SDLS940A - MARCH 1974 - REVISED MARCH 1988

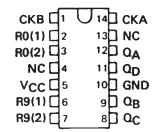
90A, 'LS90 . . . Decade Counters

'92A, 'LS92 . . . Divide By-Twelve Counters

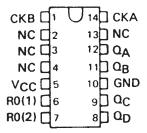
'93A, 'LS93 . . . 4-Bit Binary Counters

T)/050	TYPICAL
TYPES	POWER DISSIPATION
'90A	145 mW
'92A, '93A	130 mW
'LS90, 'LS92, 'LS93	45 mW

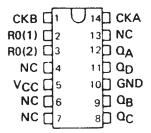
description


testing of all parameters.

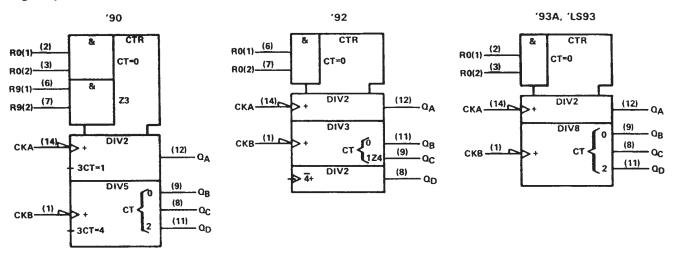
Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a threestage binary counter for which the count cycle length is divide-by-five for the '90A and 'LS90, divide-by-six for the '92A and 'LS92, and the divide-by-eight for the '93A and 'LS93.


All of these counters have a gated zero reset and the '90A and 'LS90 also have gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade, divide-by-twelve, or four-bit binary) of these counters, the CKB input is connected to the QA output. The input count pulses are applied to CKA input and the outputs are as described in the appropriate function table. A symmetrical divide-by-ten count can be obtained from the '90A or 'LS90 counters by connecting the QD output to the CKA input and applying the input count to the CKB input which gives a divide-byten square wave at output QA.


SN5490A, SN54LS90 . . . J OR W PACKAGE SN7490A . . . N PACKAGE SN74LS90 . . . D OR N PACKAGE (TOP VIEW)

SN5492A, SN54LS92 . . . J OR W PACKAGE SN7492A . . . N PACKAGE SN74LS92 . . . D OR N PACKAGE (TOP VIEW)


SN5493A, SN54LS93 . . . J OR W PACKAGE SN7493 . . . N PACKAGE SN74LS93 . . . D OR N PACKAGE (TOP VIEW)

1

SDLS940A – MARCH 1974 – REVISED MARCH 1988

logic symbols†

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

SDLS940A - MARCH 1974 - REVISED MARCH 1988

'90A, 'LS90 BCD COUNT SEQUENCE

(See Note A)

COUNT		OUT	PUT	
COOM	ap	α_{C}	OΒ	QA
0	L	L	L	L
1	L	L	L	н
2	L	L	н	L
3	Ĺ	L	Н	н
4	L	Н	L	L
5	L	Н	L	н
6	L	Н	Н	L
7	L	Н	Н	Н
8	н	L	L	L
9	Н	L	L	н

'92A, 'LS92 COUNT SEQUENCE

(See Note C)

COUNT		OUT	PUT	
COONT	a_{D}	α_{C}	QB	QA
0	L	L	L	L
1	L	L	L	н
2	L	L	Н	L
3	L	Ł	Н	Н
4	L	Н	L	L
5	L	Н	L	н
6	н	Ł	L	L
7	н	L	L	н
8	н	L	Н	L
9	н	L	Н	н
10	н	Н	L	L
11	н	Н	L	н

'92A, 'LS92, '93A, 'LS93 RESET/COUNT FUNCTION TABLE

RESET	INPUTS		OUT	PUT	
R ₀₍₁₎	R ₀₍₂₎	α _D	a_{c}	QB	QA
H	Н	L	L	L	L
L	X		COL	JNT	
X	L		COL	TNL	

NOTES: A. Output $Q_{\mathbf{A}}$ is connected to input CKB for BCD count.

- B. Output \mathbf{Q}_{D} is connected to input CKA for bi-quinary count.
- C. Output Q_A is connected to input CKB.
- D. H = high level, L = low level, X = irrelevant

'90A, 'LS90 BI-QUINARY (5-2)

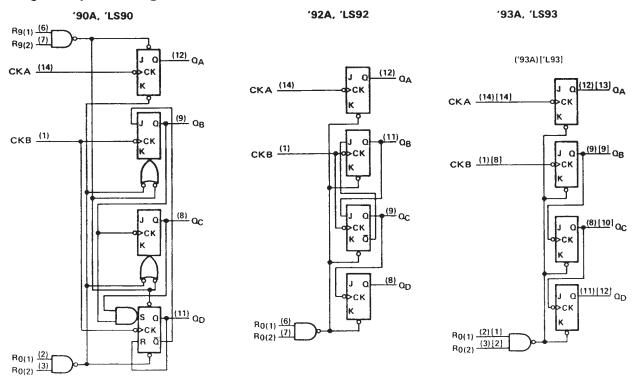
(See Note B)

COUNT		Ουτ	PUT	
COOM	QA	σ_{D}	a_{C}	OΒ
0	L	L	L	L
1	L	L	L	Н
2	L	L	Н	L
3	L	L	Н	Н
4	L	Н	L	L
5	н	L	L	L
6	н	L	L	Н
7	н	L	Н	L
8	н	L	Н	Н
9	н	Н	L	L

'90A, 'LS90 RESET/COUNT FUNCTION TABLE

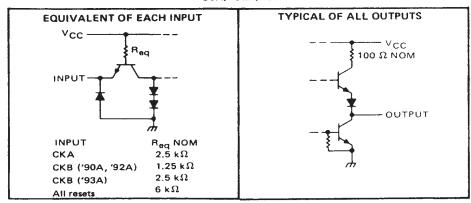
1	RESET	INPUTS	3	OUTPUT									
R ₀₍₁₎	R ₀₍₂₎	R ₉₍₁₎	R9(2)	σ_{D}	σ_{C}	QB	QA						
Н	Н	L	Х	L	L	L	L						
Н	H	×	L	L	L	L	L						
X	×	Н	н	н	L	L	Н						
Х	L	×	L		СО	UNT							
L	×	L	х		СО	UNT							
L	×	Х	L		UNT								
×	L	L	х	COUNT									

'93A, 'LS93 COUNT SEQUENCE


(See Note C)

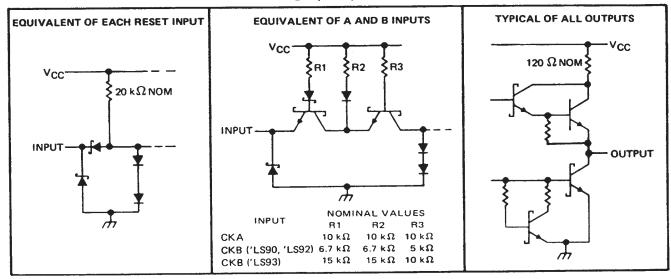
(See Note C)													
COUNT		TUO	PUT										
COOK	QD	a_{C}	$Q_{\mathbf{B}}$	QA									
0	L	L	L	L									
1	L	L	L	Н									
2	L	L	Н	L									
3	L	L	Н	Н									
4	L	Н	L	L									
5	L	Н	L	H									
6	L	Н	Н	L									
7	L	н	Н	Н									
8	н	L	L	L									
9	н	L	L	Н									
10	н	L	Н	L									
11	н	Ł	Н	Н									
12	н	н	L	L									
13	н	Н	L	Н									
14	н	Н	Н	L									
15	н	Н	Н	Н									

SDLS940A – MARCH 1974 – REVISED MARCH 1988


logic diagrams (positive logic)

The J and K inputs shown without connection are for reference only and are functionally at a high level. Pin numbers shown in () are for the 'LS93 and '93A and pin numbers shown in () are for the 54L93.

schematics of inputs and outputs


'90A, '92A, '93A

SDLS940A - MARCH 1974 - REVISED MARCH 1988

schematics of inputs and outputs (continued)

'LS90, 'LS92, 'LS93

SDLS940A – MARCH 1974 – REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)										 		. 7V
Input voltage												
Interemitter voltage (see Note 2)												
Operating free-air temperature range:	SN5490A	A, SN!	5492A	, SN5	493A					-55	i°C t	o 125°C
Sportating was an isomposition of	SN7490	. SN	7492A	SN7	493A						0°C	to 70°C
Storage temperature range										-65	°C t	o 150°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the two R₀ inputs, and for the '90A circuit, it also applies between the two Rg inputs.

recommended operating conditions

		SN549	OA, SN	5492A	SN749			
			SN5493	A		UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800	μΑ	
Low-level output current, IQL			16			16	mA	
	A input	0		32	0		32	MHz
Count frequency, f _{count} (see Figure 1)	8 input	0		16	0		16	IVIII
	A input	15			15			
Pulse width, tw	8 input	30			30			ns
•	Reset inputs	15			15			
Reset inactive-state setup time, t _{Su}		25			25			ns
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

						'90A			'92A			'93A		UNIT
	PARAMETE	R¶	TEST CONDIT	IONST	MIN	TYP#	MAX	MIN	TYP	MAX	MIN	TYP [‡]	MAX	UNIT
VIH	High-level inpu	ıt voltage			2			2			2			V
VIL	Low-level inpu						0.8			0.8			8.0	V
VIK	Input clamp vo		VCC = MIN, II = -	1		-1.5			-1.5			-1.5	V	
	High-level outp		VCC = MIN, VIH	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -800 μA		3.4		2.4	3.4		2.4	3.4		V
VOL	Low-level outp	out voltage	V _{CC} = MIN, V _{1H} = V _{1L} = 0.8 V, I _{OL}			0.2	0.4		0.2	0.4		0.2	0.4	٧
11	Input current maximum input		V _{CC} = MAX, V ₁ =	V _{CC} = MAX, V ₁ = 5.5 V						1			1	mA
		Any reset					40			40			40	
ίн	High-level	CKA	V _{CC} = MAX, V _J =	2.4 V			80			80			80	μΑ
111	input current	СКВ					120			120			80	<u> </u>
		Any reset					-1.6			-1.6			-1.6]
l _{IL}	Low-level	CKA	V _{CC} = MAX, V _I =	0.4 V			-3.2			-3.2			-3.2	mA
.1.	input current	СКВ	VCC - MAX, V1 0.11		_		-4.8			-4.8			-3.2	
	Short-circuit			SN54'	-20		-57	-20		-57	-20		-57	mA
los	output curren	t §	VCC = MAX	SN74'	-18		-57	-18		-57	-18		57	111/2
¹cc	Supply curren		V _{CC} = MAX, See Note 3			29	42		26	39		26	39	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: I_{CC} is measured with all outputs open, both R₀ inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$.

Not more than one output should be shorted at a time.

 $[\]P_{Q_A}$ outputs are tested at I_{QL} = 16 mA plus the limit value for I_{IL} for the CKB input. This permits driving the CKB input while maintaining

SDLS940A - MARCH 1974 - REVISED MARCH 1988

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	FROM	ТО			'90A			'92A			'93A		UNIT		
PARAMETER [†]	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	OIVII		
	CKA	QA		32	42		32	42		32	42		MHz		
f _{max}	СКВ	QB		16			16			16			2		
tPLH	CKA				10	16		10	16		10	16	ns		
tPHL		QA			12	18		12	18		12	18			
tPLH					32	48		32	48		46	70	ns		
tPHL	CKA	σ_{D}	Ì		34	50		34	50		46	70	,,,,		
tPLH	0115		CL = 15 pF,		10	16		10	16		10	16	ns		
tPHL	СКВ	αB	RL = 400 Ω,		14	21		14	21		14	21			
^t PLH			See Figure 1		21	32		10	16		21	32	ns		
tPHL	СКВ	ОC			23	35		14	21		23	35			
tPLH			1		21	32		21	32		34	51	ns		
tPHL	СКВ	σD			23	35		23	35		34	51			
tPHL	Set-to-0	Any	1		26	40		26	40		26	40	ns		
tPLH		Q_A, Q_D					20	30							ns
tPHL	Set-to-9	Q _B , Q _C	1		26	40				<u> </u>					

 $^{^{\}dagger}f_{max} = maximum count frequency$

tpLH ≡ propagation delay time, low-to-high-level output

tpHL ≡ propagation delay time, high-to-low-level output

SDLS940A – MARCH 1974 – REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																						7 V
Input voltage: R inputs																						7 V
A and B inputs .																						5.5 V
Operating free-air temperature range	: :	SN	54	LS	" (Circ	cui	ts										_!	55	°C	to	125°C
		SN	74	LS	' (Circ	cui	its											(o°(C t	o 70°C
Storage temperature range																		_(65	°C	to	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54LS90 SN54LS92 SN54LS93			SN74LS90 SN74LS92 SN74LS93			UNIT
		MIN	NOM	MAX	MIN	NOM		
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH				-400			-400	μА
Low-level output current, IOL				4			8	mA
Count fraguency (Jean Figure 1)	A input	0		32	0		32	MHz
Count frequency, f _{count} (see Figure 1)	B input	0		16	0		16	MHZ
	A input	15			15			
Pulse width, tw	B input	30			30			ns
	Reset inputs	30			30			1
Reset inactive-state setup time, t _{su}	100	25			25			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

-	PARAMET	TER	TE	ST CONDITION	s [†]	1	N54LS9 N54LS9			N74LS9		UNIT
						MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level inpu	t voltage				2			2			V
VIL	Low-level inpu	t voltage						0.7			0.8	V
VIK	Input clamp vo	Itage	V _{CC} = MIN,	$I_1 = -18 \text{ mA}$				-1.5			-1.5	V
Vон	High-level outp	ut voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{1H} = 2 V, I _{OH} = -400 μ/	Α	2.5	3.4		2.7	3.4		V
V	Low lovel outs	ut valtana	VCC = MIN,	V _{IH} = 2 V,	IOL = 4 mA¶		0.25	0.4		0.25	0.4	V
VOL	Low-level outp	at voitage	V _I L = V _I L max, I _O L = 1		10L = 8 mA¶					0.35	0.5	ľ
	Input current	Any reset	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	
11	at maximum	CKA	V MAY	V 5 5 V				0.2			0,2	mA
	input voltage	CKB	V _{CC} = MAX,	$V_1 = 5.5 V$				0.4			0.4	1
	High-level	Any reset						20			20	
ЧН	_	CKA	V _{CC} = MAX,	V1 = 2.7 V				40			40	μА
	input current	СКВ						80			80	
	Low-level	Any reset						-0.4			-0.4	
HL		CKA	V _{CC} = MAX,	$V_1 = 0.4 \ V$				-2.4			-2.4	mA
	input current	CKB						-3.2			-3.2	<u> </u>
los	Short-circuit ou	tput current§	VCC = MAX			-20		-100	-20		-100	mA
laa	Supply surrent		V = MAY	San Nata 2	'LS90		9	15		9	15	
ICC	C Supply current		V _{CC} = MAX,	See Note 3	'LS92	9 15			9	15	mA	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: ICC is measured with all outputs open, both RO inputs grounded following momentary connection to 4,5 V, and all other inputs grounded.

 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§]Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

[¶]QA outputs are tested at specified IOL plus the limit value of IIL for the CKB input. This permits driving the CKB input while maintaining full fan-out capability.

SDLS940A - MARCH 1974 - REVISED MARCH 1988

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					•	S	N54LS9	3	S	N74LS9	3	
	PARAMET	ER	TE:	ST CONDITIONS	5'	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level inpu	t voltage				2			2			V
VIL	Low-level input	t voltage						0.7			8.0	٧
VIK	Input clamp vo	Itage	VCC = MIN,	1 ₁ = -18 mA				-1.5			-1.5	V
Vон	High-level outp	ut voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, 1 _{OH} = -400 μA	λ.	2.5	3.4		2.7	3.4		V
	Low-level output voltage		VCC = MIN,	V _{IH} = 2 V,	IOL = 4 mA¶		0.25	0.4		0.25	0.4	V
VOL			VIL = VIL max		I _{OL} = 8 mA¶					0.35	0.5	
	Input current	Any reset	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
Ц	at maximum input voltage	CKA or CKB	V _{CC} = MAX,	V ₁ = 5.5 V				0.2			0.2	
	High-level	Any reset		07.1/				20			20	μA
чн	input current	CKA or CKB	V _{CC} = MAX,	$V_1 = 2.7 \text{ V}$				40			80	μΑ.
		Any reset						-0.4			-0.4	
IIL.	Low-level CKA		V _{CC} = MAX,	$V_I = 0.4 V$				-2.4			-2.4	mA
	input current	CKB	1					-1.6			-1.6	<u> </u>
los	Short-circuit or	utput current §	V _{CC} = MAX			-20		-100	-20		-100	mA
Icc	Supply current		V _{CC} = MAX,	See Note 3			9	15		9	15	mA

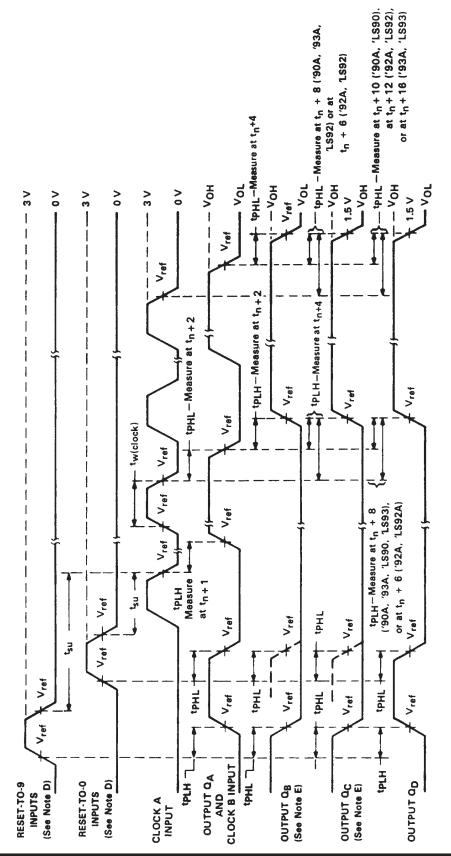
[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	FROM	то			LS90			LS92			'LS93		UNIT
PARAMETER#	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN TYP M 32 42 16 10 1 12 1 32 4 34 5 10 1 14 2 21 3 21 3 23 3			MIN	TYP	MAX	MIN	TYP	MAX	Olviii
	CKA	QA		32	42		32	42		32	42		MHz
f _{max}	CKB	QB		16			16			16			101712
†PLH	01/ 5	0			10	16		10	16		10	16	ns
tPHL .	CKA	QA			12	18		12	18		12	18	
tPLH	CKA				32	48		32	48		46	70	ns
tPHL.	CNA	a_{D}	34	34	50		34	50		46	70	,	
tPLH .			CL = 15 pF,		10	16		10	16		10	16	ns
^t PHL	CKB	ΩB	R _L = 2 kΩ		14	21		14	21		14	21	,,,,
†PLH		_	See Figure 1	21 32		10	16		21	32	ns		
tPHL	CKB	ac			23	35		14	21		23	35	113
tPLH			1		21	32		21	32		34	51	ns
†PHL	CKB	σD			23	35		23	35		34	51	
tPHL	Set-to-0	Any	1		26	40		26	40		26	40	ns
tPLH .		Q_A, Q_D	1		20	30							ns
t _{PHL}	Set-to-9	Q _B , Q _C	1		26	40							

[#]fmax = maximum count frequency

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.


[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

[¶]QA outputs are tested at specified IQL plus the limit value for IIL for the CKB input. This permits driving the CKB input while maintaining full fan-out capability.

NOTE 3: I_{CC} is measured with all outputs open, both R₀ inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

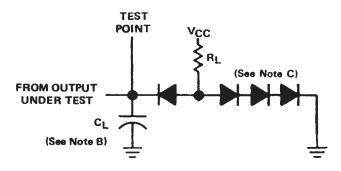
 $tp_{LH} = propagation delay time, low-to-high-level output$

tpHL = propagation delay time, high-to-low-level output

NOTES: A. Input pulses are supplied by a generator having the following characteristics:

for 'LS90, 'LS92, 'LS93, $t_f \le 15$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, $Z_{out} \approx 50$ ohms. for '90A, '92A, '93A, t_f ≤ 5 ns, t_f ≤ 5 ns, PRR = 1 MHz, duty cycle = 50%, Z_{out} ≈ 50 ohms;

- CL includes probe and jig capacitance. All diodes are 1N3064 or equivalent.
- Each reset input is tested separately with the other reset at 4.5 V.
 - Reference waveforms are shown with dashed lines.
- For '90A, '92A, and '93A; $V_{ref} = 1.5 \text{ V}$. For 'LS90, 'LS92, and 'LS93; $V_{ref} = 1.3 \text{ V}$. BB CJ CJ UJ UL


FIGURE 1A

PARAMETER MEASUREMENT INFORMATION

SDLS940A - MARCH 1974 - REVISED MARCH 1988

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

- NOTES: A. Input pulses are supplied by a generator having the following characteristics: for '90A, '92A, '93A, $t_r \le 5$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, $z_{out} \approx 50$ ohms; for 'LS90, 'LS92, 'LS93, $t_r \le 15$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, $z_{out} \approx 50$ ohms.
 - B. C_L includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.
 - D. Each reset input is tested separately with the other reset at $4.5\ V.$
 - E. Reference waveforms are shown with dashed lines.
 - F. For '90A, '92A, and '93A; $V_{ref} = 1.5 \text{ V}$. For 'LS90, 'LS92, and 'LS93; $V_{ref} = 1.3 \text{ V}$.

FIGURE 1B

25-Sep-2023 www.ti.com

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
7603201CA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7603201CA SNJ54LS90J	Samples
7700101CA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7700101CA SNJ54LS93J	Samples
7700101DA	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7700101DA SNJ54LS93W	Samples
JM38510/31501BCA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 31501BCA	Samples
JM38510/31502BCA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 31502BCA	Samples
JM38510/31502BDA	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 31502BDA	Samples
M38510/31501BCA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 31501BCA	Samples
M38510/31502BCA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 31502BCA	Samples
M38510/31502BDA	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 31502BDA	Samples
SN54LS90J	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS90J	Samples
SN54LS93J	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS93J	Samples
SN74LS90D	LIFEBUY	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS90	
SN74LS90DE4	LIFEBUY	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS90	
SN74LS90DR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS90	Samples
SN74LS90N	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS90N	Samples
SN74LS90NE4	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS90N	Samples
SN74LS92D	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS92	Samples
SN74LS92N	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS92N	Samples

www.ti.com 25-Sep-2023

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LS92NSR	ACTIVE	SO	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS92	Samples
SN74LS93D	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS93	Samples
SN74LS93N	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS93N	Samples
SNJ54LS90J	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7603201CA SNJ54LS90J	Samples
SNJ54LS93J	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7700101CA SNJ54LS93J	Samples
SNJ54LS93W	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7700101DA SNJ54LS93W	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

www.ti.com 25-Sep-2023

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

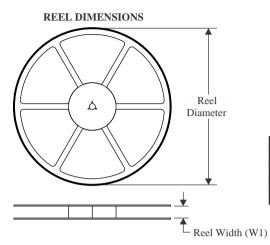
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

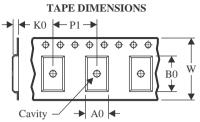
OTHER QUALIFIED VERSIONS OF SN54LS90, SN54LS93, SN74LS90, SN74LS93:

Catalog: SN74LS90, SN74LS93

Military: SN54LS90, SN54LS93

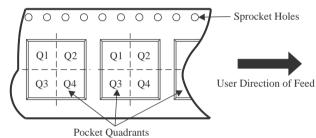
NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product


Military - QML certified for Military and Defense Applications

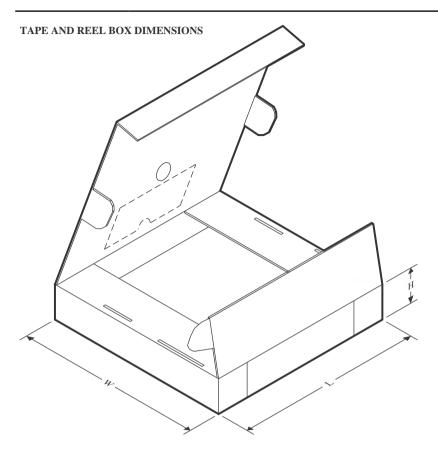
PACKAGE MATERIALS INFORMATION

www.ti.com 1-Jul-2023


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

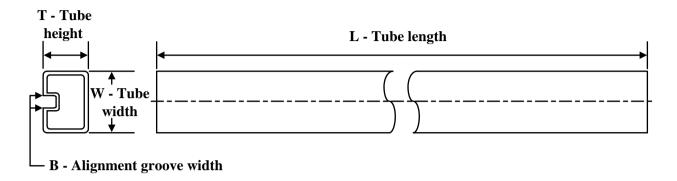


*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS90DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LS92NSR	so	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Jul-2023

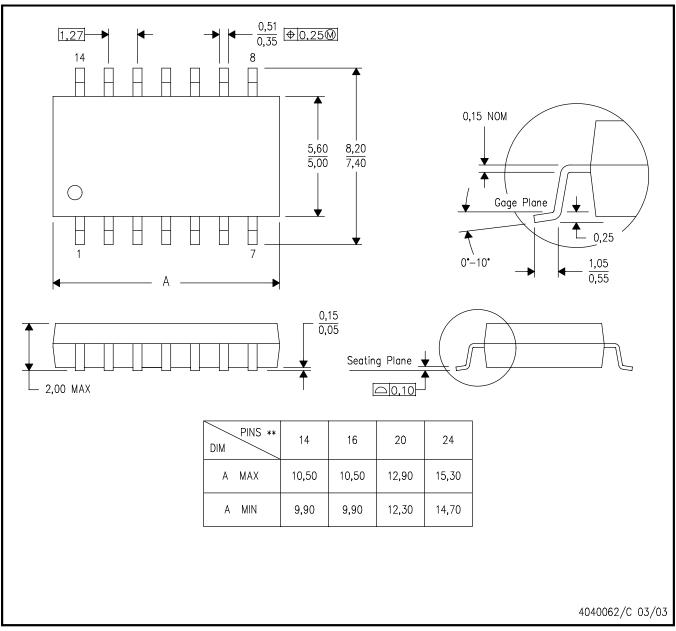

*All dimensions are nominal

	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
	SN74LS90DR	SOIC	D	14	2500	356.0	356.0	35.0
ĺ	SN74LS92NSR	SO	NS	14	2000	356.0	356.0	35.0

www.ti.com 1-Jul-2023

TUBE

*All dimensions are nominal

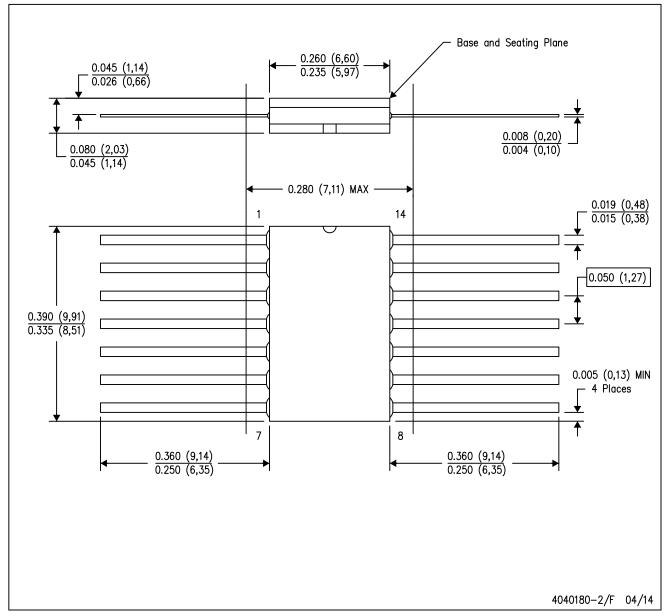

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
7700101DA	W	CFP	14	1	506.98	26.16	6220	NA
JM38510/31502BDA	W	CFP	14	1	506.98	26.16	6220	NA
M38510/31502BDA	W	CFP	14	1	506.98	26.16	6220	NA
SN74LS90D	D	SOIC	14	50	506.6	8	3940	4.32
SN74LS90DE4	D	SOIC	14	50	506.6	8	3940	4.32
SN74LS90N	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS90N	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS90NE4	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS90NE4	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS92D	D	SOIC	14	50	506.6	8	3940	4.32
SN74LS92N	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS92N	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS93D	D	SOIC	14	50	506.6	8	3940	4.32
SN74LS93N	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS93N	N	PDIP	14	25	506	13.97	11230	4.32
SNJ54LS93W	W	CFP	14	1	506.98	26.16	6220	NA

MECHANICAL DATA

NS (R-PDSO-G**)

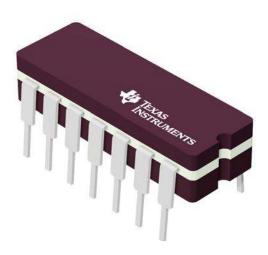
14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE



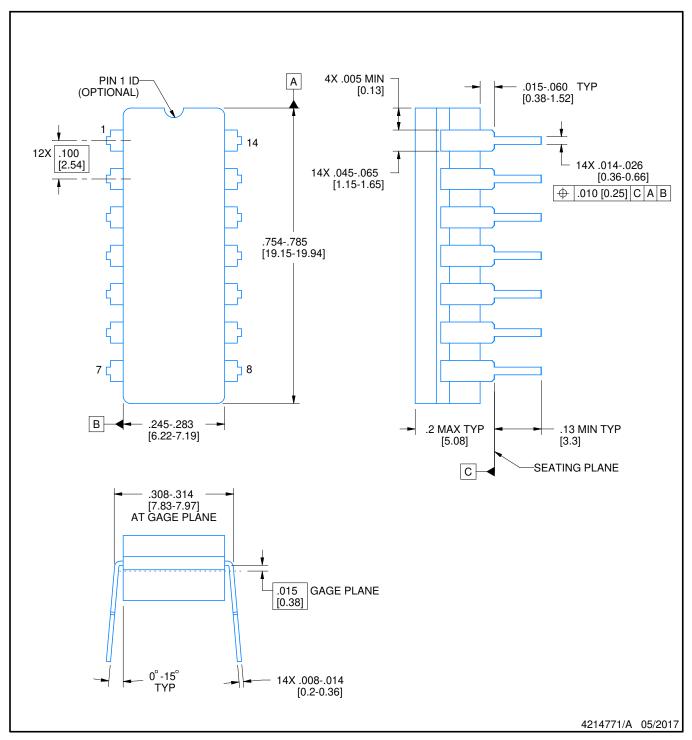
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F14)

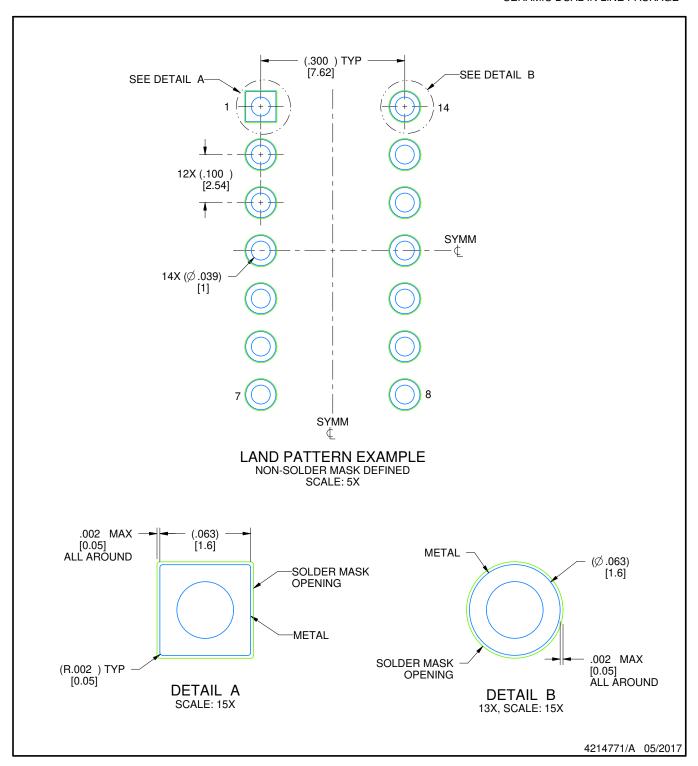

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14

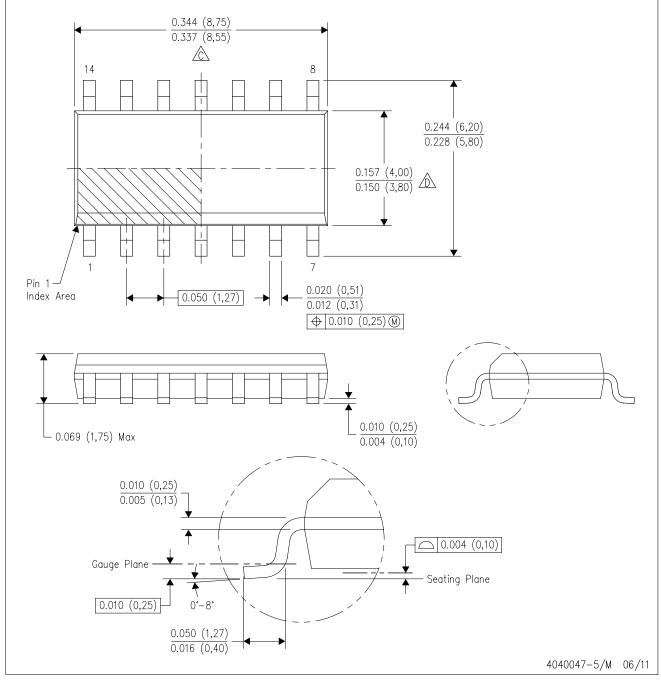
CERAMIC DUAL IN LINE PACKAGE


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040083-5/G


CERAMIC DUAL IN LINE PACKAGE

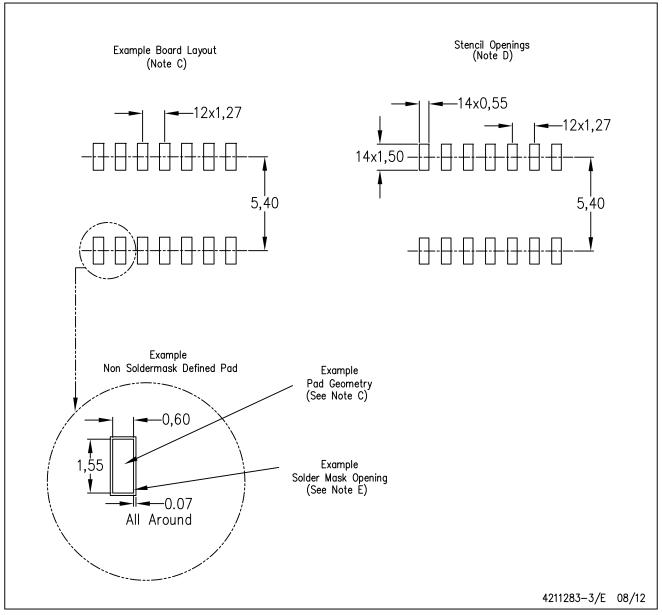
- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- His package is remitted by sealed with a certain is using glass int.
 Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.



CERAMIC DUAL IN LINE PACKAGE

D (R-PDSO-G14)

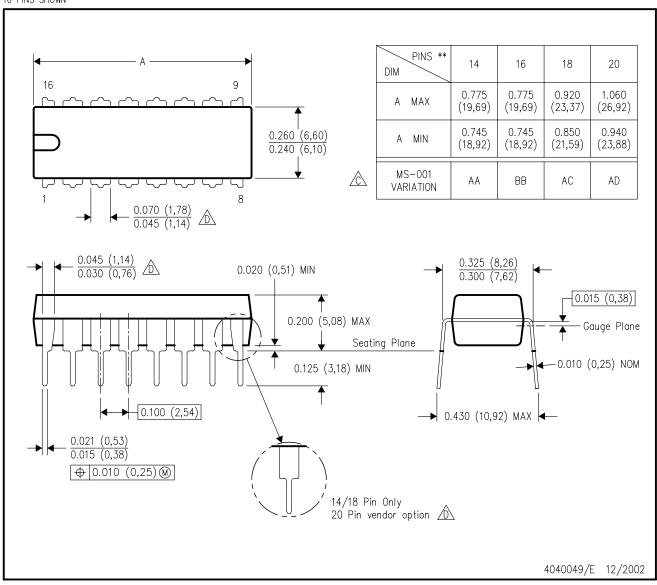
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated