MOSFET – Power, Single, P-Channel, SC-70

-20 V, -1.37 A

Features

- Leading –20 V Trench for Low R_{DS(on)}
- -2.5 V Rated for Low Voltage Gate Drive
- SC-70 Surface Mount for Small Footprint (2x2 mm)
- Pb-Free Package is Available

Applications

- High Side Load Switch
- Charging Circuit
- Single Cell Battery Applications such as: Cell Phones, Digital Cameras, PDAs

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parame	Symbol	Value	Units		
Drain-to-Source Voltage	V_{DSS}	-20	V		
Gate-to-Source Voltage			V _{GS}	±8	V
Continuous Drain	Steady $T_A = 25^{\circ}C$ State $T_A = 70^{\circ}C$		I _D	-1.37	Α
Current (Note 1)				-0.62	
Power Dissipation (Note 1)	Steady State T _A = 25°C		P _D	0.329	W
Pulsed Drain Current	ed Drain Current $t_p = 10 \mu s$			-4.0	Α
Operating Junction and S	T _J , T _{STG}	–55 to 150	°C		
Source Current (Body Did	I _S	-0.5	Α		
Lead Temperature for So (1/8" from case for 10	T _L	260	°C		

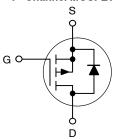
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Units
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	380	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1

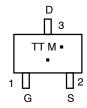
 Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max
	83 m Ω @ –4.5 V	
-20 V	88 mΩ @ –3.6 V	–1.37 A
	104 mΩ @ –2.5 V	


P-Channel MOSFET

MARKING DIAGRAM & PIN ASSIGNMENT

SC-70/SOT-323 CASE 419 STYLE 8

TT = Device Code

M = Date Code*

Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTS4101PT1	SOT-323	3000/Tape & Reel
NTS4101PT1G	SOT-323 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J=25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS			•				
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V, } I_D = -250 \mu\text{A}$		-20	-24.5		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				-13.7		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			-1.0	μΑ
		$V_{DS} = -16 \text{ V}$	T _J = 70°C			-5.0	
Gate-to-Source Leakage Current	I_{GSS}	$V_{DS} = 0 V, V_{G}$	_{as} = ±8 V			±100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= -250 μΑ	-0.45	-0.64	-1.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				2.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -4.5 V, I	_D = -1.0 A		83	120	mΩ
		V _{GS} = -3.6 V, I	_D = -0.7 A		88	130	
		V _{GS} = -2.5 V, I _D = -0.3 A			104	160	
Forward Transconductance	G _{FS}	V _{DS} = -5.0 V, I	_D = -1.3 A		5.2		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = -20 \text{ V}$			603	840	pF
Output Capacitance	C _{OSS}				90	125	
Reverse Transfer Capacitance	C _{RSS}		Ī		62	85	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -4.5 \text{ V}, V_{E}$	_{OS} = -4.5 V,		6.4	9.0	nC
Threshold Gate Charge	Q _{G(TH)}	I _D = -1.	0 A		0.7		
Gate-to-Source Charge	Q_{GS}		Ī		1.0		
Gate-to-Drain Charge	Q_{GD}				1.5		
SWITCHING CHARACTERISTICS (No	ote 3)						
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = -4.5 \text{ V}, V_{E}$	_{DD} = -4.0 V,		6.2	12	ns
Rise Time	t _r	$I_D = -1.0 \text{ A}, \text{ R}$	$_{\rm G}$ = 6.2 Ω		14.9	25	7
Turn-Off Delay Time	t _{d(OFF)}				26	40	
Fall Time	t _f				18	30	
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V},$ $I_{S} = -0.3 \text{ A}$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$		-0.61 -0.5	-1.2	V
Reverse Recovery Time	too	$V_{GS} = 0 \text{ V, } dI_{SD}/d$	1 -		10.9	20	ns
Charge Time	t _{RR}	$I_{S} = -1.$			7.1	20	113
Discharge Time	T _b				3.8		
Reverse Recovery Charge					4.25		nC
neverse necovery charge	Q_{RR}				4.20		IIC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

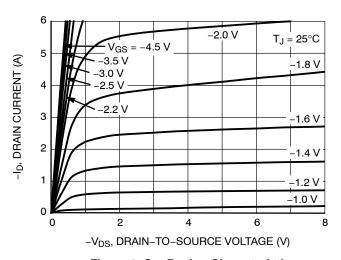


Figure 1. On-Region Characteristics

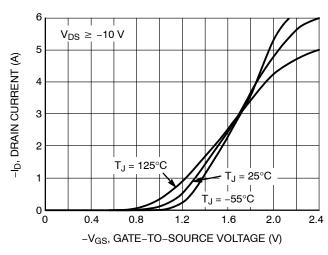


Figure 2. Transfer Characteristics

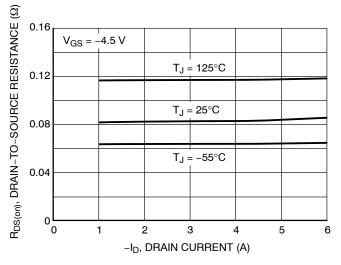


Figure 3. On-Resistance versus Drain Current and Temperature

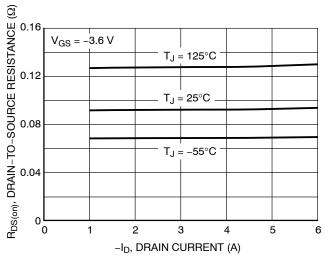


Figure 4. On-Resistance versus Drain Current and Temperature

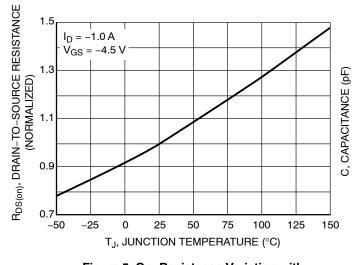


Figure 5. On–Resistance Variation with Temperature

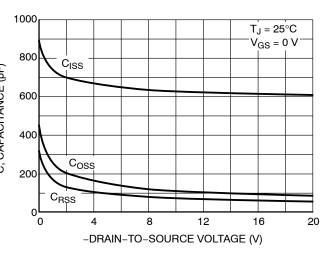


Figure 6. Capacitance Variation

TYPICAL CHARACTERISTICS

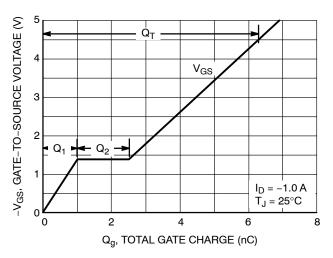


Figure 7. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

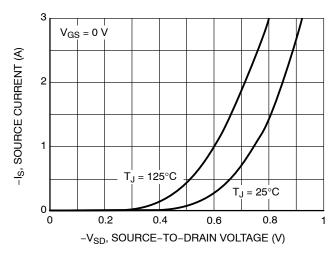
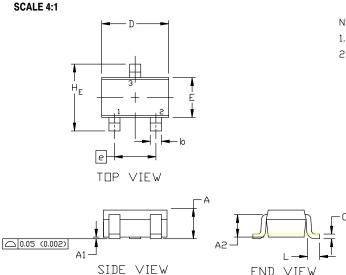


Figure 8. Diode Forward Voltage versus Current

SC-70 (SOT-323) **CASE 419** ISSUE R


END VIEW

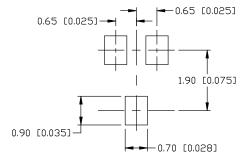
DATE 11 OCT 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MILLIMETERS			INCHES		
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2		0.70 REF	-	0.028 BSC		
b	0.30	0.35	0.40	0.012	0.014	0.016
C	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.00	2.20	0.071	0.080	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1		0.65 BSC			0.026 BS	C
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095

GENERIC MARKING DIAGRAM



= Specific Device Code XX

Μ = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the ID Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6: PIN 1. EMITTER	STYLE 7: PIN 1. BASE	STYLE 8: PIN 1. GATE	STYLE 9: PIN 1. ANODE	STYLE 10: PIN 1. CATHODE	STYLE 11: PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	2. CATHODE
COLLECTOR	COLLECTOR	3. DRAIN	CATHODE-ANODE	3. ANODE-CATHODE	CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales