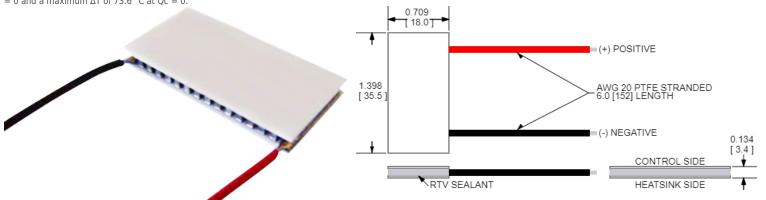


## PowerCycling PCX Series Thermoelectric Cooler


The PCX8-6-F1-3518-TA-RT-W6 is a high-performance thermoelectric cooler designed for thermal cycling between multiple temperature set points and is ideal for applications in healthcare among others, where fast temperature changes are required. The thermoelectric module is specially constructed to reduce the amount of stress induced on the thermoelectric elements during operation. It has a maximum Qc of 37.4 Watts when  $\Delta T = 0$  and a maximum  $\Delta T$  of 73.6 °C at Qc = 0.

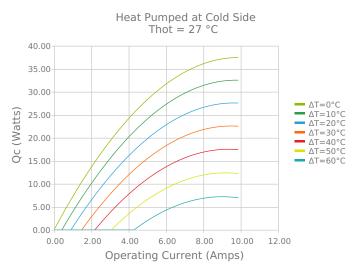
#### **Features**

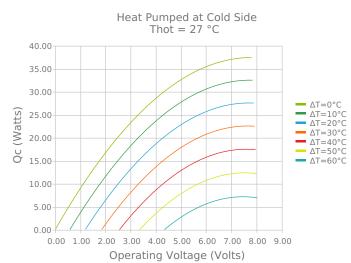
- High thermal cycling reliability
- Precise temperature control
- Solid-state operation
- Boosted performance with next-gen material
- RoHS-compliant

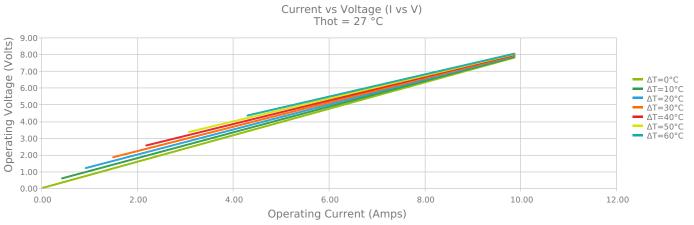
#### **Applications**

- Molecular Diagnostics (DNA Amplification, PCR)
- Point of Care Testing Devices
- Thermal Test Sockets

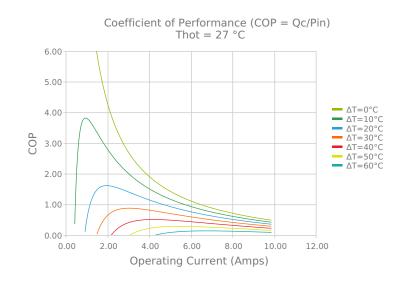


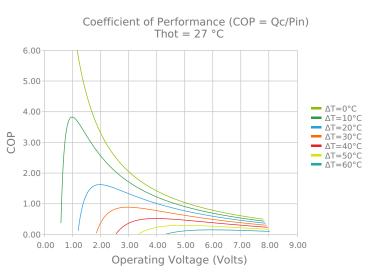

CERAMIC MATERIAL: Al₂O₃ SOLDER CONSTRUCTION: 232°C, SbSn

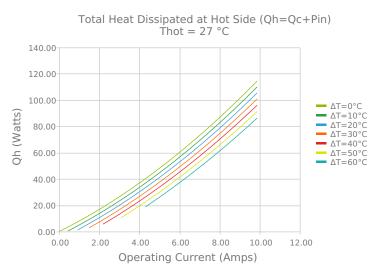

INCHES [ MM ]

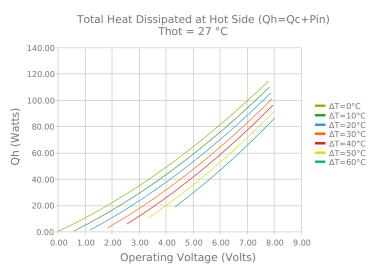

Note: Allow 0.020 in [0.5 mm] around perimeter of the thermoelectric cooler and lead wire attachment to accommodate sealant

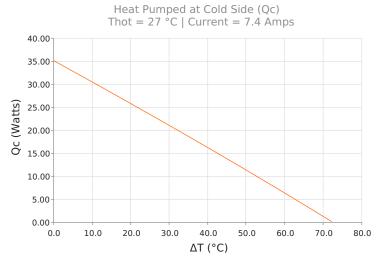
### **ELECTRICAL AND THERMAL PERFORMANCE**

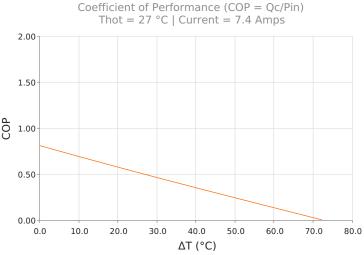

For maximum performance, be sure to orient the CONTROL side of the TEC against the application to be managed and the HEATSINK side against the heat sink or other heat rejection method. The CONTROL side is always opposite the side with lead attachments. Lead attachment is a passive heat loss and less impactful if located on the side that attaches to the heat exchanger.
















# **SPECIFICATIONS\***

**Hot Side Temperature** 

 $Qcmax (\Delta T = 0)$ 

 $\Delta T max (Qc = 0)$ 

Imax (I @ ATmax)

Vmax (V @  $\Delta$ Tmax)

**Module Resistance** 

**Max Operating Temperature** 

Weight

| 27.0 °C     | 50.0 °C    | 80.0 °C    |
|-------------|------------|------------|
| 37.4 Watts  | 40.3 Watts | 43.2 Watts |
| 73.6°C      | 82.6°C     | 93.1°C     |
| 8.8 Amps    | 8.6 Amps   | 8.3 Amps   |
| 7.4 Volts   | 8.2 Volts  | 9.2 Volts  |
| 0.79 Ohms   | 0.89 Ohms  | 1.02 Ohms  |
| 120 °C      |            |            |
| 9.0 gram(s) |            |            |

# **FINISHING OPTIONS**

| Suffix | Thickness | Flatness / Parallelism                     | <b>Hot Face</b>                         | <b>Cold Face</b> | <b>Lead Length</b>  |
|--------|-----------|--------------------------------------------|-----------------------------------------|------------------|---------------------|
|        |           | 0.025 mm / 0.025 mm<br>0.001 in / 0.001 in | 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Lapped           | 152.4 mm<br>6.00 in |

#### **SEALING OPTIONS**

| Suffix | Sealant | Color                | <b>Temp Range</b> | Description                      |
|--------|---------|----------------------|-------------------|----------------------------------|
| RT     | RTV     | Translucent or White | -60 to 204°C      | Non-corrosive, silicone adhesive |

# **NOTES**

- 1. Max operating temperature: 120°C
- 2. Do not exceed Imax or Vmax when operating module
- 3. Reference assembly guidelines for recommended installation
- 4. Solder tinning also available on metallized ceramics

Any information furnished by Laird and its agents, whether in specifications, data sheets, product catalogues or otherwise, is believed to be (but is not warranted as being) accurate and reliable, is provided for information only and does not form part of any contract with Laird. All specifications are subject to change without notice. Laird assumes no responsibility and disclaims all liability for losses or damages resulting from use of or reliance on this information. All Laird products are sold subject to the Laird Terms and Conditions of sale (including Laird's limited warranty) in effect from time to time, a copy of which will be furnished upon request.

© Copyright 2019-2022 Laird Thermal Systems, Inc. All rights reserved. Laird™, the Laird Ring Logo, and Laird Thermal Systems™ are trademarks or registered trademarks of Laird Limited or its subsidiaries.

Revision: 00 Date: 06-01-2022

Print Date: 06-10-2022

<sup>\*</sup> Specifications reflect thermoelectric coefficients updated March 2020