

High Speed Double-Ended PWM Controller

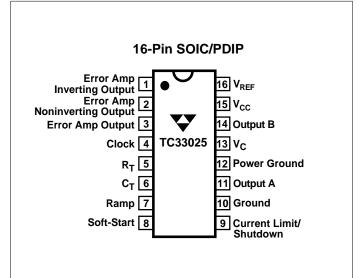
FEATURES

- 50nsec Propagation Delay to Outputs
- Dual High Current Totem Pole Outputs
- Wide Bandwidth Error Amplifier
- Fully–Latched Logic with Double Pulse Suppression
- Latching PWM for Cycle-By-Cycle Current Limiting
- Soft-Start Control with Latched Overcurrent Reset
- Input Undervoltage Lockout with Hysteresis
- Low Start–Up Current (500µA Typ)
- Internally Trimmed Reference with Undervoltage Lockout
- 90% Maximum Duty Cycle (Externally Adjustable)
- Precision Trimmed Oscillator
- Voltage or Current Mode Operation to 1.0MHz
- Functionally Similar to the UC3825

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The TC33025 is a high speed, fixed frequency, doubleended pulse width modulator controller optimized for high frequency operation. They are specifically designed for Off-Line and DC-to-DC converter applications offering the designer a cost effective solution with minimal external components. This integrated circuit features an oscillator, a temperature compensated reference, a wide bandwidth error amplifier, a high speed current sensing comparator, steering flip–flop, and dual high current totem pole outputs ideally suited for driving power MOSFETs.


Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-by-cycle current limiting, and a latch for single pulse metering.

The flexibility of this device allows it to be easily configured for either current mode or voltage mode control.

ORDERING INFORMATION

Part		Temperature
Number	Package	Range
TC33025VPE	16-Pin PDIP	–40°C to +80°C
TC33025VOE	16-Pin SOIC	–40°C to +80°C

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS*

Power Supply Voltage
Output Driver Supply Voltage $V_C = 20V$
Output Current, Source or Sink (Note 1)
DCI _{OUT} = 0.5A
Pulsed (0.5µsec)I _{OUT} = 2.0A
Current Sense, Soft–Start Ramp and
Error Amp Inputs $V_{IN} = -0.3$ to 7.0V
Error Amp Output and Soft–Start Sink CurrentI _{OUT} = $10mA$
Storage Temperature Range–65°C to +150°C
Clock and R _T Output Current I _{COUT} = 5.0mA
Power Dissipation and Thermal Characteristics
16-Pin SOIC
Maximum Power Dissipation
@ $T_A = +25^{\circ}C$ $P_D = 862mW$

Thermal Resistance, Junction–to–Air ... $\theta_{JA} = 145^{\circ}$ C/W

16-Pin PDIP			
Maximum Power Dissipation			
@ $T_A = +25^{\circ}C$ $P_D = 1.25W$			
Thermal Resistance, Junction–to–Air $\theta_{JA} = 100^{\circ}$ C/W			
Operating Junction Temperature $T_J = +150^{\circ}C$			
Operating Ambient Temperature (Note 2)			
TC33025 $T_A = -40$ to $+105^{\circ}C$			
Storage Temperature Range $T_{STG} = -55$ to +150 °C			
*Static sensitive device. Unused devices must be stored in conductive			
material. Protect devices from static discharge and static fields. Stresses			

material. Protect devices from static discharge and static fields. Stresses above thise listed under Absolute Maximum Power Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operation section of the specifications is not implied. Exposure to absolute maximum ratings conditions for extended periods of time may affect device reliability.

ELECTRICAL CHARACTERISTICS: $V_{CC} = 15V$, $R_T = 3.65k\Omega$, $C_T = 1.0nF$, for typical values $T_A = +25^{\circ}C$, for	
min/max values. T _A is the operating ambient temperature range that applies [Note 2], unless otherwise noted.	

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Reference	Section		1		1	1
V _{REF}	Reference Output Voltage	I _{OUT} = 1.0mA, T _J = +25°C	5.05	5.1	5.15	V
REG _{LINE}	Line Regulation	$V_{CC} = 10V$ to 30V	-	2.0	15	mV
REG _{LOAD}	Load Regulation	$I_{OUT} = 1.0$ mA to 10mA	-	2.0	15	mV
T _S	Temperature Stability		-	0.2	-	mV/°C
V _{REF}	Total Output Variation Over Line, Load, and Temperature		4.95	_	5.25	V
V _N	Output Noise Voltage	f = 10Hz to 10kHz, T_J = +25°C	_	50	_	μV
S	Long Term Stability	T _A = +125°C for 1000 Hours	-	5.0	-	mV
ISC	Output Short Circuit Current		-30	-65	-100	mA
Oscillator	Section					•
f _{OSC}	Frequency Line (V _{CC} = 10V to 30V) and	T _J = +25°C	380	400	420	kHz
	Temperature ($T_A = T_{LOW}$ to T_{HIG}	эн)	370	400	430	kHz
$\Delta f_{OSC} / \Delta V$	Frequency Change with Voltage	$V_{CC} = 10V$ to $30V$	—	0.2	1.0	%
$\Delta f_{OSC} / \Delta T$	Frequency Change with Temperatu	re $T_A = T_{LOW}$ to T_{HIGH}	-	2.0	-	%
VP	Sawtooth Peak Voltage		2.6	2.8	3.0	V
V _V	Sawtooth Valley Voltage		0.7	1.0	1.25	V
V _{OH}	Clock Output Voltage High State		3.9	4.5	-	V
Vol	Low State		-	2.3	2.9	V

Notes: 1. Maximum package power dissipation limits must be observed.

2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

 $T_{LOW} = - 40^{\circ}C \text{ for } TC33025 \qquad \qquad T_{HIGH} = +105^{\circ}C \text{ for } TC33025$

on et Voltage Current et Current op Voltage Gain dwidth Product Mode Rejection Ratio pply Rejection Ratio pply Rejection Ratio urrent, Source urrent, Sink Itage Swing, High State Itage Swing, Low State e ction ut Bias Current e, Maximum e, Minimum Cycle Threshold	$V_{O} = 1.0V \text{ to } 4.0V$ $T_{J} = +25^{\circ}C$ $V_{CM} = 1.5V \text{ to } 5.5V$ $V_{CC} = 10V \text{ to } 30V$ $V_{O} = 4.0V$ $V_{O} = 1.0V$ $I_{O} = -0.5mA$ $I_{O} = 1.0mA$	- - 60 4.0 75 85 0.5 1.0 4.5 0 6.0 - 80	- 0.6 0.1 95 8.3 95 110 3.0 3.6 4.75 0.4 12 -0.5 90	15 3.0 1.0 - - - 5.0 1.0 - - - - - - - - - - - - - - - - - - -	mV μA μA dB MHz dB dB dB mA V V V/μsec
Current et Current op Voltage Gain dwidth Product Mode Rejection Ratio pply Rejection Ratio urrent, Source urrent, Sink Itage Swing, High State Itage Swing, Low State ction ut Bias Current e, Maximum e, Minimum	$\begin{array}{l} T_{\rm J} = +25^{\circ}{\rm C} \\ V_{\rm CM} = 1.5{\rm V} \mbox{ to } 5.5{\rm V} \\ V_{\rm CC} = 10{\rm V} \mbox{ to } 30{\rm V} \\ V_{\rm O} = 4.0{\rm V} \\ V_{\rm O} = 1.0{\rm V} \\ I_{\rm O} = -0.5{\rm mA} \end{array}$	- 60 4.0 75 85 0.5 1.0 4.5 0 6.0	0.1 95 8.3 95 110 3.0 3.6 4.75 0.4 12 -0.5	3.0 1.0 - - - - 5.0 1.0 -	μΑ μA dB MHz dB dB dB mA V V
et Current op Voltage Gain dwidth Product Mode Rejection Ratio pply Rejection Ratio urrent, Source urrent, Sink Itage Swing, High State Itage Swing, Low State e ction ut Bias Current e, Maximum e, Minimum	$\begin{array}{l} T_{\rm J} = +25^{\circ}{\rm C} \\ V_{\rm CM} = 1.5{\rm V} \mbox{ to } 5.5{\rm V} \\ V_{\rm CC} = 10{\rm V} \mbox{ to } 30{\rm V} \\ V_{\rm O} = 4.0{\rm V} \\ V_{\rm O} = 1.0{\rm V} \\ I_{\rm O} = -0.5{\rm mA} \end{array}$	- 60 4.0 75 85 0.5 1.0 4.5 0 6.0	0.1 95 8.3 95 110 3.0 3.6 4.75 0.4 12 -0.5	1.0 - - - - 5.0 1.0 -	μA dB MHz dB dB mA V V
op Voltage Gain dwidth Product Mode Rejection Ratio pply Rejection Ratio prrent, Source mrent, Sink Itage Swing, High State Itage Swing, Low State e ction ut Bias Current e, Maximum e, Minimum	$\begin{array}{l} T_{\rm J} = +25^{\circ}{\rm C} \\ V_{\rm CM} = 1.5{\rm V} \mbox{ to } 5.5{\rm V} \\ V_{\rm CC} = 10{\rm V} \mbox{ to } 30{\rm V} \\ V_{\rm O} = 4.0{\rm V} \\ V_{\rm O} = 1.0{\rm V} \\ I_{\rm O} = -0.5{\rm mA} \end{array}$	4.0 75 85 0.5 1.0 4.5 0 6.0	95 8.3 95 110 3.0 3.6 4.75 0.4 12	- - - - 5.0 1.0 -	dB MHz dB dB mA V V V/μse
dwidth Product Mode Rejection Ratio pply Rejection Ratio irrent, Source irrent, Sink Itage Swing, High State Itage Swing, Low State ction ut Bias Current e, Maximum e, Minimum	$\begin{array}{l} T_{\rm J} = +25^{\circ}{\rm C} \\ V_{\rm CM} = 1.5{\rm V} \mbox{ to } 5.5{\rm V} \\ V_{\rm CC} = 10{\rm V} \mbox{ to } 30{\rm V} \\ V_{\rm O} = 4.0{\rm V} \\ V_{\rm O} = 1.0{\rm V} \\ I_{\rm O} = -0.5{\rm mA} \end{array}$	4.0 75 85 0.5 1.0 4.5 0 6.0	8.3 95 110 3.0 3.6 4.75 0.4 12 -0.5	- - - 5.0 1.0 -	MHz dB dB mA V V V/μseo
Mode Rejection Ratio pply Rejection Ratio urrent, Source urrent, Sink Itage Swing, High State Itage Swing, Low State ction ut Bias Current e, Maximum e, Minimum	$V_{CM} = 1.5V \text{ to } 5.5V$ $V_{CC} = 10V \text{ to } 30V$ $V_{O} = 4.0V$ $V_{O} = 1.0V$ $I_{O} = -0.5\text{mA}$	75 85 0.5 1.0 4.5 0 6.0	95 110 3.0 3.6 4.75 0.4 12	- - 5.0 1.0 -	dB dB mA V V V/μseo
pply Rejection Ratio Irrent, Source Irrent, Sink Itage Swing, High State Itage Swing, Low State ction ut Bias Current e, Maximum e, Minimum	$V_{CC} = 10V \text{ to } 30V$ $V_{O} = 4.0V$ $V_{O} = 1.0V$ $I_{O} = -0.5\text{mA}$	85 0.5 1.0 4.5 0 6.0	110 3.0 3.6 4.75 0.4 12 -0.5	- - 5.0 1.0 -	dB mA V V V/μsec
irrent, Source irrent, Sink Itage Swing, High State Itage Swing, Low State ction ut Bias Current e, Maximum e, Minimum	$V_{O} = 4.0V$ $V_{O} = 1.0V$ $I_{O} = -0.5mA$	0.5 1.0 4.5 0 6.0	3.0 3.6 4.75 0.4 12 -0.5	- - 5.0 1.0 -	MA V V/μseo
Irrent, Sink Itage Swing, High State Itage Swing, Low State Ction ut Bias Current e, Maximum e, Minimum	$V_{O} = 1.0V$ $I_{O} = -0.5mA$	1.0 4.5 0 6.0	3.6 4.75 0.4 12 -0.5	- 5.0 1.0 -	V V/µseo
Itage Swing, High State Itage Swing, Low State e ction ut Bias Current e, Maximum e, Minimum	$I_{O} = -0.5 mA$	4.5 0 6.0	4.75 0.4 12 -0.5	1.0	V/µseo
Itage Swing, Low State ction ut Bias Current e, Maximum e, Minimum		0 6.0	0.4 12 -0.5	1.0	V/µseo
e ction ut Bias Current e, Maximum e, Minimum	I _O = 1.0mA	6.0	12 -0.5	-	
ction ut Bias Current e, Maximum e, Minimum		-	-0.5		
ut Bias Current e, Maximum e, Minimum		- 80		-5.0	пА
e, Maximum e, Minimum		- 80		-5.0	uА
e, Minimum		80	90		
			50	-	%
Cycle Threshold		-	-	0	
	Voltage Pin 3(4) (Pin 7(9) = 0V)	1.1	1.25	1.4	V
on Delay	Ramp Input to Output, $T_J = +25^{\circ}C$	-	60	100	nsec
urrent	V Soft–Start = 0.5V	3.0	9.0	20	μΑ
Current	V Soft–Start = 1.5V	1.0	4.0	-	mA
on					·
Input Bias Current Pin 9 (12) = 0V to 4.0V		-	-	15	μA
mit Comparator Threshold		0.9	1.0	1.10	V
Comparator Threshold		1.25	1.40	1.55	
on Delay	Current Limit/Shutdown to Output, $T_J = +25^{\circ}C$	_	50	80	nsec
Itage Low State	I _{SINK} = 20mA	-	0.25	0.4	V
	$I_{SINK} = 200 \text{mA}$	-	1.2	2.2	
ltage High State				-	
					V
-	-				μΑ
•		-			nsec
	$C_L = 1.0$ nF, $I_J = +25^{\circ}C$	-	30	60	nsec
		0.0	0.0	0.0	
					V
steresis Voltage	V _{CC} Decreasing After Turn–On	0.4	0.8	1.2	V
Jp	V _{CC} = 8.0V	-	0.5	1.2	mA
	on Current mit Comparator Threshold Comparator Threshold on Delay Itage Low State Itage High State Itage High State Itage With UVLO Activated akage Current Itage Rise Time Itage Fall Time Itage Fall Time Itage Fall Time Itage State Itage State Itage State	OnPin 9 (12) = 0V to 4.0Vmit Comparator ThresholdComparator ThresholdComparator ThresholdCurrent Limit/Shutdown to Output, $T_J = +25^{\circ}C$ on DelayCurrent Limit/Shutdown to Output, $T_J = +25^{\circ}C$ oltage Low StateI_SINK = 20mA I_SOURCE = 20mA ISOURCE = 200mAoltage With UVLO ActivatedV _{CC} = 6.0V, I_SINK = 0.5mAakage CurrentV _C = 20Voltage Rise TimeC _L = 1.0nF, $T_J = +25^{\circ}C$ oltage Fall TimeC _L = 1.0nF, $T_J = +25^{\circ}C$ oltage Fall TimeC _L = 1.0nF, $T_J = +25^{\circ}C$ oltage Fall TimeV _{CC} Increasingsteresis VoltageV _{CC} Decreasing After Turn–Onopply CurrentV _P V _P V _{CC} = 8.0V	OnPin 9 (12) = 0V to 4.0V-Mit Comparator Threshold0.9Comparator Threshold1.25On DelayCurrent Limit/Shutdown to Output, $T_J = +25^{\circ}C$ Itage Low StateIsiNK = 20mAIsiNK = 200mA-Itage High StateIsoURCE = 20mAIsoURCE = 200mA12Itage with UVLO ActivatedV _{CC} = 6.0V, IsiNK = 0.5mAAakage CurrentV _C = 20VItage Rise TimeCL = 1.0nF, TJ = +25°CItage Fall TimeCL = 1.0nF, TJ = +25°CItage Fall TimeCL = 1.0nF, TJ = +25°CItage Fall TimeCL = 8.0VItage VoltageV _{CC} Decreasing After Turn-OnItage Steresis VoltageV _{CC} = 8.0V	DefinitionPin 9 (12) = 0V to 4.0VCurrentPin 9 (12) = 0V to 4.0Vmit Comparator Threshold0.91.0Comparator Threshold1.251.40on DelayCurrent Limit/Shutdown to Output, $T_J = +25^{\circ}C$ -50Idtage Low StateI _{SINK} = 20mA ISURCE = 20mA-0.25Idtage High StateI _{SOURCE} = 20mA ISOURCE = 200mA-1.2Idtage with UVLO ActivatedV _{CC} = 6.0V, I _{SINK} = 0.5mA-0.25akage CurrentV _C = 20V-100Idtage Rise TimeC _L = 1.0nF, T _J = +25°C-30It SectionThresholdV _{CC} Increasing8.89.2ThresholdV _{CC} Increasing8.89.2opply CurrentU _P V _{CC} = 8.0V-0.5	nn - - 15 mit Comparator Threshold 0.9 1.0 1.10 Comparator Threshold 1.25 1.40 1.55 on Delay Current Limit/Shutdown to Output, $T_J = +25^{\circ}C$ - 50 80 Itage Low State I _{SINK} = 20mA Isource = 20mA - 1.2 0.4 Isource = 20mA 13 13.5 - 1.2 2.2 Itage with UVLO Activated V _{CC} = 6.0V, I _{SINK} = 0.5mA - 0.25 1.0 Itage Rise Time C _L = 1.0nF, T _J = +25^{\circ}C - 30 60 Itage Fall Time C _L = 1.0nF, T _J = +25^{\circ}C - 30 60 Itage Fall Time C _L = 1.0nF, T _J = +25^{\circ}C - 30 60 Itage Fall Time C _L = 1.0nF, T _J = +25^{\circ}C - 30 60 Itage Fall Time V _{CC} = 8.0V - 0.4 0.8 1.2

ELECTRICAL CHARACTERISTICS: $V_{CC} = 15V$, $R_T = 3.65k\Omega$, $C_T = 1.0nF$, for typical values $T_A = +25^{\circ}C$, for min/max values. T_A is the operating ambient temperature range that applies [Note 2], unless otherwise noted.

Notes: 1. Maximum package power dissipation limits must be observed.

2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible. $T_{LOW} = -40^{\circ}$ C for TC33025 $T_{HIGH} = +105^{\circ}$ C for TC33025

Pin No. DIP/SOIC	Symbol	Description	
1	Error Amp Inverting Input	This pin is usually used for feedback from the output of the power supply.	
2	Error Amp Noninverting Input	This pin is used to provide a reference in which an error signal can be produced on the output of the error amp. Usually this is connected to V_{REF} , however an external reference can also be used.	
3	Error Amp Output	This pin is provided for compensating the error amp for poles and zeros encountered in the power supply system, mostly the output LC filter.	
4	Clock	This is a bidirectional pin used for synchronization.	
5	R _T	The value of R_T sets the charge current through timing Capacitor, C_T .	
6	C _T	In conjunction with R_T , the timing Capacitor sets the switching frequency. Because this part is a push–pull output, each output runs at one–half the frequency set at this pin.	
7	Ramp Input	For voltage mode operation this pin is connected to C_T . For current mode operation this pin is connected through a filter to the current sensing element.	
8	Soft-Start	A capacitor at this pin sets the Soft–Start time.	
9	Current Limit/Shutdown	This pin has two functions. First, it provides cycle–by–cycle current limiting. Second, if the current is excessive, this pin will reinitiate a Soft–Start cycle.	
10	Ground	This pin is the ground for the control circuitry.	
11	Output A	This is a high current totem pole output.	
12	Power Ground	This is a separate power ground return that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry.	
13	Vc	This is a separate power source connection for the outputs that is connected back to the power source input. With a separate power source connection, it can reduce the effects switching transient noiseon the control circuitry.	
14	Output B	This is a high current totem pole output.	
15	V _{CC}	This pin is the positive supply of the control IC.	
16	V _{REF}	This is a 5.1V reference. It is usually connected to the noninverting input of the error amplifier.	

High Speed Double Ended Controller

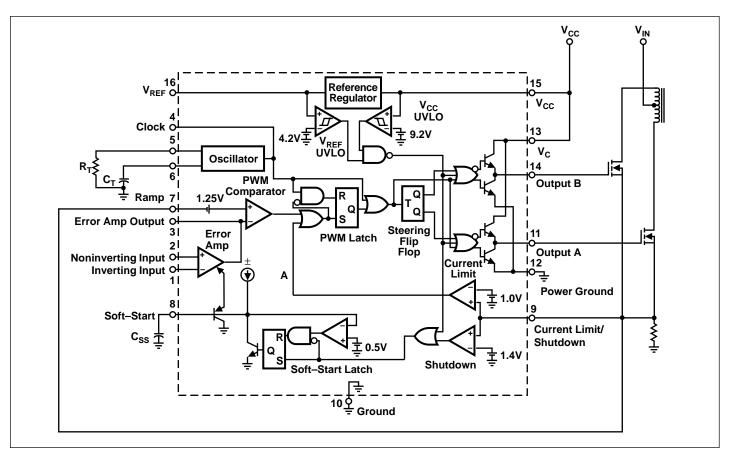


Figure 1. Representative Block Diagram

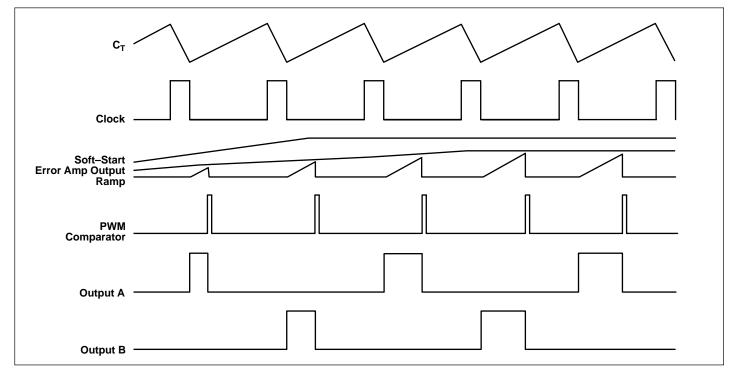


Figure 2. Current Limit Operating Waveforms

OPERATING DESCRIPTION

The TC33025 is a high speed, fixed frequency, doubleended pulse width modulator controller optimized for high frequency operation. They are specifically designed for Off-Line and DC-to-DC converter applications offering the designer a cost effective solution with minimal external components. A representative block diagram is shown in Figure 1.

Oscillator

The oscillator frequency is programmed by the values selected for the timing components R_T and C_T . The R_T pin is set to a temperature compensated 3.0V. By selecting the value of R_T , the charge current is set through a current mirror for the timing capacitor C_T . This charge current runs continuously through C_T . The discharge current is ratioed to be 10 times the charge current, which yields the maximum duty cycle of 90%. C_T is charged to 2.8V and discharged to 1.0V. During the discharge of C_T , the oscillator generates an internal blanking pulse that resets the PWM Latch, inhibits the outputs, and toggles the steering flip–flop. The threshold voltages on the oscillator comparator is trimmed to guarantee an oscillator accuracy of 5.0% at 25°C.

Additional dead time can be added by externally increasing the charge current to C_T as shown in Figure 6. This changes the charge to discharge ratio of C_T which is set internally to $I_{CHARGE}/10$ I_{CHARGE} . The new charge to discharge ratio will be:

% Deadtime =
$$\frac{I_{ADDITIONAL} + I_{CHARGE}}{10 (I_{CHARGE})}$$

A bidirectional clock pin is provided for synchronization or for master/slave operation. As a master, the clock pin provides a positive output pulse during the discharge of C_T . As a slave, the clock pin is an input that resets the PWM latch and blanks the drive output, but does not discharge C_T . Therefore, the oscillator is not synchronized by driving the clock pin alone. Figures 13 and 14 provide suggested synchronization.

Error Amplifier

A fully compensated Error Amplifier is provided. It features a typical DC voltage gain of 95dB and a gain bandwidth product of 8.3MHz with 75 degrees of phase margin (Figure 24). Typical application circuits will have the noninverting input tied to the reference. The inverting input will typically be connected to a feedback voltage generated from the output of the switching power supply. Both inputs have a Common Mode Voltage (V_{CM}) input range of 1.5V to 5.5V. The Error Amplifier Output is provided for external loop compensation.

Soft-Start Latch

Soft–Start is accomplished in conjunction with an external capacitor. The soft start capacitor is charged by an internal $9.0\mu A$ current source. This capacitor clamps the output of the error amplifier to less than its normal output voltage, thus limiting the duty cycle.

The time it takes for a capacitor to reach full charge is given by:

$$t \approx (4.5 \bullet 10^5) C_{SOFT-START}$$

A Soft–Start latch is incorporated to prevent erratic operation of this circuitry. Two conditions can cause the Soft–Start circuit to latch so that the Soft–Start capacitor stays discharged. The first condition is activation of an undervoltage lockout of either V_{CC} or V_{REF}. The second condition is when current sense input exceeds 1.4V. Since this latch is "set dominant", it cannot be reset until either of these signals is removed, and the voltage at C_{SOFT–START} is less than 0.5V.

PWM Comparator and Latch

A PWM circuit typically compares an error voltage with a ramp signal. The outcome of this comparison determines the state of the output. In voltage mode operation the ramp signal is the voltage ramp of the timing capacitor. In current mode operation the ramp signal is the voltage ramp induced in a current sensing element. The ramp input of the PWM comparator is pinned out so that the user can decide which mode of operation best suits the application requirements. The ramp input has a 1.25V offset such that whenever the voltage at this pin exceeds the Error Amplifier Output voltage minus 1.25V, the PWM comparator will cause the PWM latch to set, disabling the outputs. Once the PWM latch is set, only a blanking pulse by the oscillator can reset it, thus initiating the next cycle.

A toggle flip flop connected to the output of the PWM latch controls which output is active. The flip flop is pulsed by an OR gate that gets its inputs from the oscillator clock and the output of the PWM latch. A pulse from either one will cause the flip flop to enable the other output.

Current Limiting and Shutdown

A pin is provided to perform current limiting and shutdown operations. Two comparators are connected to the input of this pin. When the voltage at this pin exceeds 1.0V, one of the comparators is activated. The output of this comparator sets the PWM latch, which disables the output. In this way cycle-by-cycle current limiting is accomplished. If a current limit resistor is used in series with the power devices, the value of the resistor is found by:

$$R_{SENSE} = \frac{1.0V}{I_{PK (switch)}}$$

If the voltage at this pin exceeds 1.4V, the second comparator is activated. This comparator sets a latch which, in turn, causes the Soft–Start capacitor to be discharged. In this way a "hiccup" mode of recovery is possible in the case of output short circuits. If a current limit resistor is used in series with the output devices, the peak current at which the controller will enter a "hiccup" mode is given by:

 $I_{SHUTDOWN} = \frac{1.4V}{R_{SENSE}}$

Undervoltage Lockout

There are two undervoltage lockout circuits within the IC. The first senses V_{CC} and the second V_{REF} . During power–up, V_{CC} must exceed 9.2V and V_{REF} must exceed 4.2V before the outputs can be enabled and the Soft–Start latch released. If V_{CC} falls below 8.4V or V_{REF} falls below 3.6V, the outputs are disabled and the Soft–Start latch is activated. When the UVLO is active, the part is in a low current standby mode allowing the IC to have an off–line bootstrap start–up circuit. Typical start–up current is 500µA.

Reference

A 5.1V bandgap reference is pinned out and is trimmed to an initial accuracy of $\pm 1.0\%$ at 25°C. This reference has short circuit protection and can source in excess of 10 mA for powering additional control system circuitry.

Design Considerations

Do not attempt to construct the converter on wirewrap or plug-in prototype boards. With high frequency, high power, switching power supplies it is imperative to have separate current loops for the signal paths and for the power paths. The printed circuit layout should contain a ground plane with low current signal and high current switch and output grounds returning on separate paths back to the input filter capacitor. All bypass capacitors and snubbers should be connected as close as possible to the specific part in question. The PC board lead lengths must be less than 0.5 inches for effective bypassing or snubbing.

Instabilities

In current mode control, an instability can be encountered at any given duty cycle. The instability is caused by the current feedback loop. It has been shown that the instability is caused by a double pole at half the switching frequency. If an external ramp (S_E) is added to the on-time ramp (S_N)

of the current-sense waveform, stability can be achieved (see Figure 3).

One must be careful not to add too much ramp compensation. If too much is added, the system will start to perform like a voltage mode regulator. All benefits of current mode control will be lost. Figures 11 and 12 show examples of two different ways in which external ramp compensation can be implemented.

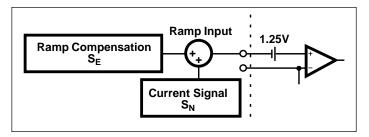


Figure 3. Ramp Compensation

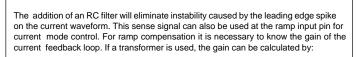
A simple equation can be used to calculate the amount of external ramp necessary to add that will achieve stability in the current loop. For the following equations, the calculated values for the application circuit in Figure 19 are also shown.

$$S_{E} = \frac{V_{OUT}}{L} \left(\frac{N_{S}}{N_{P}} \right) (R_{S}) A_{I}$$

where: $V_{OUT} = DC$ output voltage

 N_P , N_S = number of power transformer primary or secondary turns A_I = gain of the current sense network (see Figures 8, 9 and 10)

L = output inductor


 R_{S} = current sense resistance

For the application circuit:

$$S_{E} = \frac{5}{1.8\mu} \left(\frac{4}{16}\right) (0.3)(0.55)$$
$$= 0.115 V/\mu sec$$

4 5 O Oscillator CŢŢ 6 1.25V ╉ 0 **Output Voltage** Feedback Input V_{REF} 2 In voltage mode operation, the control range on the output of the Error Amplifier from 0% to 90% duty cycle is from 2.25V to 4.05V. Figure 4. Voltage Mode Operation 5.0V VREF Rn Oscillator Additional dead time can be added by the addition of a dead time resistor from VREF to CT. See text on oscillator section for more information. Figure 6. Dead Time Addition ISENSE

TC33025

 $A_{I} = \frac{RSENSE}{turns ratio}$

Figure 8. Resistive Current Sensing

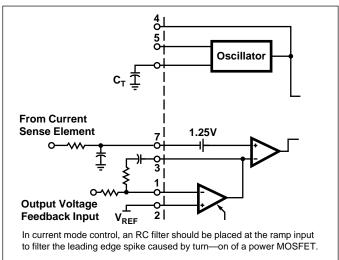
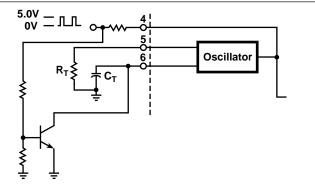
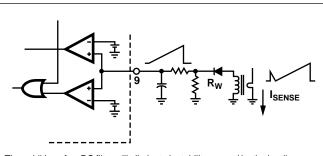
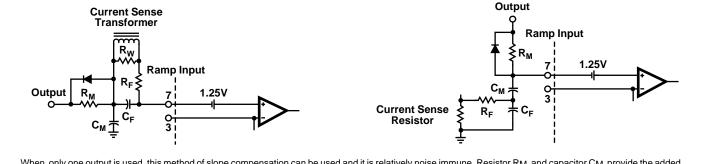




Figure 5. Current Mode Operation

The sync pulse fed into the clock pin must be at least 3.9V. RT and CT need to be set 10% slower than the sync frequency. This circuit is also used in voltage mode operation for master/slave operation. The clock signal would be coming from the master which is set at the desired operating frequency, while the slave is set 10% slower.


Figure 7. External Clock Synchronization

The addition of an RC filter will eliminate instability caused by the leading edge spike on the current waveform. This sense signal can also be used at the ramp input pin for current mode control. For ramp compensation it is necessary to know the gain of the current feedback loop. The gain can be calculated by:

$$A_{I} = \frac{R_{W}}{\text{turns ratio}}$$

$\label{eq:constraint} \begin{aligned} \label{eq:constraint} & \label{eq:constraint} \\ \hline \end{tabular} \\ \hline \end{tab$

When only one output is used, this method of slope compensation can be used and it is relatively noise immune. Resistor R_M and capacitor C_M provide the added slope necessary. By choosing R_M and C_M with a larger time constant than the switching frequency, you can assume that its charge is linear. First choose C_M , then R_M can be adjusted to achieve the required slope. The diode provides a reset pulse at the ramp input at the end of every cycle. The charge current I_M can be calculated by $I_M = C_M SE$. Then R_M can be calculated by $R_M = V_{CC}/I_M$.

Figure 12. Slope Compensation (Noise Immune)

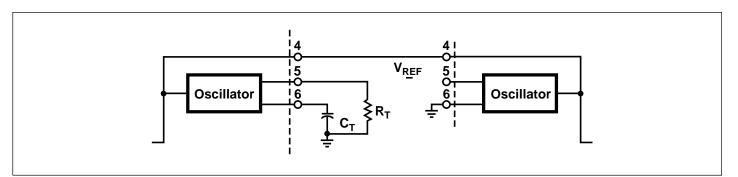
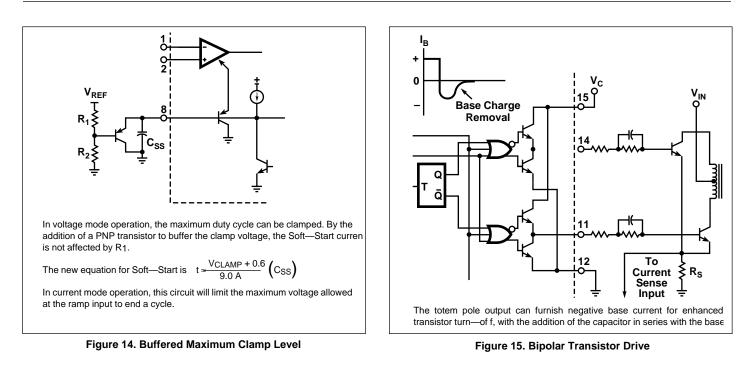



Figure 13. Current Mode Master/Slave Operation Over Short Distances

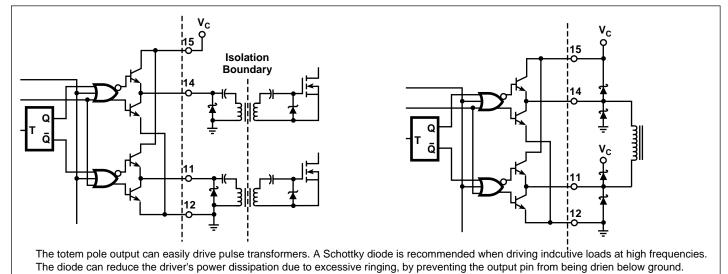


Figure 16. Isolated MOSFET Drive

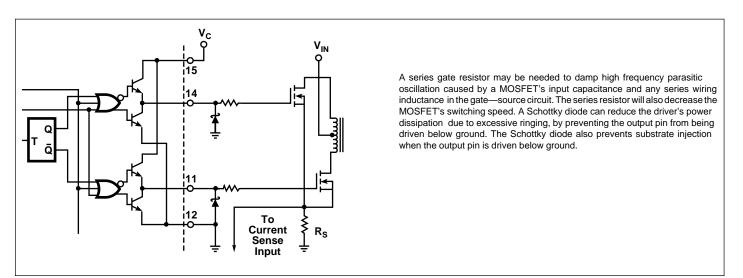
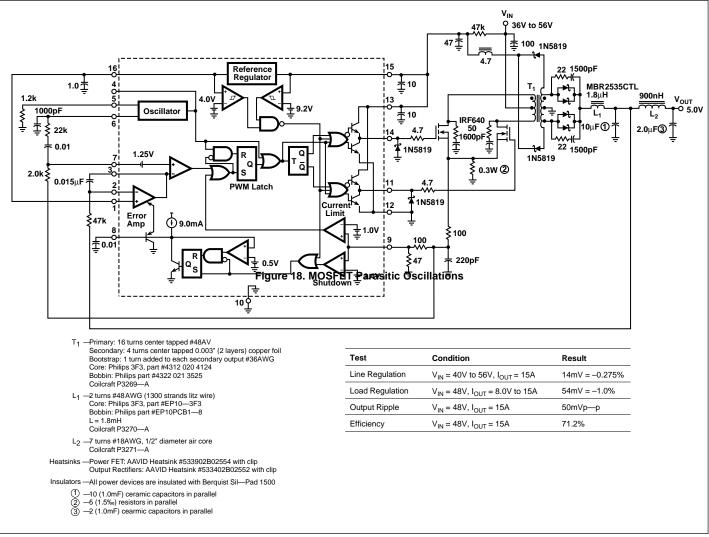



Figure 18. MOSFET Parasitic Oscillations

Figure 19. Application Circuit

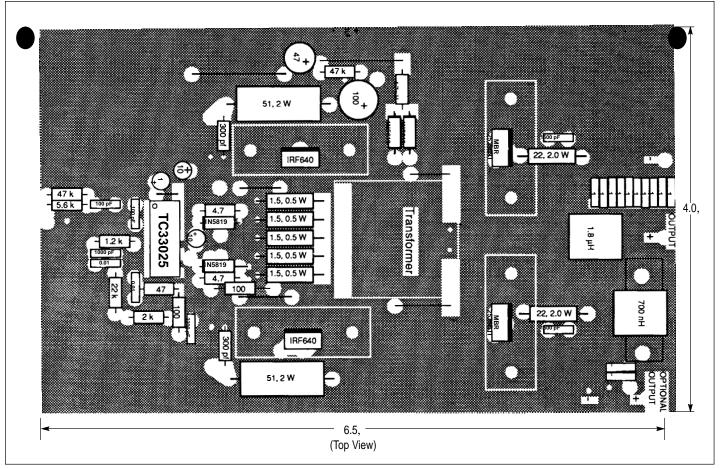
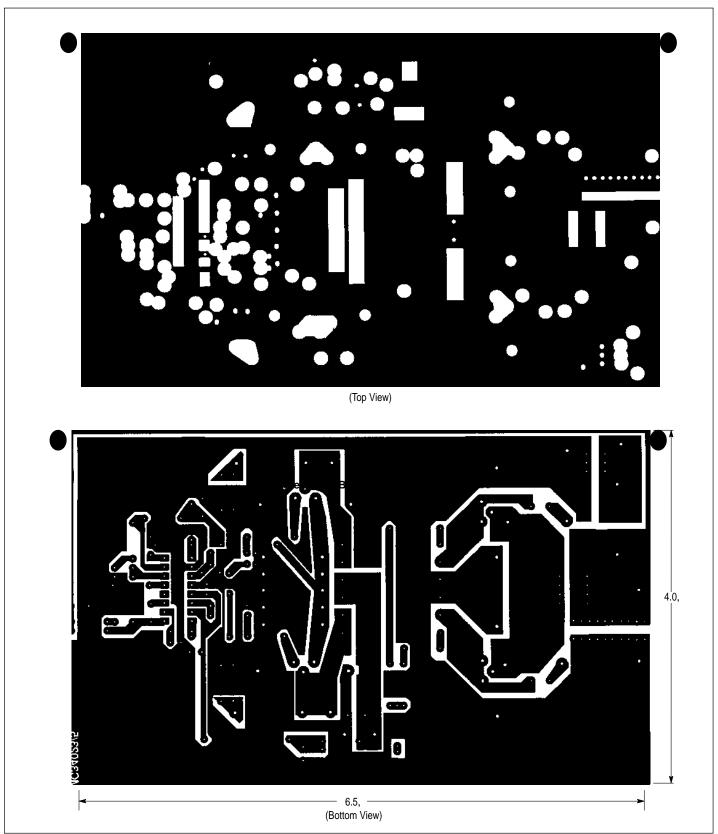
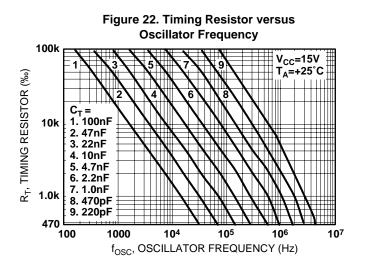
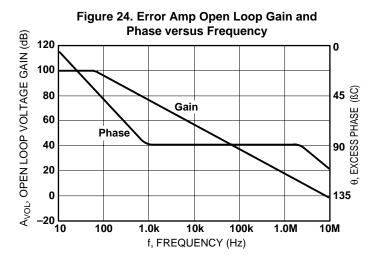
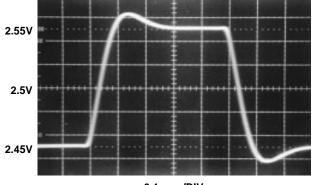
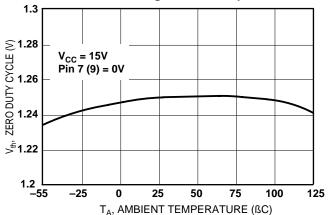


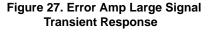
Figure 20. PC Board With Components


Figure 21. PC Board Without Components

TYPICAL CHARACTERISTICS





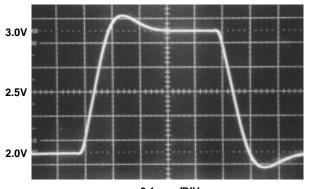

0.1µsec/DIV

Figure 23. Oscillator Frequency versus Temperature (ZH2) $R_{T} = 1.2k$ C_T = 1.0nF 1.0MHz $V_{CC} = 15V$ $R_{T} = 3.6k$ 400kHz $C_{T}^{+} = 1.0 nF$ $R_T = 36k$ C_T = 1.0nF 50kHz 0_ -25 25 50 75 100 0 125 -55 T_A, AMBIENT TEMPERATURE (BC)

Figure 25. PWM Comparator Zero Duty Cycle Threshold Voltage versus Temperature

0.1µsec/DIV

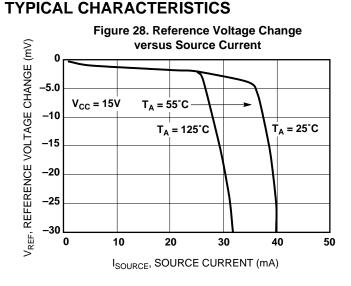
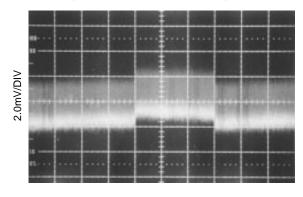
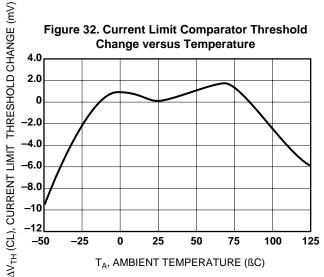




Figure 30. Reference Line Regulation

V_{REF} LINE REGULATION 10V - 24V 2.0msec /DIV

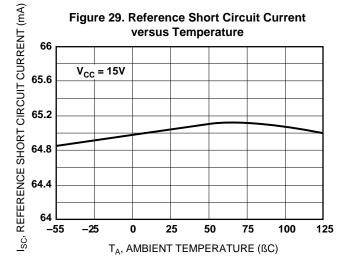
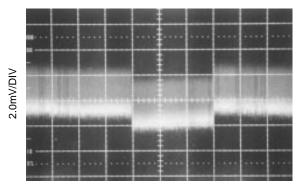
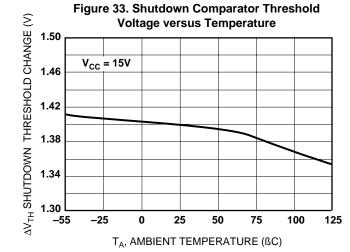




Figure 31. Reference Load Regulation

V_{REF} LINE REGULATION 1.0mA — 24mA 2.0msec/DIV

TYPICAL CHARACTERISTICS

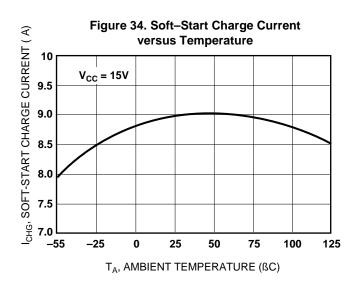
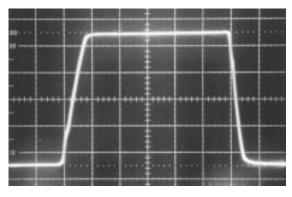



Figure 36. Drive Output Rise and Fall Time

OUTPUT RISE & FALL TIME 1.0nF LOAD 50nsec/DIV

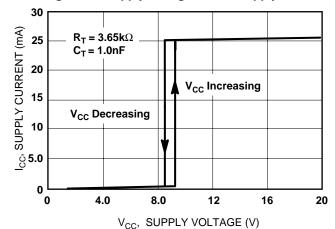
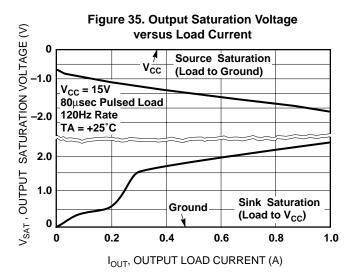
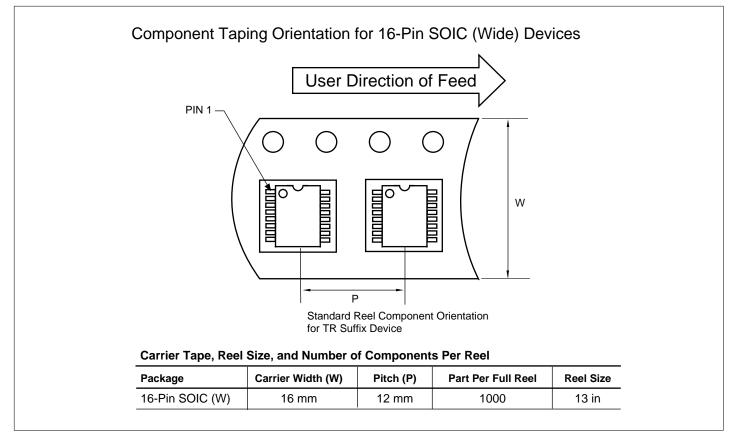
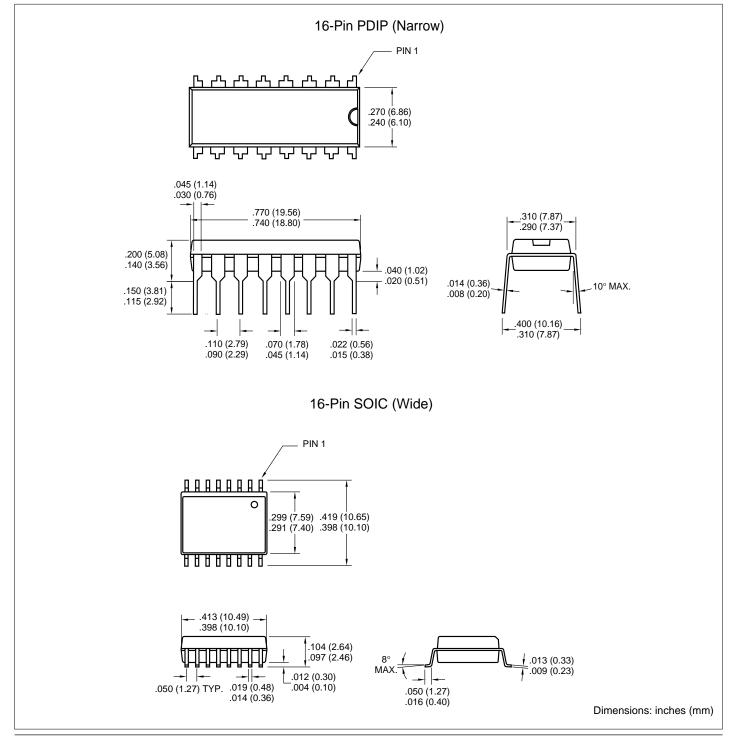


Figure 38. Supply Voltage versus Supply Current




Figure 37. Drive Output Rise and Fall Time


OUTPUT RISE & FALL TIME 10nF LOAD 50nsec/DIV

High Speed Double Ended Controller

TAPE AND REEL DIAGRAM

PACKAGE DIMENSIONS

Sales Offices

TelCom Semiconductor, Inc. 1300 Terra Bella Avenue P.O. Box 7267 Mountain View, CA 94039-7267 TEL: 650-968-9241 FAX: 650-967-1590 E-Mail: liter@telcom-semi.com TelCom Semiconductor, GmbH Lochhamer Strasse 13 D-82152 Martinsried Germany TEL: (011) 49 89 895 6500 FAX: (011) 49 89 895 6502 2 TelCom Semiconductor H.K. Ltd. 10 Sam Chuk Street, Ground Floor San Po Kong, Kowloon Hong Kong TEL: (011) 852-2350-7380 FAX: (011) 852-2354-9957