |                                                             |                                                  |                                           |                                              |                                                                               |                                              | Close            | 100 |

Thanks for Paul for his splendid library.

- **Step 2.** Restart the Arduino IDE. Open the example, you can open it in the following three ways :
  - a. Open it directly in the Arduino IDE via the path: File  $\rightarrow$  Examples  $\rightarrow$  Encoder  $\rightarrow$  Basic.

| New<br>Open               | Ctrl+N<br>Ctrl+O |               |   |  |
|---------------------------|------------------|---------------|---|--|
| Open Recent<br>Sketchbook | >                |               |   |  |
| Examples                  | 3                | *             |   |  |
| Close                     | Ctrl+W           | Firmata       | > |  |
| Save                      | Ctrl+S           | GSM           | > |  |
| Save As                   | Ctrl+Shift+S     | LiquidCrystal | > |  |
|                           |                  | PN532         | > |  |
| Page Setup                | Ctrl+Shift+P     | Radio         | > |  |
| Print                     | Ctrl+P           | Robot Control | > |  |
| Preferences               | Ctrl+Comma       | Robot Motor   | > |  |
| -                         |                  | SD            | > |  |
| Quit                      | Ctrl+Q           | Servo         | > |  |
|                           |                  |               | * |  |
|                           |                  |               |   |  |

| Encoder                          | 2     | Basic        |
|----------------------------------|-------|--------------|
| Grove - LED Matrix Driver(HT16K3 | 3 wi€ | NoInterrupts |
| Grove Multiple Switch library    | 2     | SpeedTest    |
| Grove Temper Humidity TH02       | 2     | TwoKnobs     |

b. Open it in your computer by click the Basic.pde which you can find in the xxxx\Arduino\libraries\Encoder\examples\Basic, XXXX is the location you installed the Arduino IDE.

| Name        | Date modified | Туре     | Size |
|-------------|---------------|----------|------|
| 💿 Basic.pde |               | PDE File | 1 KB |

c. Or, you can just click the icon <a>[</a> in upper right corner of the code block to copy the following code into a new sketch in the Arduino IDE.

| 1  | /* Encoder Library - Basic Example                               |
|----|------------------------------------------------------------------|
| 2  | * http://www.pirc.com/teensy/td_libs_Encoder.html                |
| 3  | *                                                                |
| 1  | * This example code is in the public domain                      |
|    |                                                                  |
| 5  |                                                                  |
| 6  |                                                                  |
| 7  | #include <encoder.h></encoder.h>                                 |
| 8  |                                                                  |
| 9  | // Change these two numbers to the pins connected to your        |
| 10 | encoder                                                          |
| 11 | // Bost Porformanco: both pins have interrupt capability         |
| 10 | / Cood Derformence, only the first air here interrupt capability |
| 12 | Good Performance, only the first pin has interrupt capability    |
| 13 | Low Performance: neither pin has interrupt capability            |
| 14 | Encoder myEnc(5, 6);                                             |
| 15 | // avoid using pins with LEDs attached                           |
| 16 |                                                                  |
| 17 | void setup() {                                                   |
| 18 | Serial begin(9600):                                              |
| 10 | Sorial println("Basic Encodor Tost:"):                           |
| 00 |                                                                  |
| 20 | }                                                                |
| 21 |                                                                  |
| 22 | long oldPosition = -999;                                         |
| 23 |                                                                  |
| 24 | void loop() {                                                    |
| 25 | long newPosition = mvEnc.read():                                 |
| 26 | if (newPosition I- oldPosition) {                                |
| 27 | oldPosition - nowPosition:                                       |
| 21 | Coricl println(powDecition)                                      |
| 20 |                                                                  |
| 29 | }                                                                |
|    | }                                                                |
|    |                                                                  |
|    |                                                                  |
|    |                                                                  |

# Тір

You can change two numbers to the pins connected to your encoder, for the Best Performance: both pins have interrupt capability, so you can change the code line 13 into Encoder myEnc(2, 3);, meanwhile, you should connect this sensor to the **D2** of the baseshield.

- **Step 4.** Upload the demo. If you do not know how to upload the code, please check How to upload code.
- Step 5. Open the Serial Monitor of Arduino IDE by click Tool-> Serial Monitor. Or tap the Ctrl + Shift + M key at the same time. Set the baud rate to 9600.

### Success

If every thing goes well, you will get the result. When you move the obstacle from left to right, the count value will increase by 1; when you move the obstacle from right to left, the count value will be decremented by 1.

| 1   | Basic Encoder Test: |
|-----|---------------------|
| 2   | 0                   |
| 3   | 1                   |
| 4   | 2                   |
| 5   | 3                   |
| 6   | 4                   |
| 7   | 3                   |
| . 8 | 2                   |
| ğ   | 1                   |
| 10  | 0                   |
| 11  | 1                   |
| 10  |                     |
| 12  | -2                  |
| 13  | -3                  |
| 14  | -4                  |