

TMUX6111, TMUX6112, TMUX6113

SCDS383E -AUGUST 2018-REVISED DECEMBER 2019

TMUX611x ±17-V, Low-capacitance, Low-leakage-current, Precision, Quad SPST Switches

1 Features

- Wide Supply Range: ±5 V to ±17 V (dual), 10 V to 17 V (single)
- Latch-Up Performance Meets 100 mA per JESD78 Class II Level A on all Pins
- Low On-Capacitance: 4.2 pF
 Low Input Leakage: 0.5 pA
 Low Charge Injection: 0.6 pC
- Rail-to-Rail Operation
- Low On-Resistance: 120 Ω
- Fast Switch Turn-On Time: 66 ns
- Break-Before-Make Switching (TMUX6113)
- EN Pin Connectable to V_{DD}
 Low Supply Current: 17 μA
- Human Body Model (HBM) ESD Protection: ± 2 kV on All Pins
- Industry-Standard TSSOP and smaller WQFN Packages

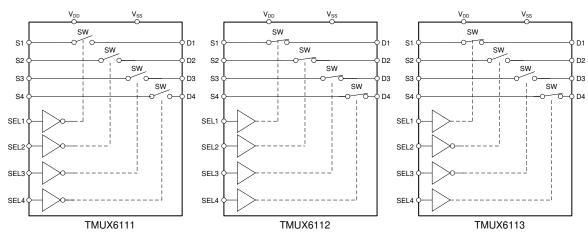
2 Applications

- · Factory automation and industrial process controls
- Programmable logic controllers (PLC)
- · Analog input modules
- Semiconductor test equipment
- · Battery test equipment

3 Description

The TMUX6111, TMUX6112, and TMUX6113 devices are modern complementary metal-oxide semiconductor (CMOS) devices that have four independently selectable single-pole/ single-throw (SPST) switches. The devices work well with dual supplies (±5 V to ±17 V), a single supply (10 V to 17 V), or asymmetric supplies. All digital inputs have transistor-transistor logic (TTL) compatible thresholds, ensuring TTL/ CMOS logic compatibility.

The switches are turned on with Logic 0 on the digital control inputs in the TMUX6111. Logic 1 is required to turn on switches in the TMUX6112. The TMUX6113 has two switches with similar digital control logic to the TMUX6111 while the logic is inverted on the other two switches. The TMUX6113 exhibits break-before-make switching, allowing the device to be used in the cross-point switching application.


The TMUX611x devices are part of Texas Instruments Precision Switches and Multiplexers family. The devices have very low leakage current and charge injection, allowing them to be used in high-precision measurement applications. Low supply current of 17 μ A enables the device usage in portable applications.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TMUX6111	TSSOP (16)	5.00 mm × 4.40 mm
TMUX6112 TMUX6113	WQFN (16)	3.00 mm x 3.00 mm

 For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

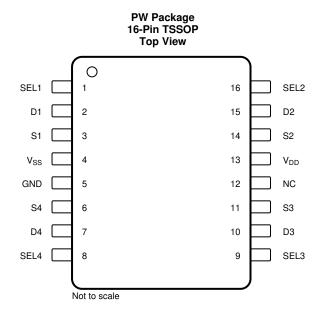
1	Features 1		9.2 Functional Block Diagram	18
2	Applications 1		9.3 Feature Description	18
3	Description 1		9.4 Device Functional Modes	19
4	Revision History2	10	Application and Implementation	20
5	Device Comparison Table 4		10.1 Application Information	20
6	Pin Configuration and Functions 4		10.2 Typical Application	20
_			10.3 Application Curves	2º
7	Specifications	11	Power Supply Recommendations	22
	7.1 Absolute Maximum Ratings		Layout	
	7.2 ESD Ratings		12.1 Layout Guidelines	
	7.3 Thermal Information		12.2 Layout Example	
	7.4 Recommended Operating Conditions	13	Device and Documentation Support	
	7.5 Electrical Characteristics (Dual Supplies: ±15 V) 6	13	13.1 Documentation Support	
	7.6 Switching Characteristics (Dual Supplies: ±15 V) 7			
	7.7 Electrical Characteristics (Single Supply: 12 V) 7		13.2 Related Links	
	7.8 Switching Characteristics (Single Supply: 12 V) 8		13.3 Receiving Notification of Documentation Upda	
	7.9 Typical Characteristics 9		13.4 Support Resources	
8	Parameter Measurement Information 12		13.5 Trademarks	
	8.1 Truth Tables		13.6 Electrostatic Discharge Caution	24
9	Detailed Description 13		13.7 Glossary	24
•	9.1 Overview	14	Mechanical, Packaging, and Orderable Information	2

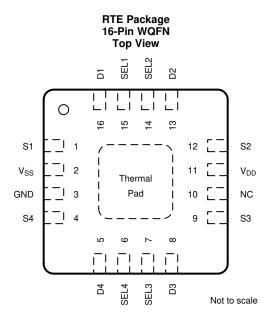
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	nanges from Revision D (January 2019) to Revision E	Page
•	Changed the <i>Title</i> From: TMUX611x ±16.5-V To: TMUX611x ±17-V	1
•	Changed Feature From: Wide Supply Range: ±5 V to ±16.5 V (dual), 10 V to 16.5 V (single) To: Wide Supply Range: ±5 V to ±17 V (dual), 10 V to 17 V (single)	1
•	Changed the <i>Description</i> From: dual supplies (±5 V to ±16.5 V), a single supply (10 V to 16.5 V) To: dual supplies (±5 V to ±17 V), a single supply (10 V to 17 V)	1
•	Changed ±16.5-V to ±17.5-V in the Description of the Device Comparison Table	4
•	Changed recommended power supply voltage differential from 33 V to 34 V	5
•	Changed recommended single supply voltage from 16.5 V to 17 V	5
•	Changed positive and negative power supply voltage to +17 V and -17V	5
•	The <i>Overview</i> From: dual supplies (±5 V to ±16.5 V) or single supply (10 V to 16.5 V) To: dual supplies (±5 V to ±1 V) or single supply (10 V to 17 V)	
•	Changed the Application Information From: 16.5 V (single supply) To: 17 V (single supply)	20
•	The <i>Power Supply Recommendations</i> From: wide supply range of of ±5 V to ±16.5 V (10 V to 16.5 V in single-supply mode) To: wide supply range of of ±5 V to ±17 V (10 V to 17 V in single-supply mode)	22
Cł	nanges from Revision C (December 2018) to Revision D	Page
•	Changed descriptions in the Device Comparison Table to match the data sheet title	4
<u>.</u>	Changed Figure 30 to correct Op-Amp terminal polarities.	<u>20</u>
Cł	nanges from Revision B (November 2018) to Revision C	Page
•	Changed units for channel current and ambient temperature.	6

Changes from Revision A (November 2018) to Revision B	Page
Changed the document status From: Product Preview To: Production data for TMUX6111 and TMUX6113	1
Changes from Original (August 2018) to Revision A	Page
Changed the document status From: Advanced Information To: Production data for TMUX6112	1


Copyright © 2018–2019, Texas Instruments Incorporated



5 Device Comparison Table

PRODUCT	DESCRIPTION
TMUX6111	±17-V, Low-Capacitance, Low-Leakage-Current, Precision, Quad SPST Switches (Normally Closed)
TMUX6112	±17-V, Low-Capacitance, Low-Leakage-Current, Precision, Quad SPST Switches (Normally Open)
TMUX6113	±17-V, Low-Capacitance, Low-Leakage-Current, Precision, Quad SPST Switches (Dual Open + Dual Closed)

6 Pin Configuration and Functions

Pin Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION		
NAME	TSSOP	WQFN	IYPE\"	DESCRIPTION	
SEL1	1	15	I	Logic control input 1.	
D1	2	16	I/O	Drain pin 1. Can be an input or output.	
S1	3	1	I/O	Source pin 1. Can be an input or output.	
V _{SS}	4	2	Р	Negative power supply. This pin is the most negative power-supply potential. In single-supply applications, this pin can be connected to ground. For reliable operation, connect a decoupling capacitor ranging from 0.1 μF to 10 μF between V_{SS} and GND.	
GND	5	3	Р	Ground (0 V) reference	
S4	6	4	I/O	Source pin 4. Can be an input or output.	
D4	7	5	I/O	Drain pin 4. Can be an input or output.	
SEL4	8	6	I	Logic control input 4.	
SEL3	9	7	I	Logic control input 4.	
D3	10	8	I/O	Drain pin 3. Can be an input or output.	
S3	11	9	I/O	Source pin 3. Can be an input or output.	
NC	12	10	_	No internal connection.	
V _{DD}	13	11	Р	Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between V _{DD} and GND.	
S2	14	12	I/O	Source pin 2. Can be an input or output.	
D2	15	13	I/O	Drain pin 2. Can be an input or output.	
SEL2	16	14	I	Logic control input 2.	
-	-	EP	_	Exposed Pad. The exposed pad is electrically connected to V_{SS} internally. Connect EP to V_{SS} to achieve rated thermal and ESD performance.	

(1) I = input, O = output, I/O = input and output, P = power

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
V _{DD} to V _{SS}			36	V
V _{DD} to GND	Supply voltage	-0.3	18	٧
V _{SS} to GND		-18	0.3	٧
V_{DIG}	Digital input pin (SEL1, SEL2, SEL3, SEL4) voltage	GND -0.3	V _{DD} +0.3	٧
I _{DIG}	Digital input pin (SEL1, SEL2, SEL3, SEL4) current	-30	30	mA
V _{ANA_IN}	Analog input pin (Sx) voltage	V _{SS} -0.3	V _{DD} +0.3	V
I _{ANA_IN}	Analog input pin (Sx) current	-30	30	mA
V _{ANA_OUT}	Analog output pin (D) voltage	V _{SS} -0.3	V _{DD} +0.3	٧
I _{ANA_OUT}	Analog output pin (D) current	-30	30	mA
T _A	Ambient temperature	-55	140	°C
T _J	Junction temperature		150	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Rating* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Condition*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
V	Floatvootatia diaahaysa	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	V
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Thermal Information

		TMUX6111/ TMUX	TMUX6111/ TMUX6112/ TMUX6113		
THERMAL METRIC		PW (TSSOP)	RTE (QFN)	UNIT	
		16 PINS	16 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	111.0	51.9	°C/W	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	41.7	53.3	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	57.2	26.6	°C/W	
Ψ_{JT}	Junction-to-top characterization parameter	4.1	1.7	°C/W	
Ψ_{JB}	Junction-to-board characterization parameter	56.6	26.6	°C/W	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	11.6	°C/W	

7.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V_{DD} to $V_{SS}^{(1)}$	Power supply voltage differential	10	34	٧
V _{DD} to GND	Positive power supply voltage (singlle supply, V _{SS} = 0 V)	10	17	٧
V _{DD} to GND	Positive power supply voltage (dual supply)	5	17	٧
V _{SS} to GND	Negative power supply voltage (dual supply)	-5	–17	٧
V _S ⁽²⁾	Source pins voltage	V _{SS}	V_{DD}	٧

⁽¹⁾ V_{DD} and V_{SS} can be any value as long as 10 V \leq ($V_{DD} - V_{SS}$) \leq 34 V.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽²⁾ V_S is the voltage on all the S pins.

Recommended Operating Conditions (continued)

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V_D	Drain pin voltage	V_{SS}	V_{DD}	V
V_{DIG}	Digital input pin (SEL1, SEL2, SEL3, SEL4) voltage	0	V_{DD}	V
I _{CH}	Channel current (T _A = 25°C)	-25	25	mA
T _A	Ambient temperature	-40	125	°C

7.5 Electrical Characteristics (Dual Supplies: ±15 V)

at $T_A = 25$ °C, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
ANALOG S	SWITCH	-		*		•	
V _A	Analog signal range		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	V_{SS}		V_{DD}	٧
		$V_S = 0 \text{ V}, I_S = 1 \text{ mA}$			120	135	Ω
Б	On-resistance				140	160	Ω
R _{ON}		$V_S = \pm 10 \text{ V}, I_S = 1 \text{ mA}$	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			210	Ω
			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			245	Ω
					2.5	6	Ω
ΔR_{ON}	On-resistance mismatch between channels	$V_S = \pm 10 \text{ V}, I_S = 1 \text{ mA}$	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			9	Ω
	between enamicis		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			11	Ω
					23	33	Ω
R _{ON_FLAT}	On-resistance flatness	$V_S = -10 \text{ V}, 0 \text{ V}, +10 \text{ V}, I_S$ = 1 mA	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			37	Ω
		- 1 IIIA	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			38	Ω
R _{ON_DRIFT}	On-resistance drift	V _S = 0 V			0.52		%/°C
	Source off leakage current ⁽¹⁾	Switch state is off, $V_S = +10 \text{ V/} -10 \text{ V}$, $V_D = -10 \text{ V/} + 10 \text{ V}$		-0.02	0.005	0.02	nA
I _{S(OFF)}			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	-0.14		0.05	nA
-(-)			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	-1.3		0.25	nA
	Drain off leakage current ⁽¹⁾	Switch state is off, $V_S = +10 \text{ V/} -10 \text{ V}$, $V_D = -10 \text{ V/} +10 \text{ V}$		-0.02	0.005	0.02	nA
I _{D(OFF)}			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	-0.14		0.05	nA
			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	-1.3		0.25	nA
		Switch state is on, V _S =		-0.04	0.01	0.04	nA
$I_{D(ON)}$	Drain on leakage current	+10 V/ -10 V, V _D = -10 V/ +10 V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-0.25		0.1	nA
			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	-1.8		0.5	nA
DIGITAL IN	NPUT (SELx pins)						
V _{IH}	Logic voltage high			2			V
V_{IL}	Logic voltage low					8.0	V
R _{PD(IN)}	Pull-down resistance on SELx pins				6		ΜΩ
POWER S	UPPLY			•			
					17	21	μΑ
I_{DD}	V _{DD} supply current	$V_A = 0 \text{ V or } 3.3 \text{ V}, V_S = 0$	$T_A = -40$ °C to +85°C			22	μΑ
			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			23	μΑ
					8	10	μΑ
I _{SS}	V _{SS} supply current	$V_A = 0 \text{ V or } 3.3 \text{ V}, V_S = 0$	$T_A = -40$ °C to +85°C			11	μΑ
		•	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			12	μΑ

⁽¹⁾ When V_{S} is positive, V_{D} is negative, and vice versa.

Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

7.6 Switching Characteristics (Dual Supplies: ±15 V)

at $T_A = 25$ °C, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$V_S=\pm 10~V,~R_L=300~\Omega~,~C_L=35~pF$		66	78	ns
t _{ON}	Enable turn-on time	$V_S=\pm 10~V,~R_L=300~\Omega$, $C_L=35~pF,~T_A=-40^{\circ}C$ to $+85^{\circ}C$			107	ns
		$V_S=\pm 10~V,~R_L=300~\Omega$, $C_L=35~pF,~T_A=-40^{\circ}C$ to $+125^{\circ}C$			117	ns
		$V_S = \pm 10 \text{ V}, \text{ R}_L = 300 \ \Omega$, $C_L = 35 \text{ pF}$		56	68	ns
t _{OFF}	Enable turn-off time	$V_S=\pm 10~V,~R_L=300~\Omega$, $C_L=35~pF,~T_A=-40^{\circ}C$ to $+85^{\circ}C$			77	ns
	$V_S=\pm 10~V,~R_L=300~\Omega$, $C_L=35~pF,~T_A=-40^{\circ}C$ to $+125^{\circ}C$			81	ns	
tBBM	Break-before-make time delay (TMUX6113 Only)	V_S = 10 V, R_L = 300 Ω , C_L = 35 pF, T_A = –40°C to +125°C	8	40		ns
QJ	Charge injection	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}$		0.6		рС
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$		-85		dB
		R_L = 50 Ω , C_L = 5 pF, f = 1 MHz, adjacent channel		-100		dB
X _{TALK}	Channel-to-channel crosstalk	R_L = 50 Ω , C_L = 5 pF, f = 1 MHz, non-adjacentchannel		-115		dB
IL	Insertion loss	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$		-7.0		dB
4000DD	AC Power Supply Rejection	R_L = 10 $k\Omega$, C_L = 5 pF, $V_{PP} = 0.62$ V on V_{DD},f = 1 MHz		– 59		dB
ACPSRR	Ratio	R_L = 10 $k\Omega$, C_L = 5 pF, $V_{PP} = 0.62$ V on $V_{SS},$ f= 1 MHz		– 59		dB
BW	-3dB Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$		800		MHz
THD	Total harmonic distortion + noise	$R_L = 10k \Omega$, $C_L = 5$ pF, f= 20Hz to 20kHz		0.08		%
C _{IN}	Digital input capacitance	$V_{IN} = 0 \text{ V or } V_{DD}$		1.5		pF
<u></u>	Course off consoitenes	V _S = 0 V, f = 1 MHz (PW package)		1.9	3.0	pF
C _{S(OFF)}	Source off-capacitance	V _S = 0 V, f = 1 MHz (RTE package)		2.5	3.6	pF
C _{D(OFF)}	Drain off-capacitance	V _S = 0 V, f = 1 MHz		2.4	3.1	pF
C _{S(ON)} , C _{D(ON)}	Source and drain on- capacitance	V _S = 0 V, f = 1 MHz		4.2	6.0	pF

7.7 Electrical Characteristics (Single Supply: 12 V)

at $T_A = 25$ °C, $V_{DD} = 12$ V, and $V_{SS} = 0$ V (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
ANALOG S	SWITCH						
V _A	Analog signal range	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		V_{SS}		V_{DD}	V
					230	265	Ω
R _{ON}	On-resistance		$T_A = -40$ °C to +85°C			355	Ω
		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			405	Ω	
		V _S = 10 V, I _S = 1 mA			5	12	Ω
ΔR_{ON}	On-resistance mismatch between channels		$T_A = -40$ °C to +85°C			19	Ω
	between enamers		$T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$			23	Ω
R _{ON_DRIFT}	On-resistance drift	V _S = 0 V			0.5		%/°C
				-0.02	0.005	0.02	nA
I _{S(OFF)}	OFF) Source off leakage current ⁽¹⁾	Switch state is off, $V_S = 10 \text{ V/ } 1 \text{ V}$, $V_D = 1 \text{ V/ } 10 \text{ V}$	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	-0.1		0.04	nA
		10 t/ 1 t, t _D = 1 t/ 10 t	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	-1		0.2	nA

(1) When V_S is positive, V_D is negative, and vice versa.

Electrical Characteristics (Single Supply: 12 V) (continued)

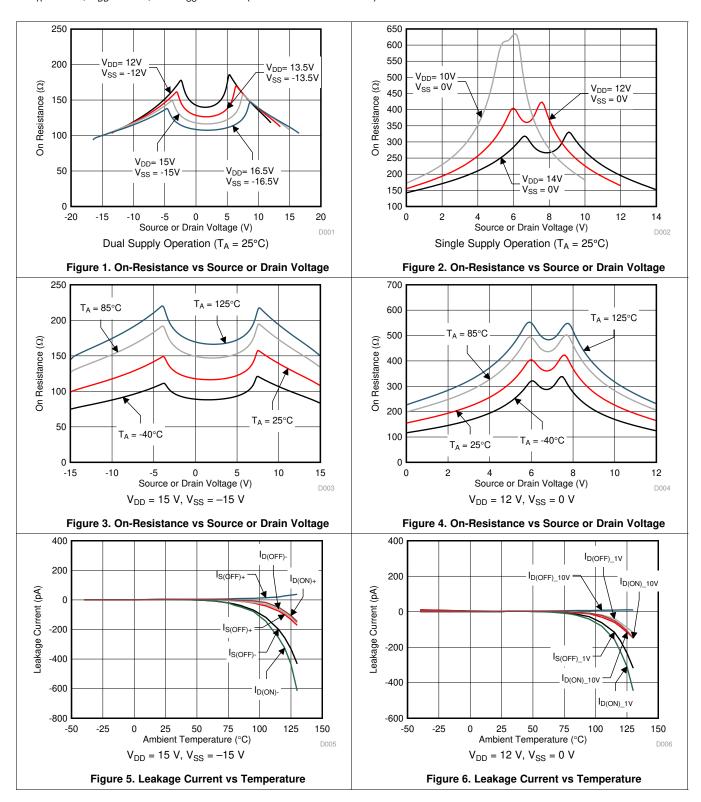
at $T_A = 25$ °C, $V_{DD} = 12$ V, and $V_{SS} = 0$ V (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
				-0.02	0.005	0.02	nA
I _{D(OFF)}	Drain off leakage current ⁽¹⁾	Switch state is off, $V_S = 10 \text{ V/ } 1 \text{ V}$, $V_D = 1 \text{ V/ } 10 \text{ V}$	$T_A = -40$ °C to +85°C	-0.1		0.04	nA
		10 1/ 1 1, 10 1	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	-1		0.2	nA
				-0.04	0.01	0.04	nA
I _{D(ON)}	Drain on leakage current	Switch state is on, $V_S =$ floating, $V_D = 1 \text{ V}/ 10 \text{ V}$	$T_A = -40$ °C to +85°C	-0.16		0.08	nA
		moding, vp = 1 v/ 10 v	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	-1.4		0.4	nA
DIGITAL I	NPUT (SELx pins)						
V _{IH}	Logic voltage high			2			V
V _{IL}	Logic voltage low					8.0	V
R _{PD(EN)}	Pull-down resistance on SELx pins				6		МΩ
POWER S	UPPLY						
					13	16	μΑ
I _{DD}	V _{DD} supply current	$V_A = 0 \text{ V or } 3.3 \text{ V}, V_S = 0$	$T_A = -40$ °C to +85°C			17	μΑ
		•	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			18	μΑ

7.8 Switching Characteristics (Single Supply: 12 V)

at $T_A = 25$ °C, $V_{DD} = 12$ V, and $V_{SS} = 0$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		V_S = 8 V, R_L = 300 Ω , C_L = 35 pF		72	84	ns
t _{ON}	Enable turn-on time	V_{S} = 8 V, R_{L} = 300 Ω , C_{L} = 35 pF, T_{A} = $-40^{\circ}C$ to +85°C			117	ns
		$\rm V_S=8~V,~R_L=300~\Omega$, $\rm C_L=35~pF,~T_A=-40^{\circ}C$ to $+125^{\circ}C$			128	ns
		V_S = 8 V, R_L = 300 Ω , C_L = 35 pF		57	66	ns
t _{OFF}	Enable turn-off time	$\mbox{V}_{\mbox{S}}=\mbox{8}$ V, $\mbox{R}_{\mbox{L}}=300~\Omega$, $\mbox{C}_{\mbox{L}}=35~\mbox{pF},$ $\mbox{T}_{\mbox{A}}=-40\mbox{°C}$ to $^{+}85\mbox{°C}$			78	ns
		$\mbox{V}_{\mbox{S}}=\mbox{8 V},\mbox{ R}_{\mbox{L}}=300\ \Omega$, $\mbox{C}_{\mbox{L}}=35\ \mbox{pF},\mbox{ T}_{\mbox{A}}=-40\mbox{°C}$ to $+125\mbox{°C}$			84	ns
t _{BBM}	Break-before-make time delay (TMUX6113 only)	V_{S} = 8 V, R_{L} = 300 Ω , C_{L} = 35 pF, T_{A} = $-40^{\circ}C$ to +125°C	17	47		ns
QJ	Charge injection	V_S = 0 V to 12 V, R_S = 0 Ω , C_L = 1 nF		0.6		рС
O _{ISO}	Off-isolation	R_L = 50 Ω , C_L = 5 pF, f = 1 MHz		-86		dB
		R_L = 50 Ω , C_L = 5 pF, f = 1 MHz, adjacent channel		-98		dB
X _{TALK}	Channel-to-channel crosstalk	$R_L = 50~\Omega$, $C_L = 5~\text{pF},~\text{f} = 1~\text{MHz},~\text{non-adjacent}$ channel		-117		dB
IL	Insertion loss	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$		-14		dB
ACPSRR	AC Power Supply Rejection Ratio	$R_L = 10 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, $V_{PP} = 0.62 \text{ V}$, $f = 1 \text{ MHz}$		– 59		dB
BW	-3dB Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$		750		MHz
C _{IN}	Digital input capacitance	$V_{IN} = 0 \text{ V or } V_{DD}$		1.6		рF
0	0	V _S = 6 V, f = 1 MHz (PW package)		2.2	3.1	pF
C _{S(OFF)}	Source off-capacitance	V _S = 6 V, f = 1 MHz (RTE package)		2.9	4.0	pF
C _{D(OFF)}	Drain off-capacitance	V _S = 6 V, f = 1 MHz		2.8	3.5	pF
C _{S(ON)} , C _{D(ON)}	Source and drain on- capacitance	V _S = 6 V, f = 1 MHz		4.6	6.3	pF


Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

7.9 Typical Characteristics

at $T_A = 25$ °C, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)

TEXAS INSTRUMENTS

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)

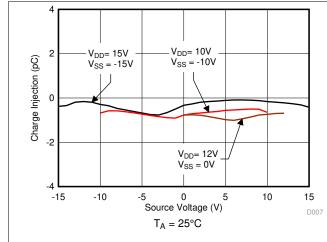


Figure 7. Charge Injection vs Source Voltage

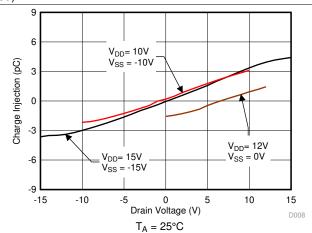


Figure 8. Charge Injection vs Drain Voltage

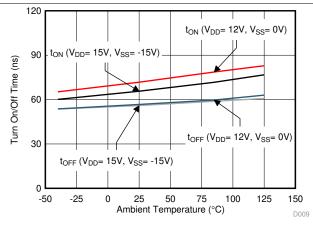


Figure 9. Turn-On and Turn-Off Times vs Temperature

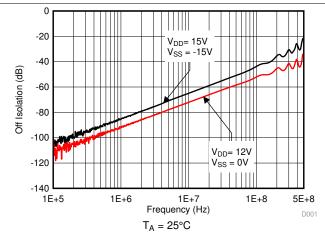
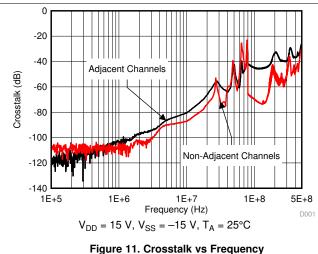



Figure 10. Off Isolation vs Frequency

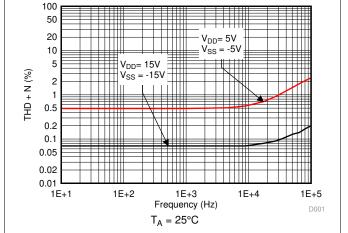


Figure 12. THD+N vs Frequency

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)

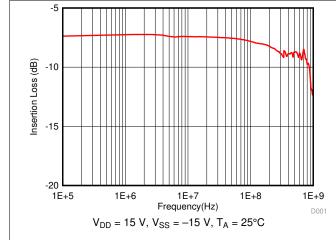


Figure 13. On Response vs Frequency

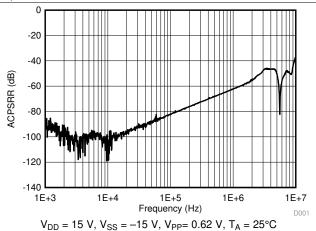


Figure 14. ACPSRR vs Frequency

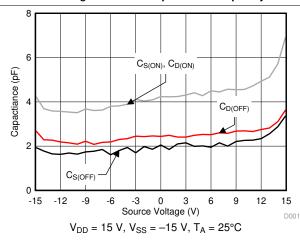
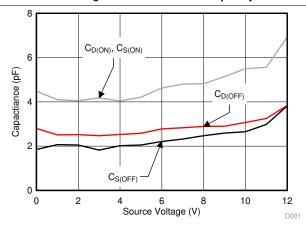



Figure 15. Capacitance vs Source Voltage

 $V_{DD} = 12 \text{ V}, V_{SS} = 0 \text{ V}, T_A = 25^{\circ}\text{C}$

Figure 16. Capacitance vs Source Voltage

8 Parameter Measurement Information

8.1 Truth Tables

Table 1, Table 2, Table 3and show the truth tables for the TMUX6111, TMUX6112, and TMUX6113, respectively.

Table 1. TMUX6111 Truth Table

SELx	STATE
0	All Switch ON
1	All Switch OFF

Table 2. TMUX6112 Truth Table

SELx	STATE
0	All Switch OFF
1	All Switch ON

Table 3. TUMUX6113 Truth Table

SELx	STATE
0	Switch 1, 4 OFF Switch 2, 3 ON
1	Switch 1, 4 ON Switch 2, 3 OFF

9 Detailed Description

9.1 Overview

The TMUX6111, TMUX6112, and TMUX6113 are 4-channel single-pole/ single-throw (SPDT) switches that supports dual supplies (±5 V to ±17 V) or single supply (10 V to 17 V) operation. Each channel of the switch is turned on or turned off based on the state of its corresponding SELx pin. The Functional Block Diagram section provides a top-level block diagram of the switches.

9.1.1 On-Resistance

The on-resistance of the TMUX6111, TMUX6112, and TMUX6113 is the ohmic resistance across the source (Sx) and drain (Dx) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol R_{ON} is used to denote on-resistance. The measurement setup used to measure R_{ON} is shown in Figure 17. Voltage (V) and current (I_{CH}) are measured using this setup, and R_{ON} is computed as shown in Equation 1:

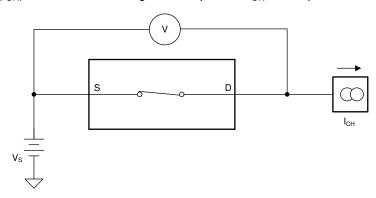


Figure 17. On-Resistance Measurement Setup

$$R_{ON} = V / I_{CH}$$
 (1)

9.1.2 Off-Leakage Current

There are two types of leakage currents associated with a switch during the off state:

- 1. Source off-leakage current
- 2. Drain off-leakage current

Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is off. This current is denoted by the symbol $I_{S(OFF)}$.

Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off. This current is denoted by the symbol $I_{D(OFF)}$.

The setup used to measure both off-leakage currents is shown in Figure 18

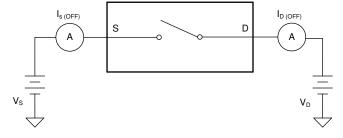


Figure 18. Off-Leakage Measurement Setup

9.1.3 On-Leakage Current

On-leakage current is defined as the leakage current that flows into or out of the drain pin when the switch is in the on state. The source pin is left floating during the measurement. Figure 19 shows the circuit used for measuring the on-leakage current, denoted by $I_{D(ON)}$.

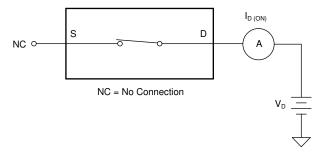


Figure 19. On-Leakage Measurement Setup

9.1.4 Break-Before-Make Delay

The break-before-make delay is a safety feature of the TMUX6113 switch. The TMUX6113's ON switches first break the connection before the OFF switches make connection. The time delay between the *break* and the *make* is known as break-before-make delay. Figure 20 shows the setup used to measure break-before-make delay, denoted by the symbol $t_{\rm BBM}$.

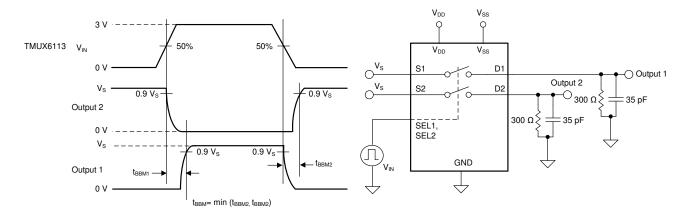


Figure 20. Break-Before-Make Delay Measurement Setup

9.1.5 Turn-On and Turn-Off Time

Turn-on time is defined as the time taken by the output of the TMUX6111, TMUX6112, and TMUX6113 to rise to a 90% final value after the SELx signal has risen (for NC switches) or fallen (for NO switches) to a 50% final value. Figure 21 shows the setup used to measure turn-on time. Turn-on time is denoted by the symbol to.

Turn off time is defined as the time taken by the output of the TMUX6111, TMUX6112, and TMUX6113 to fall to a 10% initial value after the SELx signal has fallen (for NC switches) or risen (for NO switches) to a 50% initial value. Figure 21 shows the setup used to measure turn-off time. Turn-off time is denoted by the symbol tope.

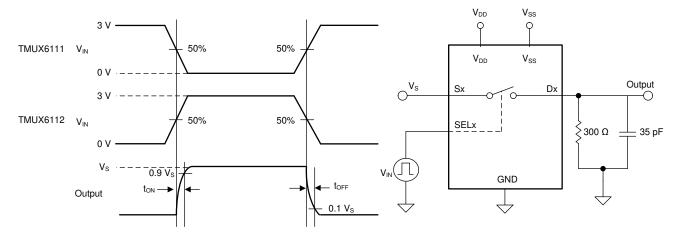


Figure 21. Turn-On and Turn-Off Time Measurement Setup

9.1.6 Charge Injection

The TMUX6111, TMUX6112, and TMUX6113 have a simple transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted by the symbol Q_{INJ} . Figure 22 shows the setup used to measure charge injection.

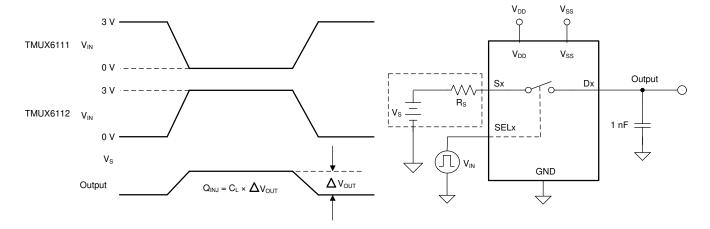


Figure 22. Charge-Injection Measurement Setup

9.1.7 Off Isolation

Off isolation is defined as the voltage at the drain pin (Dx) of the TMUX6111, TMUX6112, and TMUX6113 when a 1- V_{RMS} signal is applied to the source pin (Sx) of an OFF switch. Figure 23 shows the setup used to measure off isolation. Use Equation 2 to compute off isolation.

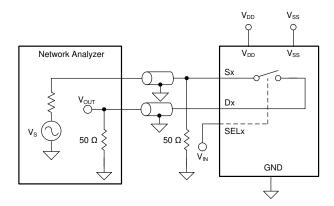


Figure 23. Off Isolation Measurement Setup

Off Isolation =
$$20 \cdot Log\left(\frac{V_{OUT}}{V_{S}}\right)$$
 (2)

9.1.8 Channel-to-Channel Crosstalk

Channel-to-channel crosstalk is defined as the voltage at the source pin (Sx) of an off-channel, when a 1- V_{RMS} signal is applied at the source pin of an on-channel. Figure 24 shows the setup used to measure, and Equation 3 is the equation used to compute, channel-to-channel crosstalk.

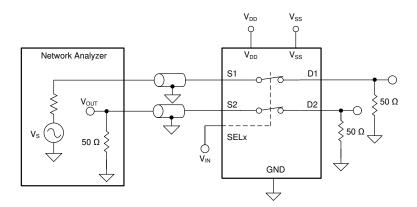


Figure 24. Channel-to-Channel Crosstalk Measurement Setup

Channel-to-Channel Crosstalk =
$$20 \cdot Log\left(\frac{V_{OUT}}{V_{S}}\right)$$
 (3)

9.1.9 Bandwidth

Bandwidth is defined as the range of frequencies that are attenuated by < 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (Dx) of the TMUX6111, TMUX6112, and TMUX6113. Figure 25 shows the setup used to measure bandwidth of the switch. Use Equation 4 to compute the attenuation.

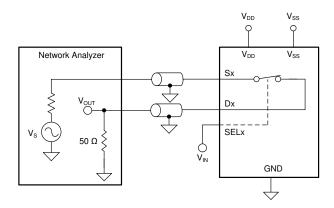


Figure 25. Bandwidth Measurement Setup

Attenuation =
$$20 \cdot \text{Log}\left(\frac{V_2}{V_1}\right)$$
 (4)

9.1.10 THD + Noise

The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the mux output. The on-resistance of the TMUX6111, TMUX6112, and TMUX6113 varies with the amplitude of the input signal and results in distortion when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as THD+N. Figure 26 shows the setup used to measure THD+N of the TMUX6111, TMUX6112, and TMUX6113.

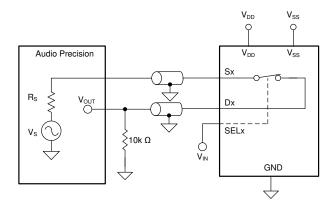
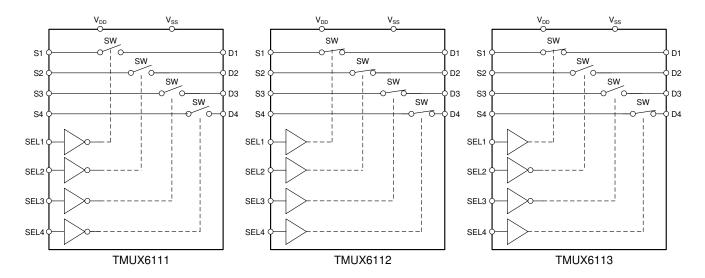



Figure 26. THD+N Measurement Setup

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Ultra-low Leakage Current

The TMUX6111, TMUX6112, and TMUX6113 provide extremely low on- and off-leakage currents. The devices are capable of switching signals from high source-impedance inputs into a high input-impedance op amp with minimal offset error because of the ultralow leakage currents. Figure 27 shows typical leakage currents of the devices versus temperature.

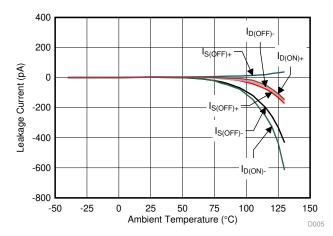


Figure 27. Leakage Current vs Temperature

9.3.2 Ultra-low Charge Injection

The TMUX6111, TMUX6112, and TMUX6113 are implemented with simple transmission gate topology, as shown in Figure 28. Any mismatch in the stray capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is opened or closed. The devices utilize special charge-injection cancellation circuitry that reduces the source (Sx)-to-drain (Dx) charge injection to as low as 0.6 pC at $V_S = 0$ V, as shown in Figure 29.

Feature Description (continued)

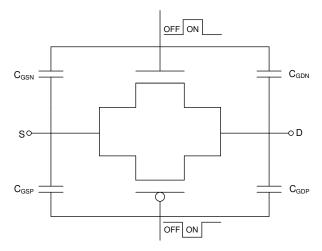


Figure 28. Transmission Gate Topology

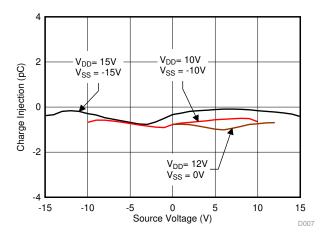


Figure 29. Source-to-Drain Charge Injection vs Source or Drain Voltage

9.3.3 Bidirectional and Rail-to-Rail Operation

The TMUX6111, TMUX6112, and TMUX6113 conduct equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). Each channel of the switches has very similar characteristics in both directions. The input signal to the devices swings from V_{SS} to V_{DD} without any significant degradation in performance. The onresistance of these devices varies with input signal.

9.4 Device Functional Modes

Each channel of the TMUX6111, TMUX6112, and TMUX6113 is turned on or turned off based on the state of its corresponding SELx pin. The SELx pins are weakly pulled-down through an internal 6 M Ω resistor, allowing the switches to stay in a determined state when power is applies to the devices. The SELx pins can be connected to V_{DD} .

Copyright © 2018–2019, Texas Instruments Incorporated

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The TMUX6111, TMUX6112, and TMUX6113 offer outstanding input/output leakage currents and ultralow charge injection. These devices operate up to 34 (dual supply) or 17 V (single supply), and offer true rail-to-rail input and output. The on-capacitance of the TMUX6111, TMUX6112, and TMUX6113 is low. These features makes the TMUX6111, TMUX6112, and TMUX6113 a family of precision, robust, high-performance analog multiplexer for high-voltage, industrial applications.

10.2 Typical Application

One useful application to take advantage of TMUX6111, TMUX6112, and TMUX6113's precision performance is the sample and hold circuit. A sample and hold circuit can be useful for an analog to digital converter (ADC) to sample a varying input voltage with improved reliability and stability. It can also be used to store the output samples from a single digital-to-analog converter (DAC) in a multi-output application. A simple sample and hold circuit can be realized using an analog switch like one of the TMUX6111, TMUX6112, and TMUX6113 analog switches.

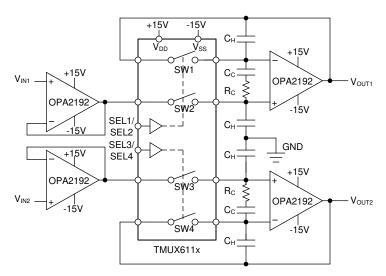


Figure 30. A 2-output Sample and Hold Circuit Realized Using the TMUX611x Analog Switch

Typical Application (continued)

10.2.1 Design Requirements

The purpose of this precision design is to implement an optimized 2-output sample and hold circuit using a 4-channel SPST switch. The sample and hold circuit needs to be capable of supporting high voltage output swing up to \pm 15V with minimized pedestal error and fast settling time. The overall system block diagram is illustrated in Figure 30.

10.2.2 Detailed Design Procedure

The TMUX6111, TMUX6112, or TMUX6113 switch is used in conjunction with the voltage holding capacitors (C_H) to implement the sample and hold circuit. The basic operation is:

- 1. When the switch (SW2 or SW3) is closed, it samples the input voltage and charges the holding capacitors (C_H) to the input voltages values.
- 2. When the switch (SW2 or SW3) is open, the holding capacitors (C_H) holds its previous value, maintaining stable voltage at the amplifier output (V_{OLIT}).

Ideally, the switch delivers only the input signals to the holding capacitors. However, when the switch gets toggled, some amount of charge also gets transferred to the switch output in the form of charge injection, resulting slight sampling error. The TMUX6111, TMUX6112, and TMUX6113 switches have excellent charge injection performance of only 0.6 pC, making them ideal choices for this implementation to minimize sampling error.

Due to switch and capacitor leakage current, the voltage on the hold capacitors droops with time. The TMUX6111, TMUX6112, and TMUX6113 minimize the droops due to its ultra-low leakage performance. At 25°C, the TMUX6111, TMUX6112, and TMUX6113 have extremely tiny leakage current at 1 pA typical and 20 pA max.

The TMUX6111, TMUX6112, and TMUX6113 devices also support high voltage capability. The devices support up to ± 17 V dual supply operation, making it an ideal solution in this high voltage sample and hold application.

A second switch SW1 (or SW4) is also included to operate in parallel with SW2 (or SW3) to reduce pedestal error during switch toggling. Because both switches are driven at the same potential, they act as common-mode signal to the op-amp, thereby minimizing the charge injection effects caused by the switch toggling action. Compensation network consisting of $R_{\rm C}$ and $C_{\rm C}$ is also added to further reduce the pedestal error, whiling reducing the hold-time glitch and improving the settling time of the circuit.

10.3 Application Curves

TMUX6111, TMUX6112, and TMUX6113 have excellent charge injection performance of only 0.6 pC (typical), making them ideal choices to minimize sampling error for the sample and hold application. Figure 31 shows the plot for the charge injection vs. source input voltage for TMUX6111, TMUX6112, and TMUX6113.

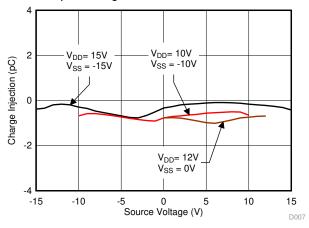


Figure 31. Charge injection vs. Source Voltage for TMUX6111, TMUX6112 and TMUX6113

11 Power Supply Recommendations

The TMUX6111, TMUX6112, and TMUX6113 operate across a wide supply range of ± 5 V to ± 17 V (10 V to 17 V in single-supply mode). They also perform well with asymmetrical supplies such as $V_{DD}=12$ V and $V_{SS}=-5$ V. For improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μ F to 10 μ F at both the V_{DD} and V_{SS} pins to ground. Always ensure the ground (GND) connection is established before supplies are ramped. As a best practice, it is recommended to ramp V_{SS} first before V_{DD} in dual or asymmetrical supply applications.

The on-resistance of the devices varies with supply voltage, as illustrated in Figure 32

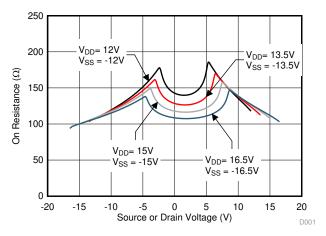


Figure 32. On-Resistance Variation With Supply and Input Voltage

22

12 Layout

12.1 Layout Guidelines

Figure 33 illustrates an example of a PCB layout with the TMUX6112PW. Some key considerations are:

- Decouple the V_{DD} and V_{SS} pins with a 0.1-μF capacitor, placed as close to the pin as possible. Make sure
 that the capacitor voltage rating is sufficient for the V_{DD} and V_{SS} supplies.
- · Keep the input lines as short as possible.
- Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.

12.2 Layout Example

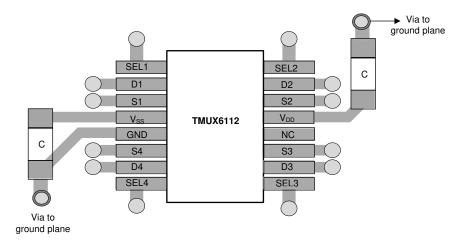


Figure 33. TMUX6112PW Layout Example

Copyright © 2018–2019, Texas Instruments Incorporated

13 Device and Documentation Support

13.1 Documentation Support

13.1.1 Related Documentation

 OPAx192 36-V, Precision, Rail-to-Rail Input/Output, Low Offset Voltage, Low Input Bias Current Op Amp with e-trim™ (SBOS620E)

13.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now.

Table 4. Related Links

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TMUX6111	Click here	Click here	Click here	Click here	Click here
TMUX6112	Click here	Click here	Click here	Click here	Click here
TMUX6113	Click here	Click here	Click here	Click here	Click here

13.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.4 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

13.5 Trademarks

E2E is a trademark of Texas Instruments.

13.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

13.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2018–2019, Texas Instruments Incorporated

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TMUX6111PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	MUX6111	Samples
TMUX6111RTER	ACTIVE	WQFN	RTE	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TM6111	Samples
TMUX6112PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	MUX6112	Samples
TMUX6112RTER	ACTIVE	WQFN	RTE	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TM6112	Samples
TMUX6113PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	MUX6113	Samples
TMUX6113RTER	ACTIVE	WQFN	RTE	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TM6113	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

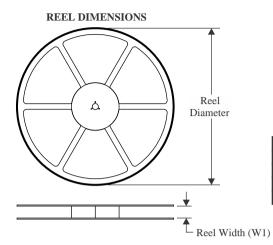
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

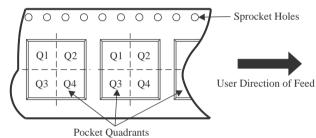
10-Dec-2020


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

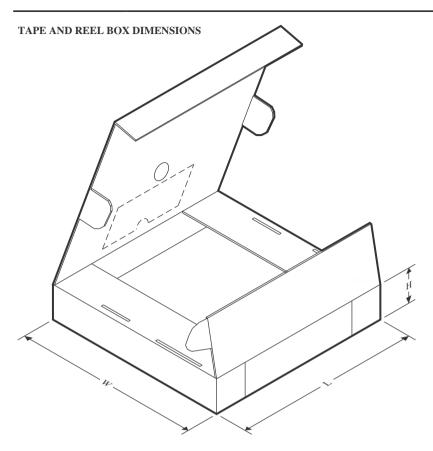
www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

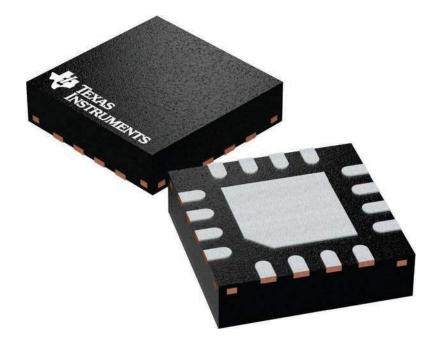
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

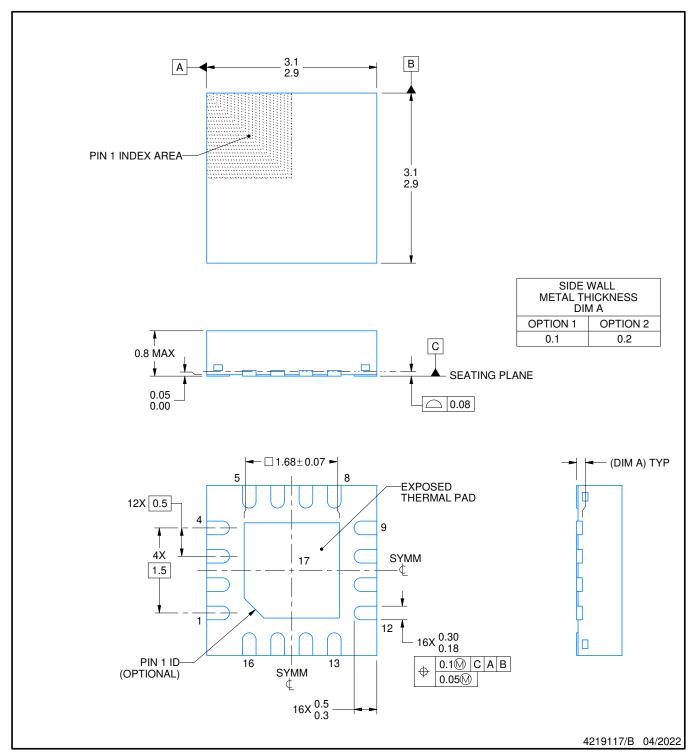
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMUX6111PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TMUX6111RTER	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TMUX6112PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TMUX6112RTER	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TMUX6113PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TMUX6113RTER	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

www.ti.com 3-Jun-2022


*All dimensions are nominal

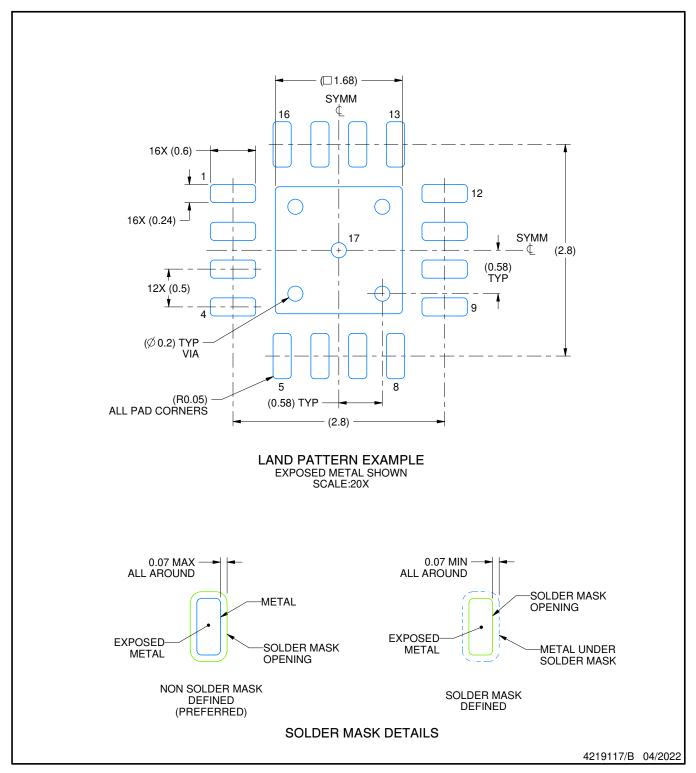
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TMUX6111PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
TMUX6111RTER	WQFN	RTE	16	3000	367.0	367.0	35.0
TMUX6112PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
TMUX6112RTER	WQFN	RTE	16	3000	367.0	367.0	35.0
TMUX6113PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
TMUX6113RTER	WQFN	RTE	16	3000	367.0	367.0	35.0

3 x 3, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

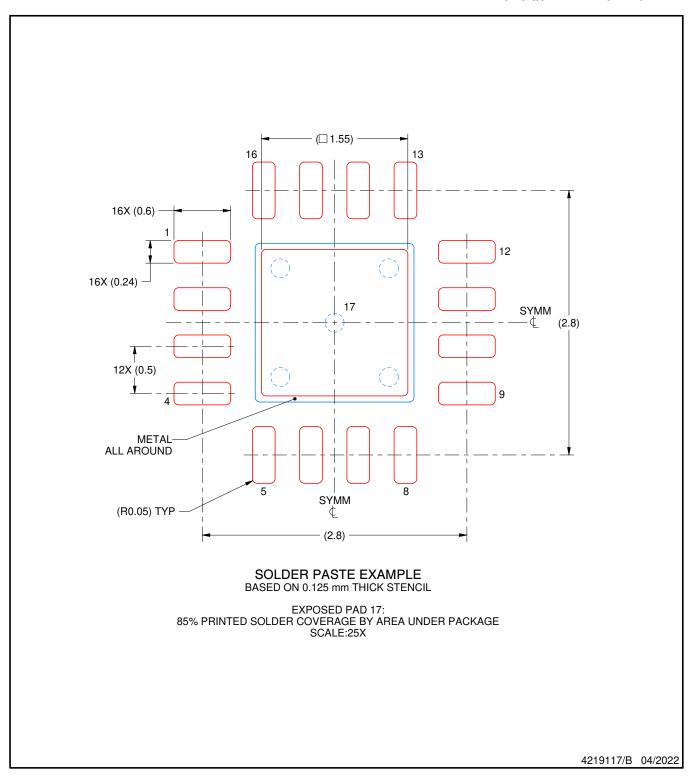
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

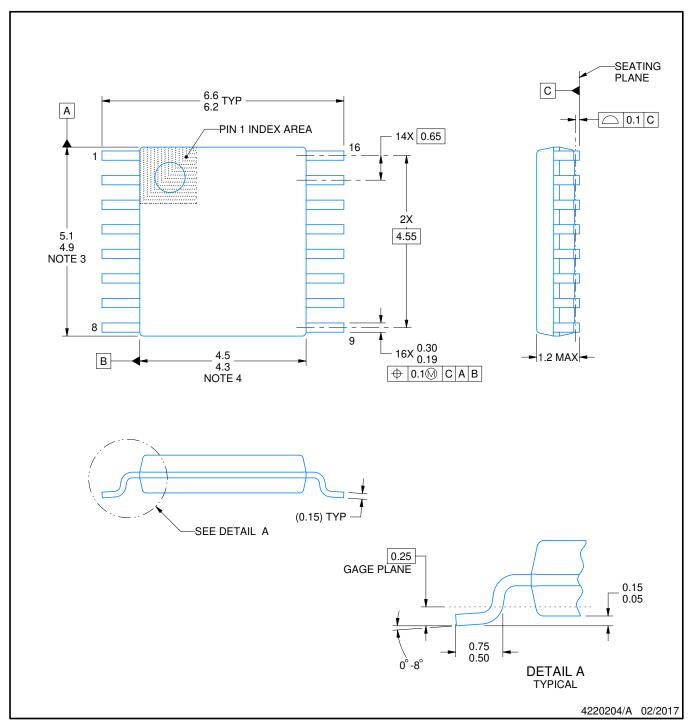
PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

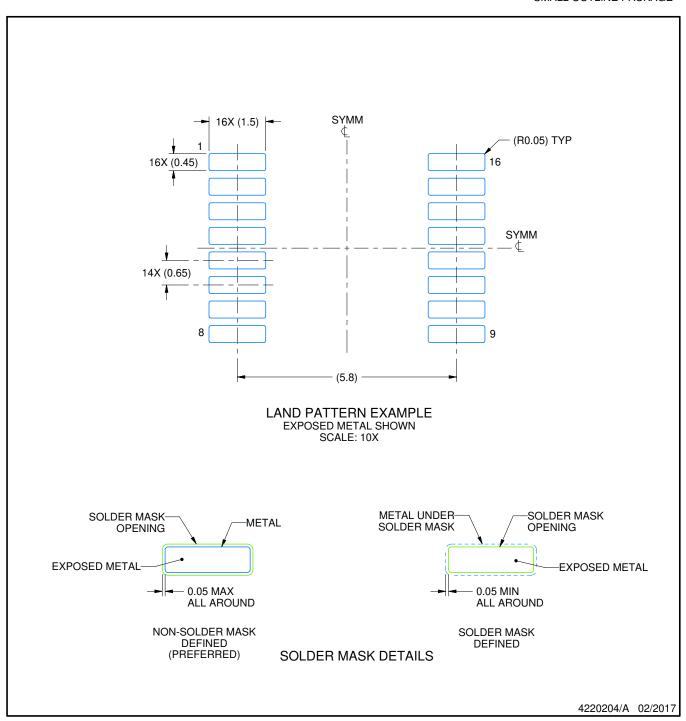
PLASTIC QUAD FLATPACK - NO LEAD


NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

SMALL OUTLINE PACKAGE

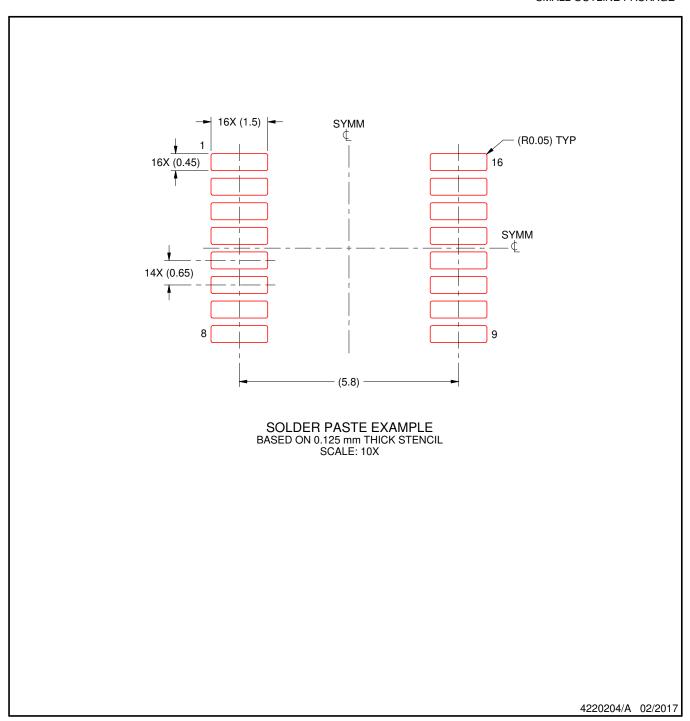
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated