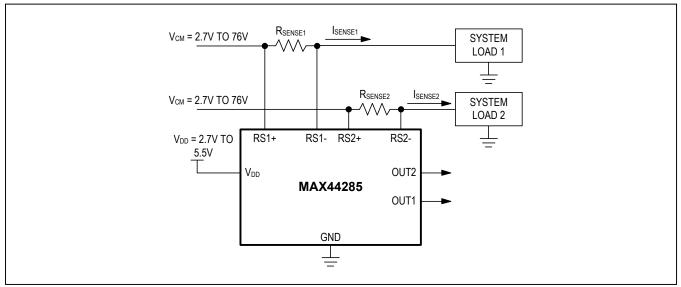
Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier

General Description

The MAX44285 dual-channel high-side current-sense amplifier has precision accuracy specifications of V_{OS} less than 12µV (max) and gain error less than 0.1% (max).

The MAX44285 features an input common-mode voltage range from 2.7V to 76V with 80kHz of small-signal bandwidth, which makes it ideal for interfacing with a SAR ADC for multichannel multiplexed data acquisition systems.

The MAX44285 operates over the -40°C to +125°C temperature range. The MAX44285 is offered in 8-bump wafer-level package (WLP) and 8-pin μ MAX[®] package.


Applications

- Base Stations and Communication Equipment
- Power Management Systems
- Server Backplanes
- Industrial Control and Automation

Benefits and Features

- 2.7V to 76V Input Common Mode
- Low 12µV (max) Input Offset Voltage
- Low 0.1% (max) Gain Error
- Gain Options
 - G = 12.5V/V (MAX44285L)
 - G = 20V/V (MAX44285T)
 - G = 50V/V (MAX44285F)
 - G = 100V/V (MAX44285H)
- 1mm x 2mm 8-Bump WLP and 8-Pin µMAX Packages

µMAX is a registered trademark of Maxim Integrated Products, Inc.

Typical Operating Circuit

Ordering Information appears at end of data sheet.

Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier

Absolute Maximum Ratings

V _{DD} to GND0.3V to RS+, RS- to GND0.3V to	
RS+ to RS-	
µMAX (1s maximum duration due to package dissipation	
WLP (1s maximum duration due to package dissipation	thermal
Continuous Input Current (Any Pin)	

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
WLP (derate 13.3mW/°C above +70°C)	1064mW
µMAX (derate 4.8mW/°C above +70°C)	387.8mW
Operating Temperature Range	-40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)(µMAX only)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

WLP

 $\label{eq:main_main} \begin{array}{l} \mu MAX \\ \mbox{Junction-to-Ambient Thermal Resistance } (\theta_{JA})206.3^{\circ}C/W \\ \mbox{Junction-to-Case Thermal Resistance } (\theta_{JC})42^{\circ}C/W \end{array}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

 $(V_{RS+} = V_{RS-} = +76V, V_{DD} = +3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 1mV, T_A = -40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at T_A =+25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DC CHARACTERISTICS							
Supply Voltage	V _{DD}	Guaranteed by PSRR	2.7		5.5	V	
Supply Current	I	T _A = +25°C			1300		
Supply Current	I _{DD}	-40°C < T _A < +125°C			1500	μA	
Power-Supply Rejection Ratio	PSRR	$2.7V \le V_{DD} \le 5.5V$	110	120		dB	
Input Common-Mode Voltage Range	V _{CM}	Guaranteed by CMRR	2.7		76	V	
Input Bias Current at V_{RS^+} and V_{RS^-} (Note 3)	I _{RS+} , I _{RS-}				65	μA	
Input Offset Current (Note 3)	I _{RS+} -I _{RS-}				1100	nA	
Input Leakage Current (Note 3)	I _{RS+} , I _{RS-}	V _{DD} = 0V, V _{RS+} = 76V			6	μA	
Common-Mode Rejection Ratio	CMRR	4.5V < V _{RS+} < 76V	125	140		dB	
Input Offset Voltage		T _A = +25°C			±12		
(Note 3)	V _{OS}	$-40^{\circ}C \le T_A \le +125^{\circ}C$			±25	μV	
Input Offset Voltage Drift (Note 3)	TCV _{OS}				130	nV/°C	

Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier

Electrical Characteristics (continued)

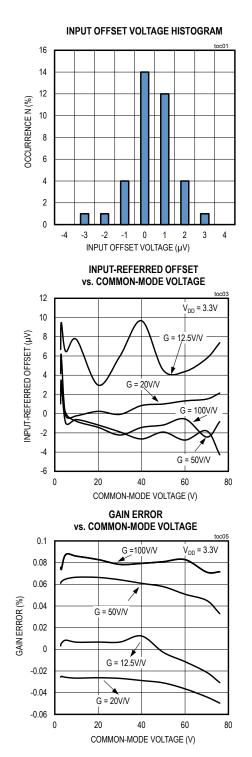
 $(V_{RS+} = V_{RS-} = +76V, V_{DD} = +3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 1mV, T_A = -40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at T_A =+25°C.) (Note 2)

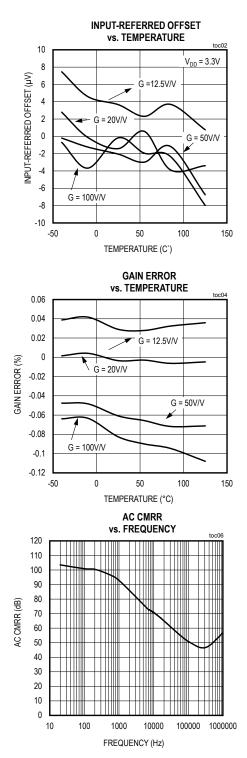
PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
Input Sense Voltage		MAX44285L (G = 12		200			
		MAX44285T (G = 20		125		mV	
	V _{SENSE}	MAX44285F (G = 50	MAX44285F (G = 50V/V)		50		
		MAX44285H (G = 100V/V)		25		1	
		Full-scale V _{SENSE} =	200mV		12.5		
Cain (Note 4)	G	Full-scale V _{SENSE} =	Full-scale V _{SENSE} = 125mV		20		
Gain (Note 4)	G	Full-scale V _{SENSE} =	50mV		50		V/V
		Full-scale V _{SENSE} =	25mV		100		
		T _A = +25°C				0.1	
Gain Error (Note 3)	GE	$-40^{\circ}\mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq +85^{\circ}\mathrm{C}$				0.3	%
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$				0.5	
Output Resistance	R _{OUT}				0.1		mΩ
Output Low Voltage	Ve	OL Sink 500μA No load				15	mV
Output Low Voltage	۷OL					4	
Output High Voltage	V _{OH}	Source 500µA		V _{DD} - 0.015			v
AC CHARACTERISTICS							
Signal Bandwidth	BW -3dB	All gain configuration	s V _{SENSE} > 5mV		80		kHz
AC Power-Supply Rejection Ratio	AC PSRR	f = 200kHz			40		dB
		6 000111	1mV sine wave		54		.10
AC CMRR	AC CMRR	f = 200kHz	20mV sine wave		47		dB
Output Transient Recovery Time		ΔV_{OUT} = 2V _{P-P} , 14-I and 1nF, 6nF ADC sa			2		μs
	<u>^</u>	With 250Ω isolation resistor			20		nF
Capacitive Load Stability C _{LOAD} Without any		Without any isolation	ithout any isolation resistor		200		pF
Input Voltage-Noise Density	e _n	f = 1kHz			45		nV/√Hz
Total Harmonic Distortion (Up to 7th Harmonics)	THD	f = 1kHz, V _{OUT} = 1V _{P-P}			63		dB
Power-Up Time (Note 5)					200		μs
Saturation Recovery Time					10		μs

Note 2: All devices are 100% production tested at $T_A = +25^{\circ}C$. All temperature limits are guaranteed by design.

Note 3: Specifications are guaranteed by design, not production tested.

Note 4: Gain and offset voltage are calculated based on two point measurements: VSENSE1 and VSENSE2.

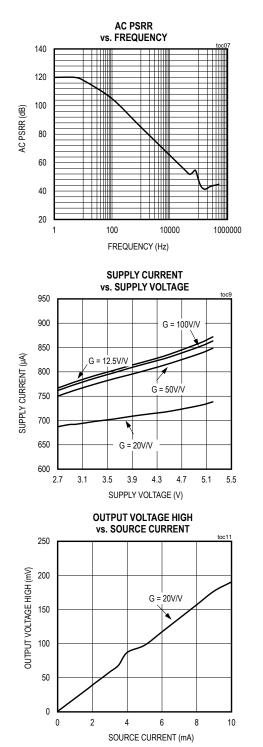

V_{SENSE1} = 20% x Full Scale V_{SENSE}. V_{SENSE2} = 80% x Full Scale V_{SENSE}.

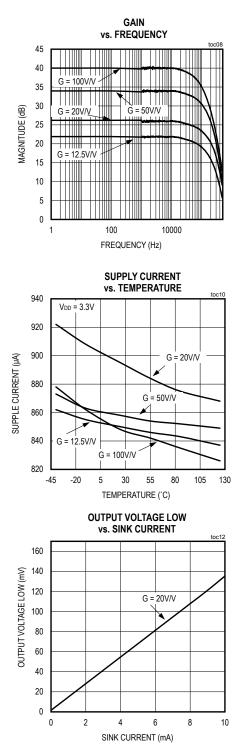

Note 5: Output is high-Z during power-up.

Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier

Typical Operating Characteristics

 $(V_{RS+} = V_{RS-} = 76V, V_{DD} = 3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 1mV, T_A = +25^{\circ}C, unless otherwise noted.) (Note 2)$

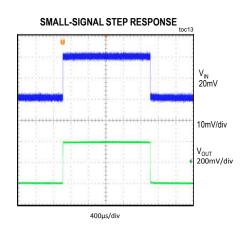


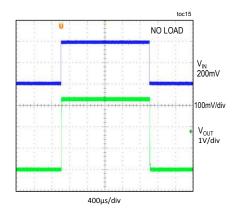


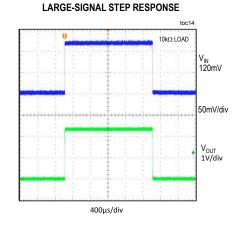
Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier

Typical Operating Characteristics (continued)

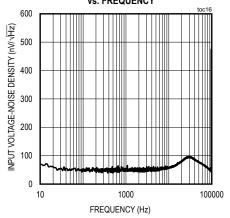
 $(V_{RS+} = V_{RS-} = 76V, V_{DD} = 3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 1mV, T_A = +25^{\circ}C, unless otherwise noted.) (Note 2)$



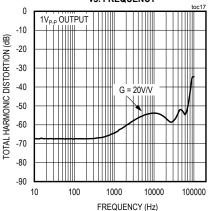

Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier


Typical Operating Characteristics (continued)

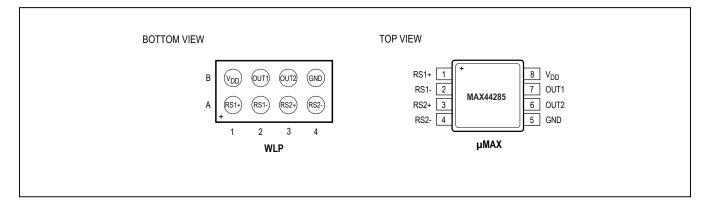
 $(V_{RS+} = V_{RS-} = 76V, V_{DD} = 3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 1mV, T_A = +25^{\circ}C, unless otherwise noted.) (Note 2)$



SATURATION RECOVERY RESPONSE



INPUT VOLTAGE-NOISE DENSITY vs. FREQUENCY



Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier

Pin Configuration

Pin Description

F	PIN	NAME	FUNCTION		
WLP	μΜΑΧ	NAME	FUNCTION		
A1	1	RS1+	Channel 1 External Resistor Power-Side Connection		
A2	2	RS1-	Channel 1 External Resistor Load-Side Connection		
A3	3	RS2+	Channel 2 External Resistor Power-Side Connection		
A4	4	RS2-	Channel 2 External Resistor Load-Side Connection		
B1	8	V _{DD}	Supply Voltage		
B2	7	OUT1	Output Channel 1		
B3	6	OUT2	Output Channel 2		
B4	5	GND	Ground		

Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier

V_{SENSE1} VSENSE2 ILOAD1 LOAD2 RSENSE 2 RSENSE 1 RS1+ **RS1-**RS2+ RS2- R_{G12} R_{G11} R_{G21} R_{G22} MAX44285 P1 P P2 A2 A₂ R₀₂ R₀ R_{F1} RF2 \leq **R**01 R₀₂ GND GND OUT1 OUT2

Functional Diagram

Detailed Description

The MAX44285 high-side, current-sense amplifier features a 2.7V to 76V input common-mode range that is independent of supply voltage. This feature allows the monitoring of current out of a battery as low as 2.7V and enables high-side current sensing at voltages greater than the supply voltage (V_{DD}). The MAX44285 monitors current through a current-sense resistor and amplifies the voltage across the resistor.

High-side current monitoring does not interfere with the ground path of the load being measured, making the MAX44285 particularly useful in a wide range of high-voltage systems.

The MAX44285 operates as follows: current from the source flows through R_{SENSE} to the load (see *Functional Diagram*), creating a sense voltage, V_{SENSE} . The internal op amp A1 is used to force the current through an internal gain resistor R_{G11} at RS1+ pin, such that its voltage drop

equals the voltage drop (V_{SENSE}) across the external sense resistor (R_{SENSE}). The internal resistor at RS1- pin (R_{G12}) has the same value as R_{G11} to minimize error. The current through R_{G11} is sourced by a high-voltage p-channel FET. Its source current is the same as the drain current which flows through a second gain resistor, R₀₁, producing a voltage V_{R01} = V_{SENSE} x R₀₁/R_{G11}.

The output voltage V_{OUT1} is produced from a second op amp A2 with the gain (1 + R_{F1}/R₀₁). Hence, the V_{OUT1} = I_{LOAD1} x R_{SENSE1} (R₀₁/R_{G11}) x (1 + R_{F1}/R₀₁) for channel 1 and V_{OUT2} = I_{LOAD2} x R_{SENSE2} (R₀₂/R_{G21}) x (1 + R_{F2}/R₀₂) for channel 2. Internal resistor R₀₁ = R₀₂, R_{G11} = R_{G12} = R_{G21} = R_{G22}, R_{F1} = R_{F2}. The gain-setting resistors R₀₁, R₀₂, R_{G11}, R_{G12}, R_{G21}, R_{G22}, R_{F1}, and R_{F2} are available in Table 1):

Total gain = 12.5V/V for MAX44285L, 20V/V for the MAX44285T, 50V/V for the MAX44285F, and 100V/V for the MAX44285H.

Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier

	GAIN (V/V)	R_{01},R_{02} (k \Box)	R _{G11} , R _{G12} , R _{G21} , R _{G22} (k⊡)	R_{F1}, R_{F2} (k \Box)
MAX44285L	12.5	25	10	100
MAX44285T	20	25	10	175
MAX44285F	50	25	10	475
MAX44285H	100	25	10	975

Table 1. Gain-Setting Resistors

Applications Information

Recommended Component Values

Ideally, the maximum load current develops the full-scale sense voltage across the current-sense resistor. Choose the gain needed to yield the maximum output voltage required for the application:

V_{OUT} = V_{SENSE} x A_V

where V_{SENSE} is the full-scale sense voltage, 200mV for gain of 12.5V/V, 125mV for gain of 20V/V, 50mV for gain of 50V/V, 25mV for gain of 100V/V, and A_V is the gain of the device.

In applications monitoring a high current, ensure that R_{SENSE} is able to dissipate its own I²R loss. If the resistor's power dissipation exceeds the nominal value, its value may drift or it may fail altogether. The MAX44285 senses a wide variety of currents with different sense-resistor values.

Choosing the Sense Resistor

Choose R_{SENSE} based on the following criteria:

Voltage Loss: A high R_{SENSE} value causes the powersource voltage to degrade through IR loss. For minimal voltage loss, use the lowest R_{SENSE} value.

Accuracy: A high R_{SENSE} value allows lower currents measured more accurately. This is due to offsets becoming less significant when the sense voltage is larger. For best performance, select R_{SENSE} to provide approximately 200mV (gain of 12.5V/V), 125mV (gain of 20V/V), or 50mV (gain of 50V/V), 25mV (gain of 100V/V) of sense voltage for the full-scale current in each application.

Efficiency and Power Dissipation: At high current levels, the l^2R losses in R_{SENSE} can be significant. Consider this when choosing the resistor value and its power dissipation (wattage) rating. In addition, the sense resistor's value might drift if it heats up excessively.

Inductance: Keep inductance low if I_{SENSE} has a large high-frequency component. Wire-wound resistors have the highest inductance, while metal film is somewhat better. Low-inductance, metal-film resistors are also available. Instead of being spiral wrapped around a core, as in metal-film or wire wound resistors, they are a straight band of metal and are available in values under 1 Ω .

Take care to eliminate parasitic trace resistance from causing errors in the sense voltage because of the high currents that flow through R_{SENSE}. Either use a four terminal current-sense resistor or use Kelvin (force and sense) PCB layout techniques.

Base Station Application Circuit

An example of a typical application (Figure 1) of this high-voltage, high-precision current-sense amplifier is in base-station systems where there is a need to monitor the current flowing in the power amplifier. Such amplifiers, depending on the technology, can be biased up to 50V or 60V thus requiring a current-sense amplifier like the MAX44285 with high-voltage common mode. The very low input offset voltage of the MAX44285 minimizes the value of the external sense resistor thus resulting in system power-saving.

Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier

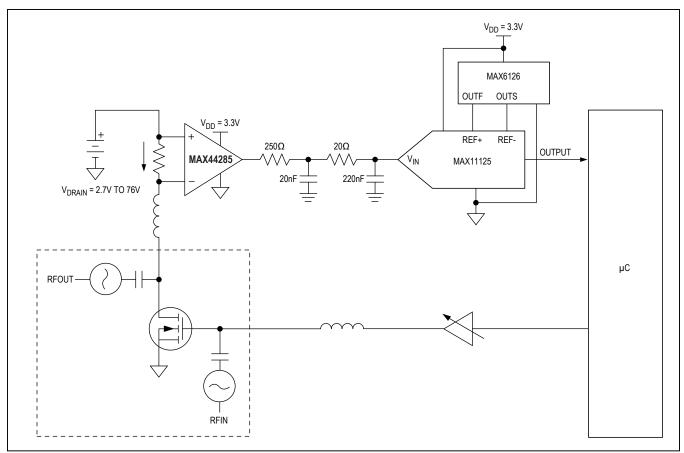


Figure 1. MAX44285 Used in Base-Station Application

Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier

Ordering Information

PART	GAIN (V/V)	TEMP RANGE	PIN-PACKAGE	TOP MARK
MAX44285LAWA+	12.5	-40°C to +125°C	8 WLP	+AAF
MAX44285LAUA+	12.5	-40°C to +125°C	8 µMAX	
MAX44285TAWA+	20	-40°C to +125°C	8 WLP	+AAG
MAX44285TAUA+	20	-40°C to +125°C	8 µMAX	_
MAX44285FAWA+	50	-40°C to +125°C	8 WLP	+AAH
MAX44285FAUA+	50	-40°C to +125°C	8 µMAX	_
MAX44285HAWA+	100	-40°C to +125°C	8 WLP	+AAI
MAX44285HAUA+	100	-40°C to +125°C	8 µMAX	_

+Denotes a lead(Pb)-free/RoHS-compliant package.

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 WLP	W81A2+2	<u>21-0210</u>	Refer to Application Note 1891
8 µMAX	U8+1	21-0036	90-0092

Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	1/14	Initial release	_
1	2/14	Revised Pin Description, Functional Diagram, Detailed Description and added Table 1	7, 8, 9
2	7/14	Revised data sheet to change common-mode range from 36V to 76V	1–6. 8–10
3	12/14	Released WLP packages and updated Electrical Characteristics	2, 11
4	4/16	Updated unit in TOC1	4

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.