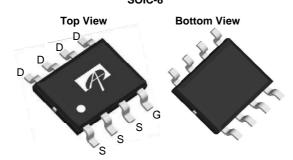


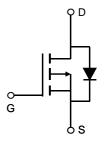
### A04407A 30V P-Channel MOSFET

#### **General Description**

The AO4407A uses advanced trench technology to provide excellent  $R_{DS(ON)}$ , and ultra-low low gate charge with a 25V gate rating. This device is suitable for use as a load switch or in PWM applications.

\* RoHS and Halogen-Free Complaint


#### **Product Summary**


$$\begin{split} &V_{DS} = -30V \\ &I_{D} = -12A \qquad (V_{GS} = -20V) \\ &R_{DS(ON)} < 11 m\Omega \ (V_{GS} = -20V) \\ &R_{DS(ON)} < 13 m\Omega \ (V_{GS} = -10V) \\ &R_{DS(ON)} < 17 m\Omega \ (V_{GS} = -6V) \end{split}$$

100% UIS Tested 100% Rg Tested









| 7 boolate maximum raunge 1 <sub>A</sub> =20 0 amood outer moo noted |                             |                                   |            |       |  |  |  |  |  |  |
|---------------------------------------------------------------------|-----------------------------|-----------------------------------|------------|-------|--|--|--|--|--|--|
| Parameter                                                           |                             | Symbol                            | Maximum    | Units |  |  |  |  |  |  |
| Drain-Source Voltage                                                | Э                           | V <sub>DS</sub>                   | -30        | V     |  |  |  |  |  |  |
| Gate-Source Voltage                                                 | )                           | $V_{GS}$                          | ±25        | V     |  |  |  |  |  |  |
| Continuous Drain T <sub>A</sub> =25℃                                |                             |                                   | -12        |       |  |  |  |  |  |  |
| Current <sup>A</sup>                                                | T <sub>A</sub> =70℃         | I <sub>D</sub>                    | -10        | Α     |  |  |  |  |  |  |
| Pulsed Drain Current <sup>B</sup>                                   |                             | I <sub>DM</sub>                   | -60        | A     |  |  |  |  |  |  |
| Avalanche Current G                                                 |                             | I <sub>AR</sub>                   | -26        | •     |  |  |  |  |  |  |
| Repetitive avalanche                                                | energy L=0.3mH <sup>G</sup> | E <sub>AR</sub>                   | 101        | mJ    |  |  |  |  |  |  |
| Danier Diagin ation A                                               | T <sub>A</sub> =25℃         | $-P_{D}$                          | 3.1        | W     |  |  |  |  |  |  |
| Power Dissipation <sup>A</sup>                                      | T <sub>A</sub> =70℃         | T D                               | 2.0        | V V   |  |  |  |  |  |  |
| Junction and Storage                                                | Temperature Range           | T <sub>J</sub> , T <sub>STG</sub> | -55 to 150 | C     |  |  |  |  |  |  |

| Thermal Characteristics               |              |                 |     |       |     |  |  |  |  |  |  |  |
|---------------------------------------|--------------|-----------------|-----|-------|-----|--|--|--|--|--|--|--|
| Parameter                             | Symbol       | Тур             | Max | Units |     |  |  |  |  |  |  |  |
| Maximum Junction-to-Ambient A         | t ≤ 10s      | D               | 32  | 40    | ℃/W |  |  |  |  |  |  |  |
| Maximum Junction-to-Ambient A         | Steady State | $R_{\theta JA}$ | 60  | 75    | ℃/W |  |  |  |  |  |  |  |
| Maximum Junction-to-Lead <sup>C</sup> | Steady State | $R_{	hetaJL}$   | 17  | 24    | ℃/W |  |  |  |  |  |  |  |

Rev.11.0 June 2013 www.aosmd.com

#### Electrical Characteristics (T<sub>J</sub>=25℃ unless otherwise noted)

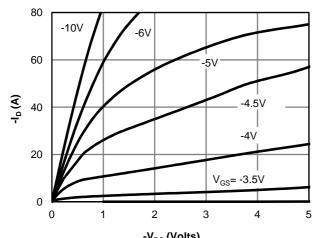
| Symbol              | Parameter                           | Conditions                                             | Min  | Тур  | Max  | Units |
|---------------------|-------------------------------------|--------------------------------------------------------|------|------|------|-------|
| STATIC F            | PARAMETERS                          |                                                        |      |      |      |       |
| BV <sub>DSS</sub>   | Drain-Source Breakdown Voltage      | $I_D = -250 \mu A, V_{GS} = 0 V$                       | -30  |      |      | V     |
| I <sub>DSS</sub>    | Zero Gate Voltage Drain Current     | $V_{DS} = -30V, V_{GS} = 0V$                           |      |      | -1   | μА    |
| DSS                 | Zelo Gate Voltage Dialii Current    | T <sub>J</sub> = 55℃                                   |      |      | -5   | μΑ    |
| I <sub>GSS</sub>    | Gate-Body leakage current           | $V_{DS} = 0V, V_{GS} = \pm 25V$                        |      |      | ±100 | nA    |
| $V_{GS(th)}$        | Gate Threshold Voltage              | $V_{DS} = V_{GS} I_D = -250\mu A$                      | -1.7 | -2.3 | -3   | V     |
| $I_{D(ON)}$         | On state drain current              | $V_{GS} = -10V, V_{DS} = -5V$                          | -60  |      |      | Α     |
|                     |                                     | V <sub>GS</sub> = -20V, I <sub>D</sub> = -12A          |      | 8.5  | 11   |       |
| R <sub>DS(ON)</sub> | Static Drain-Source On-Resistance   | T <sub>J</sub> =125℃                                   |      | 11.5 | 15   | mΩ    |
| DS(ON)              | Static Dialif-Source Off-Resistance | $V_{GS} = -10V, I_D = -12A$                            |      | 10   | 13   | 11122 |
|                     |                                     | $V_{GS} = -6V, I_D = -10A$                             |      | 12.7 | 17   |       |
| g <sub>FS</sub>     | Forward Transconductance            | $V_{DS} = -5V, I_{D} = -10A$                           |      | 21   |      | S     |
| $V_{SD}$            | Diode Forward Voltage               | $I_S = -1A, V_{GS} = 0V$                               |      | -0.7 | -1   | V     |
| Is                  | Maximum Body-Diode Continuous Curr  | ent                                                    |      |      | -3   | Α     |
| DYNAMIC             | PARAMETERS                          |                                                        |      |      |      |       |
| $C_{\text{iss}}$    | Input Capacitance                   |                                                        |      | 2060 | 2600 | pF    |
| C <sub>oss</sub>    | Output Capacitance                  | $V_{GS}$ =0V, $V_{DS}$ =-15V, f=1MHz                   |      | 370  |      | pF    |
| C <sub>rss</sub>    | Reverse Transfer Capacitance        |                                                        |      | 295  |      | pF    |
| $R_g$               | Gate resistance                     | $V_{GS}$ =0V, $V_{DS}$ =0V, f=1MHz                     |      | 2.4  | 3.6  | Ω     |
| SWITCHI             | NG PARAMETERS                       |                                                        |      |      |      |       |
| $Q_g$               | Total Gate Charge                   |                                                        |      | 30   | 39   | nC    |
| $Q_{gs}$            | Gate Source Charge                  | $V_{GS}$ =-10V, $V_{DS}$ =-15V, $I_{D}$ =-12A          |      | 4.6  |      | nC    |
| $Q_{gd}$            | Gate Drain Charge                   | ]                                                      |      | 10   |      | nC    |
| t <sub>D(on)</sub>  | Turn-On DelayTime                   |                                                        |      | 11   |      | ns    |
| t <sub>r</sub>      | Turn-On Rise Time                   | $V_{GS}$ =-10V, $V_{DS}$ =-15V, $R_L$ =1.25 $\Omega$ , |      | 9.4  |      | ns    |
| t <sub>D(off)</sub> | Turn-Off DelayTime                  | $R_{GEN}=3\Omega$                                      |      | 24   |      | ns    |
| t <sub>f</sub>      | Turn-Off Fall Time                  | <u> </u>                                               |      | 12   |      | ns    |
| t <sub>rr</sub>     | Body Diode Reverse Recovery Time    | I <sub>F</sub> =-12A, dI/dt=100A/μs                    | _    | 30   | 40   | ns    |
| Q <sub>rr</sub>     | Body Diode Reverse Recovery Charge  | I <sub>F</sub> =-12A, dI/dt=100A/μs                    |      | 22   |      | nC    |

A: The value of R  $_{\theta,JA}$  is measured with the device mounted on 1 in  $^2$  FR-4 board with 2oz. Copper, in a still air environment with T  $_A$  = 25 $^\circ$  C. The value in any given application depends on the user's specific board design. The current rating is based on the t  $\leq$  10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

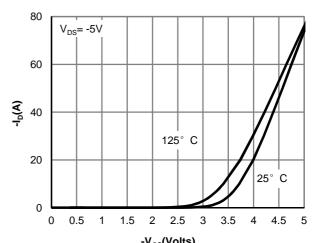
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Rev.11.0 June 2013 www.aosmd.com

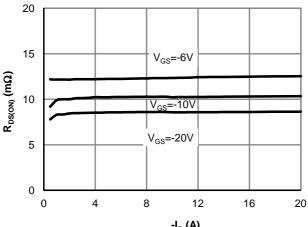
C. The R  $_{\theta JA}$  is the sum of the thermal impedence from junction to lead R  $_{\theta JL}$  and lead to ambient.


D. The static characteristics in Figures 1 to 6 are obtained using < 300 $\mu$ s pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in  $^2$  FR-4 board with 2oz. Copper, in a still air environment with T<sub>A</sub>=25 $^{\circ}$  C. The SOA curve provides a single pulse rating.


F. The current rating is based on the  $t \leqslant 10\text{s}$  thermal resistance rating.

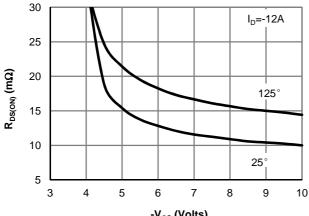
G. E<sub>AR</sub> and I<sub>AR</sub> ratings are based on low frequency and duty cycles to keep T<sub>i</sub>=25C.


#### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



-V<sub>DS</sub> (Volts) Figure 1: On-Region Characteristics




-V<sub>GS</sub>(Volts)
Figure 2: Transfer Characteristics



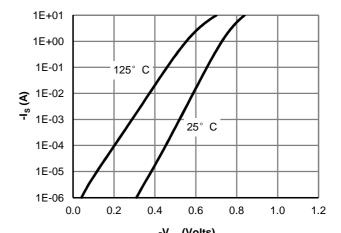

-I<sub>D</sub> (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage



Figure 4: On-Resistance vs. Junction Temperature



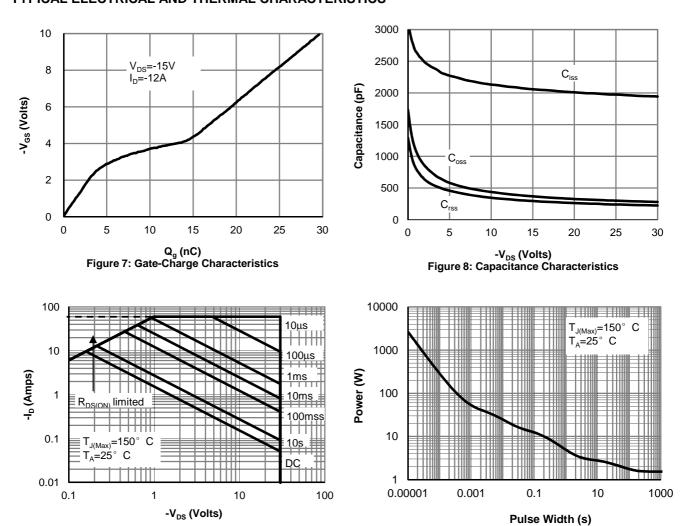
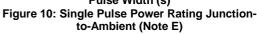
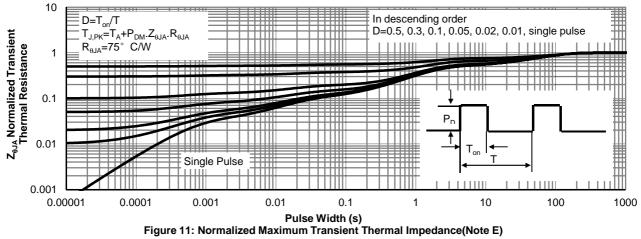
-V<sub>GS</sub> (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage

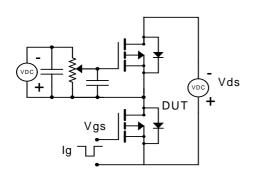


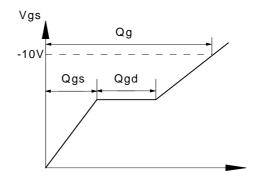
-V<sub>SD</sub> (Volts) Figure 6: Body-Diode Characteristics

Rev.11.0 June 2013 www.aosmd.com

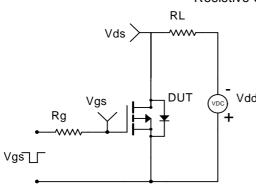
#### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

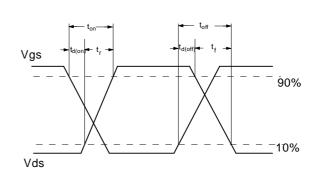






Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

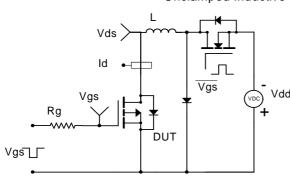


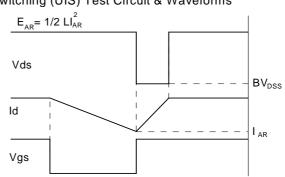




Rev.11.0 June 2013 www.aosmd.com

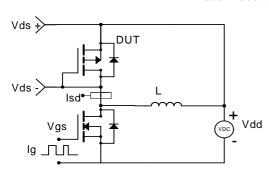

#### Gate Charge Test Circuit & Waveform

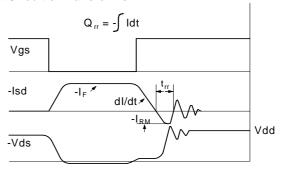






#### Resistive Switching Test Circuit & Waveforms





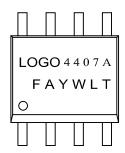


#### Unclamped Inductive Switching (UIS) Test Circuit & Waveforms





#### Diode Recovery Test Circuit & Waveforms






Rev.11.0 June 2013 www.aosmd.com



| Document No. | PD-00405                    |
|--------------|-----------------------------|
| Version      | В                           |
| Title        | AO4407A Marking Description |

#### SO-8 PACKAGE MARKING DESCRIPTION



Green product

NOTE:

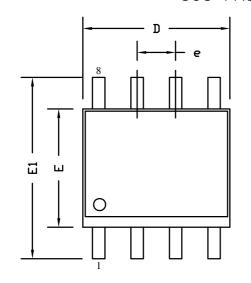
LOGO - AOS Logo

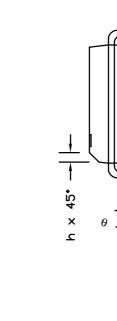
4407A - Part number codeF&A - Assembly location code

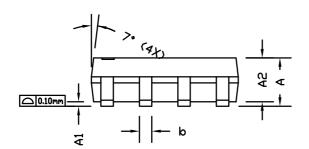
Y - Year code

W - Week code

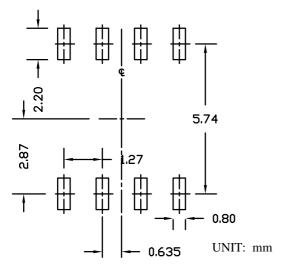
L&T - Assembly lot code


| PART NO. | DESCRIPTION   | CODE  |
|----------|---------------|-------|
| AO4407A  | Green product | 4407A |
| AO4407AL | Green product | 4407A |





| Document No. | PO-00004 |
|--------------|----------|
| Version      | I        |

0.25mm


#### SO8 PACKAGE OUTLINE





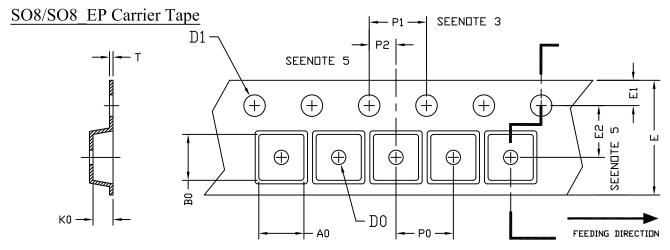


#### RECOMMENDED LAND PATTERN



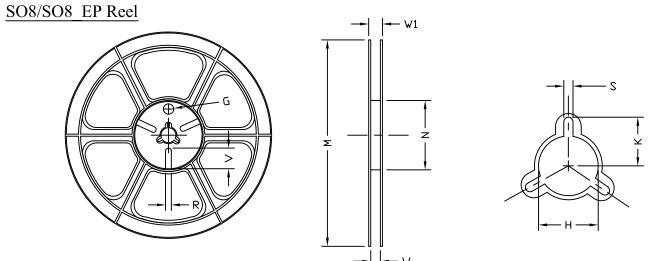
| SYMBOLS    | DIMENSIO | NS IN MILL | IMETERS | DIME  | NSIONS IN IN | ICHES |
|------------|----------|------------|---------|-------|--------------|-------|
| 3 I WIBOLS | MIN      | NOM        | MAX     | MIN   | NOM          | MAX   |
| A          | 1.35     | 1.65       | 1.75    | 0.053 | 0.065        | 0.069 |
| A1         | 0.10     | 0.15       | 0.25    | 0.004 | 0.006        | 0.010 |
| A2         | 1.25     | 1.50       | 1.65    | 0.049 | 0.059        | 0.065 |
| b          | 0.31     | 0.41       | 0.51    | 0.012 | 0.016        | 0.020 |
| С          | 0.17     | 0.20       | 0.25    | 0.007 | 0.008        | 0.010 |
| D          | 4.80     | 4.90       | 5.00    | 0.189 | 0.193        | 0.197 |
| Е          | 3.80     | 3.90       | 4.00    | 0.150 | 0.154        | 0.157 |
| e          | 1        | .27 BSC    |         | (     | 0.050 BSC    |       |
| E1         | 5.80     | 6.00       | 6.20    | 0.228 | 0.236        | 0.244 |
| h          | 0.25     | 0.30       | 0.50    | 0.010 | 0.012        | 0.020 |
| L          | 0.40     | 0.69       | 1.27    | 0.016 | 0.027        | 0.050 |
| θ          | 0°       | 4°         | 8°      | 0°    | 4°           | 8°    |

#### NOTE


- 1. ALL DIMENSIONS ARE IN MILLMETERS.
- 2. DIMENSIONS ARE INCLUSIVE OF PLATING.
- 3. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS. MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH.
- 4. DIMENSION L IS MEASURED IN GAUGE PLANE.
- 5. CONTROLLING DIMENSION IS MILLIMETER.

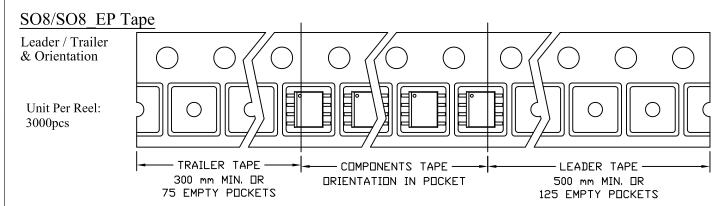
CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

# ALPHA SEMICOND


## ALPHA & OMEGA SO8/SO8\_EP Tape and Reel Data

SEMICONDUCTOR, LTD.




UNIT: MM

| PACKAGE | A0    | В0    | K0    | D0    | D1    | E     | E1    | E2    | P0    | P1    | P2    | Т     |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| SD-8    | 6.40  | 5.20  | 2.10  | 1.60  | 1.50  | 12.00 | 1.75  | 5.50  | 8.00  | 4.00  | 2.00  | 0.25  |
| (12 mm) | ±0.10 | ±0.10 | ±0.10 | ±0.10 | +0.10 | ±0.30 | ±0.10 | ±0.05 | ±0.10 | ±0.10 | ±0.05 | ±0.05 |



UNIT: MM

| TAPE SIZE | REEL SIZE | М                | N               | >              | W1             | Ι                        | К     | S             | G | R | ٧ |
|-----------|-----------|------------------|-----------------|----------------|----------------|--------------------------|-------|---------------|---|---|---|
| 12 mm     | ø330      | ø330.00<br>±0.50 | ø97.00<br>±0.10 | 13.00<br>±0.30 | 17.40<br>±1.00 | ø13.00<br>+0.50<br>-0.20 | 10.60 | 2.00<br>±0.50 |   |   |   |





## AOS Semiconductor Product Reliability Report

AO4407A, rev A

**Plastic Encapsulated Device** 

ALPHA & OMEGA Semiconductor, Inc <a href="https://www.aosmd.com">www.aosmd.com</a>



This AOS product reliability report summarizes the qualification result for AO4407A. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO4407A passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

#### **Table of Contents:**

- I. Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation

#### I. Product Description:

The AO4407A uses advanced trench technology to provide excellent R<sub>DS(ON)</sub>, and ultra-low low gate charge with a 25V gate rating. This device is suitable for use as a load switch or in PWM applications.

- RoHS Compliant
- Halogen Free

Detailed information refers to datasheet.

#### II. Die / Package Information:

AO4407A

**Process** Standard sub-micron

Low voltage P channel

Package TypeSO8Lead FrameCuDie AttachAg EpoxyBondingCu wire

Mold Material Epoxy resin with silica filler MSL (moisture sensitive level) Level 1 based on J-STD-020

Note \* based on information provided by assembler and mold compound supplier



#### III. Result of Reliability Stress for AO4407A

| Test Item            | Test Condition                                               | Time<br>Point                 | Lot<br>Attribution   | Total<br>Sample<br>size | Number of Failures | Standard        |
|----------------------|--------------------------------------------------------------|-------------------------------|----------------------|-------------------------|--------------------|-----------------|
| MSL<br>Precondition  | 168hr 85℃<br>/85%RH +3 cycle<br>reflow@260℃                  | -                             | 29 lots              | 3575pcs                 | 0                  | JESD22-<br>A113 |
| HTGB                 | Temp = 150 °c,<br>Vgs=100% of<br>Vgsmax                      | 168hrs<br>500 hrs<br>1000 hrs | 4 lots               | 308pcs<br>77pcs / lot   | 0                  | JESD22-<br>A108 |
| HTRB                 | Temp = 150 °c,<br>Vds=80% of<br>Vdsmax                       | 168hrs<br>500 hrs<br>1000 hrs | 4 lots               | 308pcs<br>77pcs / lot   | 0                  | JESD22-<br>A108 |
| HAST                 | 130 +/- 2°c,<br>85%RH, 33.3 psi,<br>Vgs = 100% of<br>Vgs max | 100 hrs                       | 16 lots (Note A*)    | 880pcs<br>55 pcs / lot  | 0                  | JESD22-<br>A110 |
| Pressure Pot         | 121°c, 29.7psi,<br>RH=100%                                   | 96 hrs                        | 20 lots              | 1100pcs                 | 0                  | JESD22-<br>A102 |
| Temperature<br>Cycle | -65°c to 150°c,<br>air to air                                | 250 / 500<br>cycles           | (Note A*)<br>29 lots | 55 pcs / lot<br>1595pcs | 0                  | JESD22-<br>A104 |
|                      |                                                              |                               | (Note A*)            | 55 pcs / lot            |                    |                 |

**Note A:** The reliability data presents total available generic data up to the published date.

#### IV. Reliability Evaluation

FIT rate (per billion): 6 MTTF = 19828 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AO4407A). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate =  $\text{Chi}^2 \times 10^9 \text{/} [2 \text{ (N) (H) (Af)}] = 1.83 \times 10^9 \text{/} [2x (2x4x77x1000) x258] = 6$ MTTF =  $10^9 \text{/} \text{FIT} = 1.74 \times 10^8 \text{hrs} = 19828 \text{ years}$ 

Chi<sup>2</sup> = Chi Squared Distribution, determined by the number of failures and confidence interval

N = Total Number of units from HTRB and HTGB tests

**H** = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)

Acceleration Factor [Af] = Exp [Ea / k (1/Tj u - 1/Tj s)]

**Acceleration Factor ratio list:** 

|    | 55 deg C | 70 deg C | 85 deg C | 100 deg C | 115 deg C | 130 deg C | 150 deg C |
|----|----------|----------|----------|-----------|-----------|-----------|-----------|
| Af | 258      | 87       | 32       | 13        | 5.64      | 2.59      | 1         |

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

**Tj u** = The use junction temperature in degree (Kelvin), K = C+273.16

 $\mathbf{K} = \text{Boltzmann's constant}, 8.617164 \text{ X } 10^{-5} \text{eV} / \text{K}$