# Quad Analog Switch/ Multiplexer/Demultiplexer with Separate Analog and Digital Power Supplies

# High–Performance Silicon–Gate CMOS

The MC74HC4316A utilizes silicon–gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF–channel leakage current. This bilateral switch/multiplexer/ demultiplexer controls analog and digital voltages that may vary across the full analog power–supply range (from  $V_{CC}$  to  $V_{EE}$ ).

The HC4316A is similar in function to the metal–gate CMOS MC14016 and MC14066, and to the High–Speed CMOS HC4066A. Each device has four independent switches. The device control and Enable inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. The device has been designed so that the ON resistances ( $R_{ON}$ ) are much more linear over input voltage than  $R_{ON}$  of metal–gate CMOS analog switches. Logic–level translators are provided so that the On/Off Control and Enable logic–level voltages need only be  $V_{CC}$  and GND, while the switch is passing signals ranging between  $V_{CC}$  and  $V_{EE}$ . When the Enable pin (active–low) is high, all four analog switches are turned off.

## Features

- Logic-Level Translator for On/Off Control and Enable Inputs
- Fast Switching and Propagation Speeds
- High ON/OFF Output Voltage Ratio
- Diode Protection on All Inputs/Outputs
- Analog Power–Supply Voltage Range  $(V_{CC} V_{EE}) = 2.0$  to 12.0 V
- Digital (Control) Power–Supply Voltage Range (V<sub>CC</sub> – GND) = 2.0 V to 6.0 V, Independent of V<sub>EE</sub>
- Improved Linearity of ON Resistance
- Chip Complexity: 66 FETs or 16.5 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable\*
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant



# **ON Semiconductor®**

http://onsemi.com



D SUFFIX CASE 751B

# **PIN ASSIGNMENT**

|                     |    |    | _                   |
|---------------------|----|----|---------------------|
| X <sub>A</sub> [    | 1● | 16 | ] v <sub>cc</sub>   |
| Y <sub>A</sub> [    | 2  | 15 | A ON/OFF<br>CONTROL |
| Y <sub>B</sub> [    | 3  | 14 | D ON/OFF<br>CONTROL |
| X <sub>B</sub> [    | 4  | 13 |                     |
| B ON/OFF<br>CONTROL | 5  | 12 | ] Y <sub>D</sub>    |
| C ON/OFF            | 6  | 11 | ] Y <sub>C</sub>    |
| ENABLE [            | 7  | 10 | ] x <sub>c</sub>    |
| GND [               | 8  | 9  | I V <sub>EE</sub>   |
|                     |    |    |                     |

## MARKING DIAGRAM

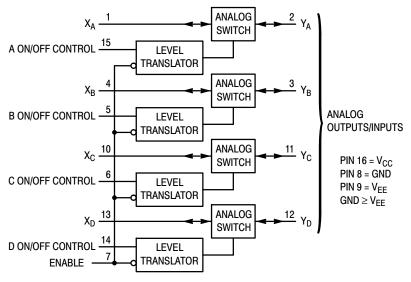


| А     | = Assembly Location |
|-------|---------------------|
| WL, L | = Wafer Lot         |
| YY, Y | = Year              |
| WW. W | = Work Week         |

v, vv = vvork vveek = Pb-Free Package

G

# ORDERING INFORMATION


| Device            | Package              | Shipping <sup>†</sup> |
|-------------------|----------------------|-----------------------|
| MC74HC4316ADR2G   | SOIC-16<br>(Pb-Free) | 2500/<br>Tape&Reel    |
| NLV74HC4316ADR2G* | SOIC-16<br>(Pb-Free) | 2500/<br>Tape&Reel    |

<sup>+</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

# FUNCTION TABLE

| Inp         | State of Analog |                  |
|-------------|-----------------|------------------|
| Enable      | On/Off Control  | Switch           |
| L<br>L<br>H | H<br>L<br>X     | On<br>Off<br>Off |

X = Don't Care.



ANALOG INPUTS/OUTPUTS =  $X_A$ ,  $X_B$ ,  $X_C$ ,  $X_D$ 

Figure 1. Logic Diagram

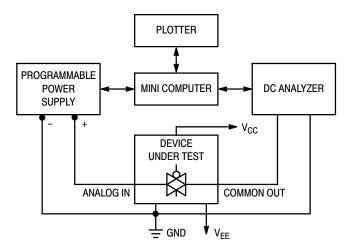



Figure 2. On Resistance Test Set-Up

# MAXIMUM RATINGS

| Symbol           | Parameter                                                              | Value                                             | Unit |
|------------------|------------------------------------------------------------------------|---------------------------------------------------|------|
| V <sub>CC</sub>  | Positive DC Supply Voltage (Ref. to GND)<br>(Ref. to V <sub>EE</sub> ) | -0.5 to +7.0<br>-0.5 to +14.0                     | V    |
| $V_{EE}$         | Negative DC Supply Voltage (Ref. to GND)                               | -7.0 to +0.5                                      | V    |
| V <sub>IS</sub>  | Analog Input Voltage                                                   | V <sub>EE</sub> – 0.5<br>to V <sub>CC</sub> + 0.5 | V    |
| V <sub>in</sub>  | DC Input Voltage (Ref. to GND)                                         | –0.5 to V <sub>CC</sub> + 0.5                     | V    |
| I                | DC Current Into or Out of Any Pin                                      | ±25                                               | mA   |
| P <sub>D</sub>   | Power Dissipation in Still Air SOIC Package*                           | 500                                               | mW   |
| T <sub>stg</sub> | Storage Temperature                                                    | – 65 to + 150                                     | °C   |
| ΤL               | Lead Temperature, 1 mm from Case for 10 Seconds)                       | 260                                               | °C   |

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation,  $V_{in}$  and  $V_{out}$  should be constrained to the range GND  $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or  $V_{CC}$ ). Unused outputs must be left open. I/O pins must be connected to a properly terminated line or bus.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

\*Derating - SOIC Package: -7 mW/°C from 65° to 125°C

# **RECOMMENDED OPERATING CONDITIONS**

| Symbol                          | Parameter                                                                 |                                                  | Min              | Max                       | Unit |
|---------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|------------------|---------------------------|------|
| V <sub>CC</sub>                 | Positive DC Supply Voltage (Ref. to GND)                                  |                                                  | 2.0              | 6.0                       | V    |
| $V_{EE}$                        | Negative DC Supply Voltage (Ref. to GND)                                  |                                                  | -6.0             | GND                       | V    |
| V <sub>IS</sub>                 | Analog Input Voltage                                                      |                                                  | $V_{EE}$         | V <sub>CC</sub>           | V    |
| V <sub>in</sub>                 | Digital Input Voltage (Ref. to GND)                                       |                                                  | GND              | V <sub>CC</sub>           | V    |
| V <sub>IO</sub> *               | Static or Dynamic Voltage Across Switch                                   |                                                  | -                | 1.2                       | V    |
| T <sub>A</sub>                  | Operating Temperature, All Package Types                                  |                                                  | -55              | +125                      | °C   |
| t <sub>r</sub> , t <sub>f</sub> | (Control or Enable Inputs) V <sub>CC</sub><br>(Figure 10) V <sub>CC</sub> | f = 2.0 V<br>f = 3.0 V<br>f = 4.5 V<br>f = 6.0 V | 0<br>0<br>0<br>0 | 1000<br>600<br>500<br>400 | ns   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

\*For voltage drops across the switch greater than 1.2 V (switch on), excessive  $V_{CC}$  current may be drawn; i.e., the current out of the switch may contain both  $V_{CC}$  and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

|                 |                                                            |                                                               |                          | Gu                        | aranteed Li               | mit                       |      |
|-----------------|------------------------------------------------------------|---------------------------------------------------------------|--------------------------|---------------------------|---------------------------|---------------------------|------|
| Symbol          | Parameter                                                  | Test Conditions                                               | v <sub>cc</sub><br>v     | –55 to<br>25°C            | ≤ 85°C                    | ≤ 125°C                   | Unit |
| V <sub>IH</sub> | Minimum High-Level Voltage, Control<br>or Enable Inputs    | R <sub>on</sub> = Per Spec                                    | 2.0<br>3.0<br>4.5<br>6.0 | 1.5<br>2.1<br>3.15<br>4.2 | 1.5<br>2.1<br>3.15<br>4.2 | 1.5<br>2.1<br>3.15<br>4.2 | V    |
| V <sub>IL</sub> | Maximum Low–Level Voltage, Control<br>or Enable Inputs     | R <sub>on</sub> = Per Spec                                    | 2.0<br>3.0<br>4.5<br>6.0 | 0.5<br>0.9<br>1.35<br>1.8 | 0.5<br>0.9<br>1.35<br>1.8 | 0.5<br>0.9<br>1.35<br>1.8 | V    |
| l <sub>in</sub> | Maximum Input Leakage Current,<br>Control or Enable Inputs | $V_{in} = V_{CC} \text{ or GND}$<br>$V_{EE} = -6.0 \text{ V}$ | 6.0                      | ±0.1                      | ±1.0                      | ±1.0                      | μΑ   |
| ICC             | Maximum Quiescent Supply Current (per Package)             |                                                               | 6.0<br>6.0               | 2<br>4                    | 20<br>40                  | 40<br>160                 | μΑ   |

|                  |                                                                                          |                                                                                                                                                    |                           |                            | Gu                   | aranteed Li            | mit                    |      |
|------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|----------------------|------------------------|------------------------|------|
| Symbol           | Parameter                                                                                | Test Conditions                                                                                                                                    | V <sub>CC</sub><br>V      | V <sub>EE</sub><br>v       | –55 to<br>25°C       | ≤ 85°C                 | ≤ 125°C                | Unit |
| R <sub>on</sub>  | Maximum "ON" Resistance                                                                  | $\begin{array}{l} V_{in} = V_{IH} \\ V_{IS} = V_{CC} \text{ to } V_{EE} \\ I_{S} \leq 2.0 \text{ mA (Figure 2)} \end{array}$                       | 2.0*<br>4 5<br>4.5<br>6.0 | 0.0<br>0.0<br>-4.5<br>-6.0 | -<br>160<br>90<br>90 | -<br>200<br>110<br>110 | -<br>240<br>130<br>130 | Ω    |
|                  |                                                                                          | $ \begin{array}{l} V_{in} = V_{IH} \\ V_{IS} = V_{CC} \text{ or } V_{EE} \text{ (Endpoints)} \\ I_{S} \leq 2.0 \text{ mA (Figure 2)} \end{array} $ | 2.0<br>4.5<br>4.5<br>6.0  | 0.0<br>0.0<br>-4.5<br>-6.0 | -<br>90<br>70<br>70  | -<br>115<br>90<br>90   | -<br>140<br>105<br>105 |      |
| $\Delta R_{on}$  | Maximum Difference in "ON"<br>Resistance Between Any Two<br>Channels in the Same Package | $\label{eq:Vin} \begin{array}{l} V_{in} = V_{IH} \\ V_{IS} = 1/2 \; (V_{CC} - V_{EE}) \\ I_S \leq 2.0 \; \text{mA} \end{array}$                    | 2.0<br>4.5<br>4.5<br>6.0  | 0.0<br>0.0<br>4.5<br>6.0   | -<br>20<br>15<br>15  | -<br>25<br>20<br>20    | -<br>30<br>25<br>25    | Ω    |
| I <sub>off</sub> | Maximum Off–Channel<br>Leakage Current, Any One<br>Channel                               | $V_{in} = V_{IL}$<br>$V_{IO} = V_{CC} \text{ or } V_{EE}$<br>Switch Off (Figure 3)                                                                 | 6.0                       | -6.0                       | 0.1                  | 0.5                    | 1.0                    | μΑ   |
| I <sub>on</sub>  | Maximum On–Channel<br>Leakage Current, Any One<br>Channel                                | $V_{in} = V_{IH}$<br>$V_{IS} = V_{CC}$ or $V_{EE}$<br>(Figure 4)                                                                                   | 6.0                       | -6.0                       | 0.1                  | 0.5                    | 1.0                    | μΑ   |

## DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to V<sub>EE</sub>)

\*At supply voltage (V<sub>CC</sub> – V<sub>EE</sub>) approaching 2.0 V the analog switch–on resistance becomes extremely non–linear. Therefore, for low–voltage operation, it is recommended that these devices only be used to control digital signals.

# AC ELECTRICAL CHARACTERISTICS (C<sub>L</sub> = 50 pF, Control or Enable $t_r = t_f = 6$ ns, $V_{EE} = GND$ )

|                                        |                                                                  |                                                  |                      | Gua             | aranteed Li     | mit             |      |
|----------------------------------------|------------------------------------------------------------------|--------------------------------------------------|----------------------|-----------------|-----------------|-----------------|------|
| Symbol                                 | Parameter                                                        |                                                  | v <sub>cc</sub><br>v | –55 to<br>25°C  | ≤ 85°C          | ≤ 125°C         | Unit |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Maximum Propagation Delay, Analog Input to<br>(Figures 8 and 9)  | Analog Output                                    | 2.0<br>4.5<br>6.0    | 40<br>6<br>5    | 50<br>8<br>7    | 60<br>9<br>8    | ns   |
| t <sub>PLZ</sub> ,<br>t <sub>PHZ</sub> | Maximum Propagation Delay, Control or Ena<br>(Figures 10 and 11) | ble to Analog Output                             | 2.0<br>4.5<br>6.0    | 130<br>40<br>30 | 160<br>50<br>40 | 200<br>60<br>50 | ns   |
| t <sub>PZL</sub> ,<br>t <sub>PZH</sub> | Maximum Propagation Delay, Control or Ena<br>(Figures 10 and 11) | ble to Analog Output                             | 2.0<br>4.5<br>6.0    | 140<br>40<br>30 | 175<br>50<br>40 | 250<br>60<br>50 | ns   |
| С                                      | Maximum Capacitance                                              | ON/OFF Control<br>and Enable Inputs              | -                    | 10              | 10              | 10              | pF   |
|                                        |                                                                  | Control Input = GND<br>Analog I/O<br>Feedthrough | -                    | 35<br>1.0       | 35<br>1.0       | 35<br>1.0       |      |

|                 |                                                         | Typical @ 25°C, $V_{CC}$ = 5.0 V |    |
|-----------------|---------------------------------------------------------|----------------------------------|----|
| C <sub>PD</sub> | Power Dissipation Capacitance (Per Switch) (Figure 13)* | 15                               | рF |
|                 |                                                         |                                  |    |

\*Used to determine the no–load dynamic power consumption:  $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$ .

# ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)

| Symbol | Parameter                                                                      | Test Conditions                                                                                                                                                                                                                                                                                                                       | V <sub>CC</sub><br>V | V <sub>EE</sub><br>V    | Limit*<br>25°C       | Unit             |
|--------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|----------------------|------------------|
| BW     | Maximum On–Channel Bandwidth<br>or<br>Minimum Frequency Response<br>(Figure 5) | $      f_{in} = 1 \text{ MHz Sine Wave} \\       Adjust f_{in} \text{ Voltage to Obtain 0 dBm at V}_{OS} \\       Increase f_{in} \text{ Frequency Until dB Meter} \\       Reads -3 \text{ dB} \qquad \qquad$ | 2.25<br>4.50<br>6.00 | -2.25<br>-4.50<br>-6.00 | 150<br>160<br>160    | MHz              |
| -      | Off–Channel Feedthrough<br>Isolation<br>(Figure 6)                             |                                                                                                                                                                                                                                                                                                                                       | 2.25<br>4.50<br>6.00 | -2.25<br>-4.50<br>-6.00 | -50<br>-50<br>-50    | dB               |
|        |                                                                                | $f_{in}$ = 1.0 MHz, $R_L$ = 50 $\Omega$ , $C_L$ = 10 pF                                                                                                                                                                                                                                                                               | 2.25<br>4.50<br>6.00 | -2.25<br>-4.50<br>-6.00 | -40<br>-40<br>-40    |                  |
| -      | Feedthrough Noise, Control to<br>Switch<br>(Figure 7)                          | $ \begin{split} V_{in} &\leq 1 \text{ MHz Square Wave } (t_r = t_f = 6 \text{ ns}) \\ \text{Adjust } R_L \text{ at Setup so that } I_S = 0 \text{ A} \\ R_L = 600 \ \Omega, \ C_L = 50 \text{ pF} \end{split} $                                                                                                                       | 2.25<br>4.50<br>6.00 | -2.25<br>-4.50<br>-6.00 | 30<br>65<br>100      | mV <sub>PP</sub> |
|        |                                                                                | $R_L = 10 \text{ k}\Omega, C_L = 10 \text{ pF}$                                                                                                                                                                                                                                                                                       | 2.25<br>4.50<br>6.00 | -2.25<br>-4.50<br>-6.00 | 60<br>130<br>200     |                  |
| -      | Crosstalk Between Any Two<br>Switches<br>(Figure 12)                           |                                                                                                                                                                                                                                                                                                                                       | 2.25<br>4.50<br>6.00 | -2.25<br>-4.50<br>-6.00 | -70<br>-70<br>-70    | dB               |
|        |                                                                                | $f_{in}$ = 1.0 MHz, $R_L$ = 50 $\Omega$ , $C_L$ = 10 pF                                                                                                                                                                                                                                                                               | 2.25<br>4.50<br>6.00 | -2.25<br>-4.50<br>-6.00 | 80<br>80<br>80       |                  |
| THD    | Total Harmonic Distortion<br>(Figure 14)                                       | $\label{eq:fin} \begin{array}{l} f_{in} = 1 \text{ kHz},  \text{R}_{L} = 10 \text{ k}\Omega,  \text{C}_{L} = 50 \text{ pF} \\ \text{THD} = \text{THD}_{Measured} - \text{THD}_{Source} \\        \text$                                                                                                                               | 2.25<br>4.50<br>6.00 | -2.25<br>-4.50<br>-6.00 | 0.10<br>0.06<br>0.04 | %                |

\*Limits not tested. Determined by design and verified by qualification.

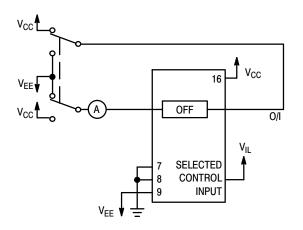
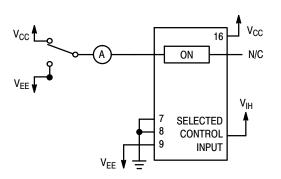
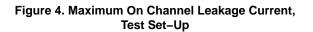
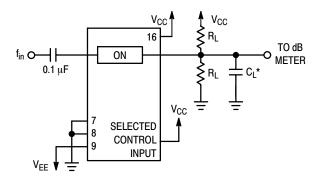
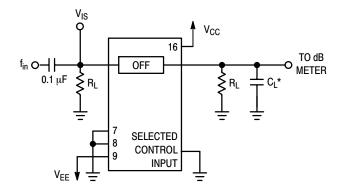
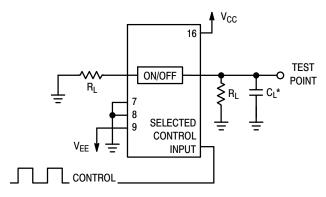





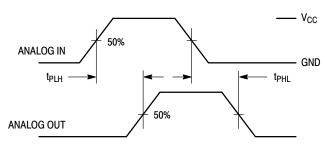

Figure 3. Maximum Off Channel Leakage Current, Any One Channel, Test Set–Up







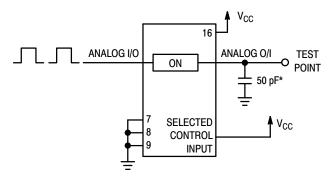


\*Includes all probe and jig capacitance.


#### Figure 5. Maximum On–Channel Bandwidth Test Set–Up



\*Includes all probe and jig capacitance.

Figure 6. Off-Channel Feedthrough Isolation, Test Set-Up







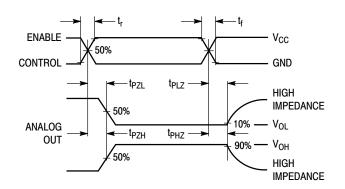
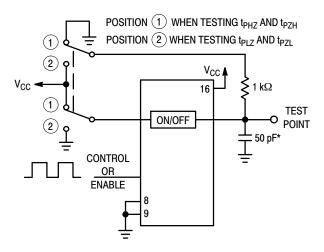


\*Includes all probe and jig capacitance.

Figure 7. Feedthrough Noise, Control to Analog Out, Test Set–Up




\*Includes all probe and jig capacitance.

Figure 9. Propagation Delay Test Set-Up







\*Includes all probe and jig capacitance.

# Figure 11. Propagation Delay Test Set–Up

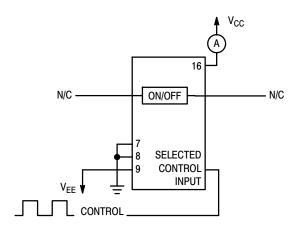
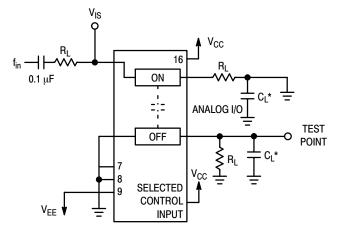
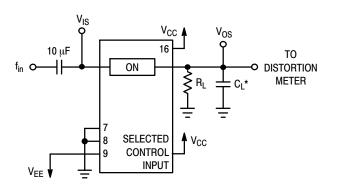





Figure 13. Power Dissipation Capacitance Test Set–Up



\*Includes all probe and jig capacitance.

# Figure 12. Crosstalk Between Any Two Switches, Test Set–Up (Adjacent Channels Used)



\*Includes all probe and jig capacitance.

## Figure 14. Total Harmonic Distortion, Test Set-Up

#### **APPLICATIONS INFORMATION**

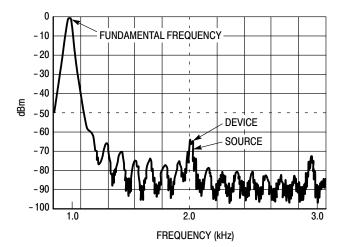



Figure 15. Plot, Harmonic Distortion

The Enable and Control pins should be at  $V_{CC}$  or GND logic levels,  $V_{CC}$  being recognized as logic high and GND being recognized as a logic low. Unused analog inputs/outputs may be left floating (not connected). However, it is advisable to tie unused analog inputs and outputs to  $V_{CC}$  or  $V_{EE}$  through a low value resistor. This minimizes crosstalk and feedthrough noise that may be picked up by the unused I/O pins.

The maximum analog voltage swings are determined by the supply voltages  $V_{CC}$  and  $V_{EE}$ . The positive peak analog voltage should not exceed  $V_{CC}$ . Similarly, the negative peak analog voltage should not go below  $V_{EE}$ . In the example below, the difference between  $V_{CC}$  and  $V_{EE}$  is 12 V.

Therefore, using the configuration in Figure 16, a maximum analog signal of twelve volts peak-to-peak can be controlled.

When voltage transients above  $V_{CC}$  and/or below  $V_{EE}$  are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure 17. These diodes should be small signal, fast turn–on types able to absorb the maximum anticipated current surges during clipping. An alternate method would be to replace the Dx diodes with MOSORBs (MOSORB<sup>®</sup> is an acronym for high current surge protectors). MOSORBs are fast turn–on devices ideally suited for precise dc protection with no inherent wear out mechanism.

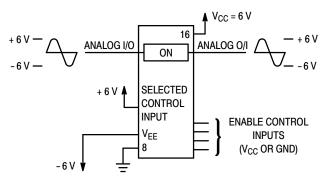
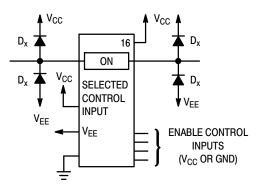
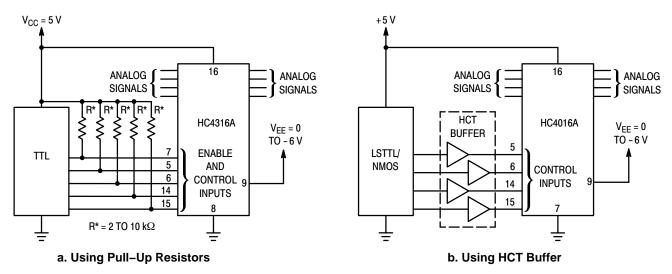
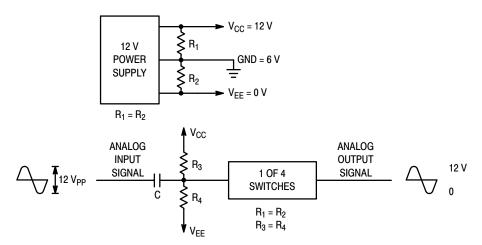
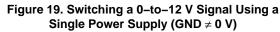
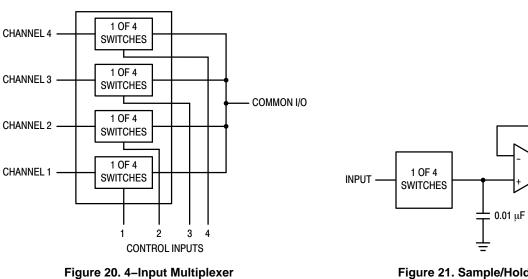



Figure 16.



Figure 17. Transient Suppressor Application



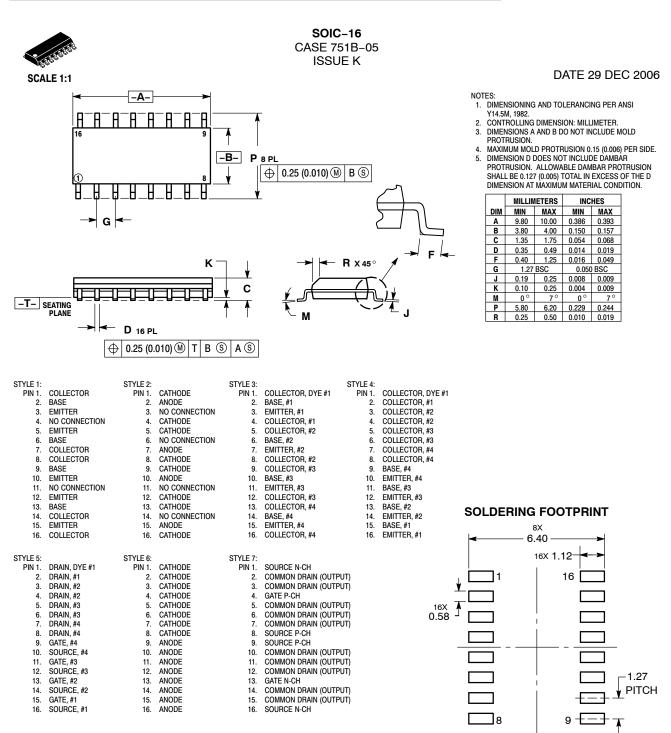











OUTPUT

LF356 OR

EQUIVALENT

MOSORB is a registered trademark of Semiconductor Components Industries, LLC (SCILLC).





DIMENSIONS: MILLIMETERS

| DOCUMENT NUMBER:                                                                                                                                                                                                                                                                                                                                        | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:                                                                                                                                                                                                                                                                                                                                            | SOIC-16     |                                                                                                                                                                                     | PAGE 1 OF 1 |
| ON Semiconductor and 🕕 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.<br>ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding |             |                                                                                                                                                                                     |             |

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights or others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales