

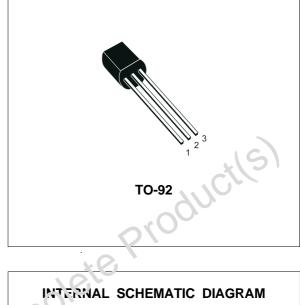
STBV68

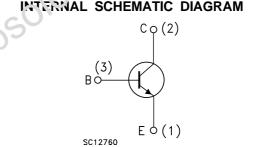
HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- MEDIUM VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED

APPLICATIONS:

 ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING


DESCRIPTION


The device is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and medium voltage capability.

It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA.

The STBV68 is designed for use in compact fluorescent lamp application.

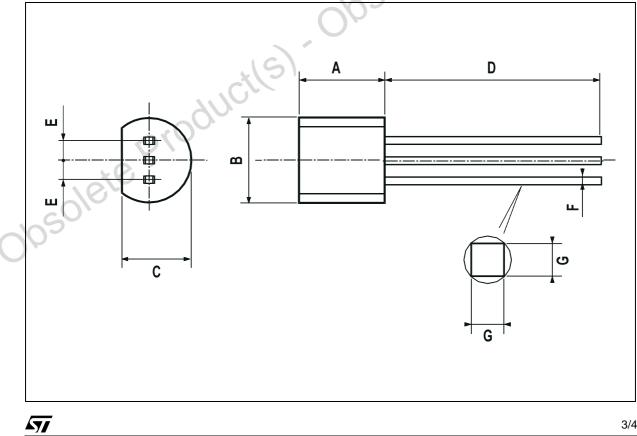
oductls

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{CE} R	Collector-Emitter Voltage (V _{BE} = 0)	600	V	
Yezo	Collector-Emitter Voltage (I _B = 0)	400	V	
VEBO	Emitter-Base Voltage (Ic = 0)	9	V	
lc	Collector Current	0.6	Α	
Ісм	Collector Peak Current (tp < 5 ms)	1.2	Α	
Ι _Β	Base Current	0.3	A	
I _{BM}	Base Peak Current (t _p < 5 ms)	0.6	Α	
Ptot	Total Dissipation at T _{amb} = 25 °C	0.9	W	
T _{stg}	Storage Temperature	-65 to 150	°C	
T _j Max. Operating Junction Temperature		150	°C	

THERMAL DATA

R _{thj-amb} Thermal Resistance Junction-ambient	Max	140	°C/W	
--	-----	-----	------	--


ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Con	ditions	Min.	Тур.	Max.	Uni
I _{CEV}	Collector Cut-off Current (V _{BE} = -1.5 V)	V _{CE} = 600 V				250	μA
I _{EBO}	Emitter Cut-off Current $(I_C = 0)$	V _{BE} = 9 V				1	mA
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage $(I_B = 0)$	I _C = 1 mA	L = 25mH	400			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_{C} = 0.1 A$ $I_{C} = 0.15 A$ $I_{C} = 0.25 A$	I _B = 20 mA I _B = 50 mA I _B = 100 mA		0.35 0.8 3.0	0.75 1.5 5	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	$I_{\rm C} = 0.1 \text{ A}$ $I_{\rm C} = 0.15 \text{ A}$	I _B = 20 mA I _B = 50 mA			1.0 1.2	V V
h _{FE} *	DC Current Gain	I _C = 0.1 A I _C = 0.25 A	V _{CE} = 5 V V _{CE} = 10 V	7 3		15 6	
t _f	INDUCTIVE LOAD Fall Time	$I_{C} = 0.1 \text{ A}$ $I_{B1} = -I_{B2} = 20 \text{ mA}$	V _{clamp} = 300 V L =3 mH	2	0.3		μs
Pulsed: Pulse	e duration = 300μs, duty cycle =	1.5 %	osolete				
Pulsed: Pulse	e duration = 300μs, duty cycle =	1.5 %	psolete				
Pulsed: Pulse	e duration = 300μs, duty cycle =		osolete				
Pulsed: Pulse	e duration = 300μs, duty cycle =		osolete				
Pulsed: Pulse	INDUCTIVE LOAD Fall Time		osolete				

57

DIM.	mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.58		5.33	0.180		0.210
В	4.45		5.2	0.175		0.204
С	3.2		4.2	0.126		0.165
D	12.7			0.500		*15
E		1.27			0.050	C .
F	0.4		0.51	0.016	2105	0.020
G	0.35			0.14		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third paties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to charter. This publication supersees and replaces and

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

4/4

57