

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

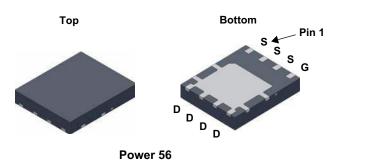
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

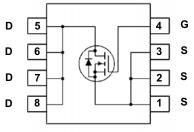
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an ad experson

N-Channel PowerTrench[®] MOSFET **30 V, 21 A, 8.5 m**Ω

Features

- Max r_{DS(on)} = 8.5 mΩ at V_{GS} = 10 V, I_D = 13.5 A
- Max $r_{DS(on)}$ = 13.0 m Ω at V_{GS} = 4.5 V, I_D = 10.9 A
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- MSL1 robust package design
- RoHS Compliant




General Description

The FDMS8880 has been designed to minimize losses in power conversion application. Advancements in both silicon and package technologies have been combined to offer the lowest r_{DS(on)} while maintaining excellent switching performance.

Applications

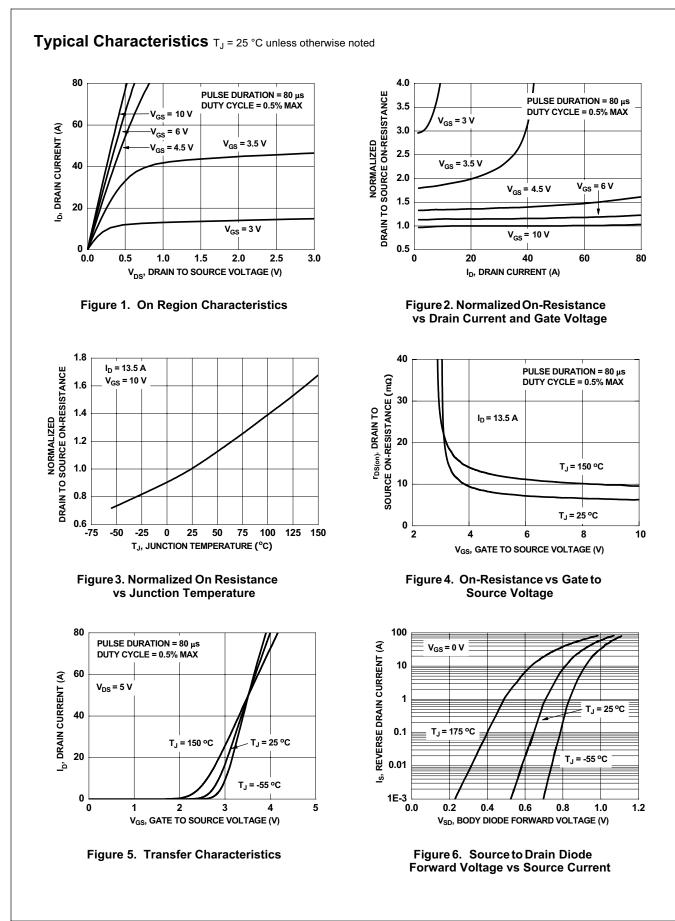
- Synchronous Buck for Notebook Vcore and Server
- Notebook Battery Pack
- Load Switch

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

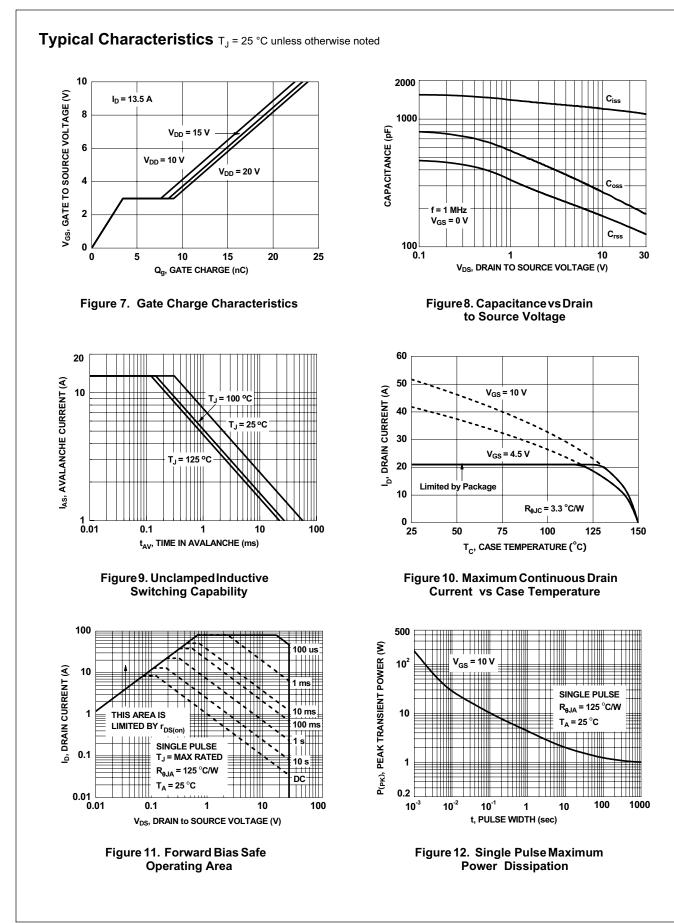
Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage			±20	V	
	Drain Current -Continuous (Package limited)	T _C = 25 °C		21		
	-Continuous (Silicon limited)	T _C = 25 °C		51		
I _D	-Continuous	T _A = 25 °C	(Note 1a)	13.5	— A	
	-Pulsed			80		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	60	mJ	
D	Power Dissipation	T _C = 25 °C		42		
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5	W	
T _J , T _{STG}	Operating and Storage Junction Temperature R	ange		-55 to +150	°C	

Thermal Characteristics

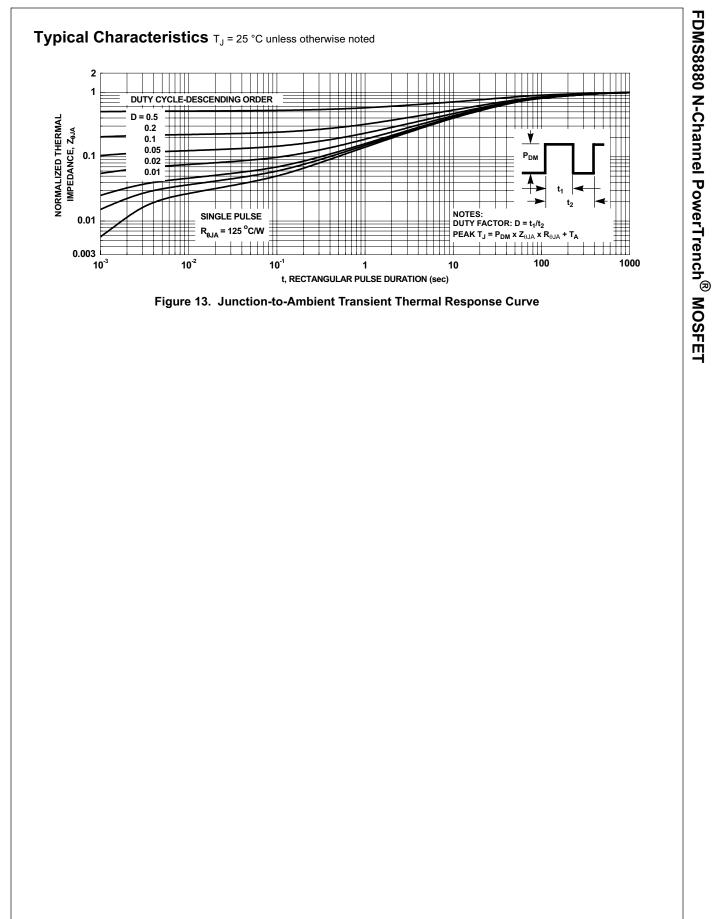
R _{0JC}	Thermal Resistance, Junction to Case	3.3	°C/W]
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a	50	0.00	

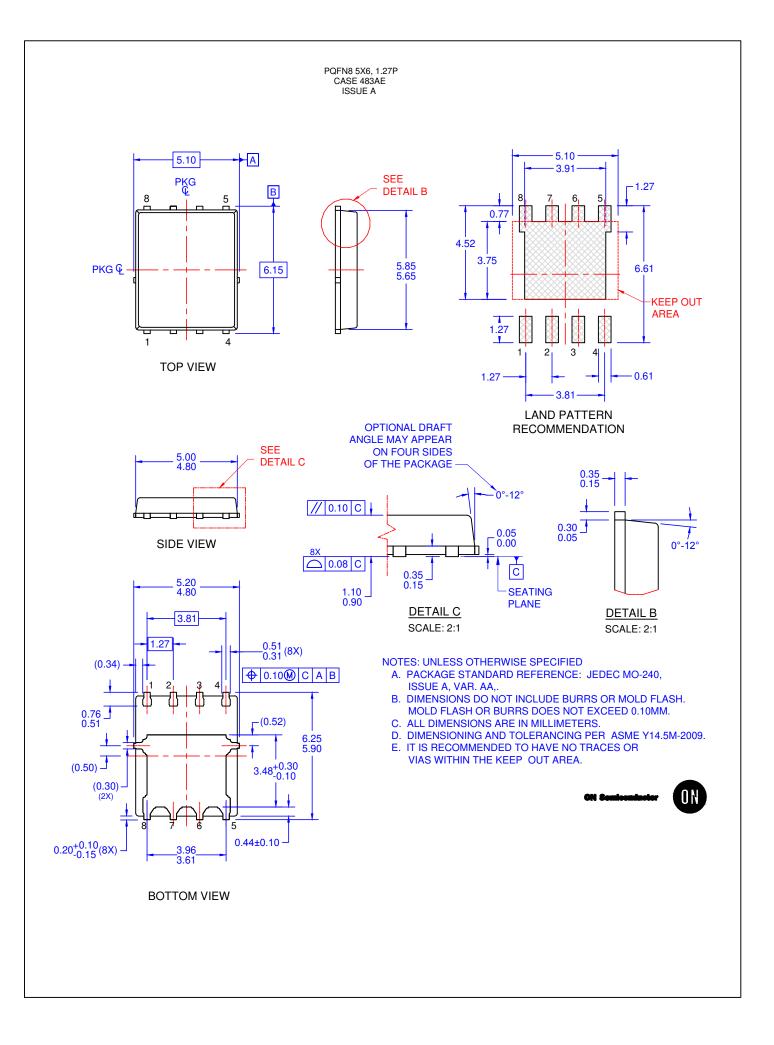

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS8880	FDMS8880	Power 56	13 "	12 mm	3000 units


Off Chara BV _{DSS} ΔBV _{DSS} ΔT _J I _{DSS}	cteristics	Test Conditions	Min	Тур	Max	Units
$\frac{\Delta BV_{DS}}{\Delta T_{J}}$						
$\frac{\Delta BV_{DS}}{\Delta T_{J}}$	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	30			V
ΔT_J	Breakdown Voltage Temperature			10		
I _{DSS}	Coefficient	I_D = 250 $\mu A,$ referenced to 25 °C		19		mV/°C
	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μΑ
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±20 V, V_{DS} = 0 V			±100	nA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$	1.2	1.9	2.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{,l}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		-7		mV/°C
	· ·	V _{GS} = 10 V, I _D = 13.5 A		6.3	8.5	
DS(on)	Static Drain to Source On Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 10.9 \text{ A}$		9.0	13.0	mΩ
		V _{GS} = 10 V, I _D = 13.5 A, T _J = 125 °C		9.6	13.0	1
9 _{FS}	Forward Transconductance	V _{DD} = 10 V, I _D = 13.5 A		78		S
Dvnamic	Characteristics			1		
C _{iss}	Input Capacitance			1195	1585	pF
C _{oss}	Output Capacitance	— V _{DS} = 15 V, V _{GS} = 0 V,		234	315	pF
	Reverse Transfer Capacitance	f = 1 MHz		161	245	pF
Cree	noronoo manonon oapaonanoo					۳·
۲ _g	Gate Resistance Characteristics			0.9	1.8	Ω
R _g Switching t _{d(on)}	J Characteristics Turn-On Delay Time			9	18	ns
t _{d(on)}	J Characteristics Turn-On Delay Time Rise Time	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 13.5 \text{ A},$ $V_{CS} = 10 \text{ V}, \text{ R}_{CEN} = 6 \Omega$		9 6	18 12	ns ns
R _g Switching t _{d(on)} t _r	J Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time	V_{DD} = 15 V, I _D = 13.5 A, V _{GS} = 10 V, R _{GEN} = 6 Ω		9 6 23	18 12 27	ns ns ns
R _g Switching t _{d(on)} t _f	y Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		9 6 23 4	18 12 27 10	ns ns ns ns
Rg Switching t _r t _{d(off)} t _f Qg	y Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$		9 6 23	18 12 27	ns ns ns
Rg Switching t _{d(on)} t _r t _{d(off)} t _f Qg Qg	y Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge	V_{GS} = 10 V, R_{GEN} = 6 Ω		9 6 23 4 23	18 12 27 10 33	ns ns ns ns nC
Rg Switching t _d (on) t _r Qg Qg Qg Qgs	y Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 5 \text{ V}$ $V_{DD} = 15 \text{ V},$		9 6 23 4 23 13	18 12 27 10 33	ns ns ns nC nC
Rg Switching t _{d(on)} t _r Qg Qg Qg Qgs Qgd	y Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 5 \text{ V}$ $V_{DD} = 15 \text{ V},$		9 6 23 4 23 13 3.5	18 12 27 10 33	ns ns ns nC nC nC
R _g Switching t _{d(on)} t _r Q _g Q _g Q _{gs} Q _{gs} Q _{gd} Drain-Sou	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 5 \text{ V}$ $V_{DD} = 15 \text{ V},$ $I_{D} = 13.5 \text{ A}$		9 6 23 4 23 13 3.5	18 12 27 10 33	ns ns ns nC nC nC
R _g Switching t _{d(on)} t _r Q _g Q _g Q _{gs} Q _{gs} Q _{gd} Drain-Sou	y Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 5 \text{ V}$ $V_{DD} = 15 \text{ V},$ $I_{D} = 13.5 \text{ A}$		9 6 23 4 23 13 3.5 5.1	18 12 27 10 33 18	ns ns ns nC nC nC
R _g Switching t _{d(on)} t _r Qg Qg Qgs Qgs Qgd	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 5 \text{ V}$ $I_D = 13.5 \text{ A}$ $V_{GS} = 0 \text{ V}, \text{ I}_S = 2.1 \text{ A}$ (Note 2)		9 6 23 4 23 13 3.5 5.1 0.74	18 12 27 10 33 18 	ns ns ns nC nC nC vV

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%. 3.Starting T_J = 25 °C, L = 0.3 mH, I_{AS} = 19 A, V_{DD} = 27 V, V_{GS} = 10 V.


00000



©2009 Fairchild Semiconductor Corporation FDMS8880 Rev.C2

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC