
- Sensitive Gate Triacs
- 8 A RMS, 70 A Peak
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I_{GT} of 5 mA (Quadrant 1)

Pin 2 is in electrical contact with the mounting base.

MDC2ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	TIC225D		400	
Panatitiva neek off state valtage (see Note 1)	TIC225M		600	V
Repetitive peak off-state voltage (see Note 1)	TIC225S	VDRM	700	V
	TIC225N		800	
Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note 2)	I _{T(RMS)}	8	Α	
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see	I _{TSM}	70	Α	
Peak gate current	I _{GM}	±1	Α	
Peak gate power dissipation at (or below) 85°C case temperature (pulse width ≤ 200	P_{GM}	2.2	W	
Average gate power dissipation at (or below) 85°C case temperature (see Note 4)	$P_{G(AV)}$	0.9	W	
Operating case temperature range	T _C	-40 to +110	°C	
Storage temperature range		T _{stg}	-40 to +125	°C
Lead temperature 1.6 mm from case for 10 seconds	T_L	230	°C	

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 200 mA/°C.
 - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
 - 4. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER		TEST CONDITIONS					UNIT
I _{DRM}	Repetitive peak off-state current	$V_D = \text{rated } V_{DRM}$	I _G = 0	T _C = 110°C			±2	mA
		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		2.3	5	
١,	Gate trigger	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-3.8	-20	mA
^I GT	current	$V_{\text{supply}} = -12 \text{ V}^{\dagger}$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-3	-10	IIIA
		$V_{\text{supply}} = -12 \text{ V}^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		6	30	

[†] All voltages are with respect to Main Terminal 1.

PRODUCT INFORMATION

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

	PARAMETER	TEST CONDITIONS				TYP	MAX	UNIT
		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		0.7	2	
V	Gate trigger	$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-0.7	-2	V
V _{GT}	voltage	$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-0.7	-2	v
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		0.8	2	
V _T	On-state voltage	I _T = ±12 A	I _G = 50 mA	(see Note 5)		±1.5	±2.1	V
1	Holding current	$V_{\text{supply}} = +12 \text{ V}\dagger$	I _G = 0	Init' I _T = 100 mA		2.3	20	mA
Iн	riolaling current	$V_{\text{supply}} = -12 \text{ V}\dagger$	$I_G = 0$	Init' $I_T = -100 \text{ mA}$		-1.6	-20	111/4
1	Latching current	V _{supply} = +12 V†	(see Note 6)				30	mA
I _L	Latering current	$V_{\text{supply}} = -12 \text{ V}\dagger$	(See Note o)			-30	ША	
dv/dt	Critical rate of rise of	V _{DRM} = Rated V _{DRM}	I ₂ = 0	T _C = 110°C		±20		V/µs
av/at	off-state voltage	VDRM - Hated VDRM	ig – o	1C = 110 O		120		V /μ3
al/al4	Critical rise of	V DatadV		T _C = 70°C		. 4.5		\//··-
dv/dt _(c)	commutation voltage	$V_{DRM} = Rated V_{DRM}$	I _{TRM} = ± I2 A	(see Figure 6)	±1	±4.5		V/µs

[†] All voltages are with respect to Main Terminal 1.

thermal characteristics

PARAMETER							MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance		4	_	7				2.5	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance								62.5	°C/W

NOTES: 5. This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

^{6.} The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \ \Omega$, $t_{p(g)} = 20 \ \mu s$, $t_r = \le 15 \ ns$, $f = 1 \ kHz$

TYPICAL CHARACTERISTICS

GATE TRIGGER CURRENT vs

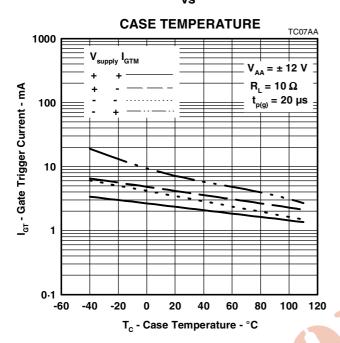


Figure 1.

HOLDING CURRENT

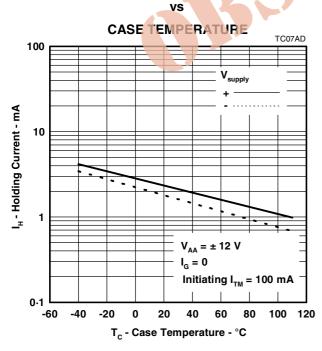
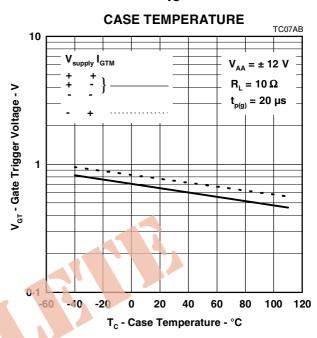
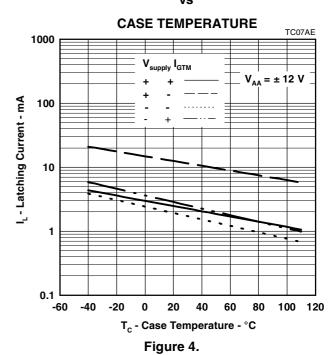
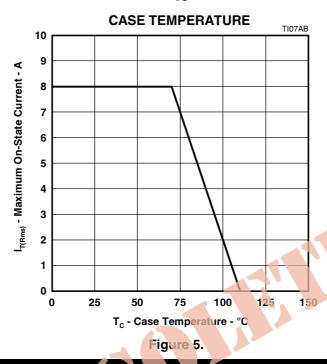


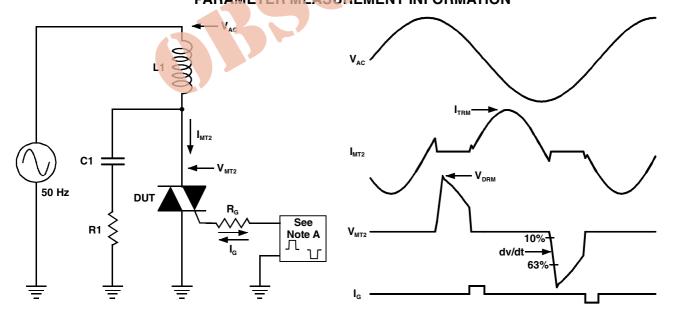
Figure 3.

GATE TRIGGER VOLTAGE vs


Figure 2.

LATCHING CURRENT vs



THERMAL INFORMATION

MAXIMUM RMS ON-STATE CURRENT vs

PARAMETER MEASUREMENT INFORMATION

NOTE A: The gate-current pulse is furnished by a trigger circuit which presents essentially an open circuit between pulses. The pulse is timed so that the off-state-voltage duration is approximately 800 µs.

PMC2AA

Figure 6.