

HIGH EFFICIENCY RED MAN8900 SERIES

DESCRIPTION

The MAN8900 Series is a family of large digits 0.8-inches in height. This series combines high brightness, large size, good aesthetics and is designed to be used where accurate readable displays need to be viewed over a distance. All models use right hand decimal points.

FEATURES

- High performance nitrogen-doped GaAsP on GaP
- Large, easy to read, digits
- Common anode or common cathode models
- Fast switching excellent for multiplexing
- Low power consumption
- Bold solid segments that are highly legible
- Solid state reliability long operation life
- Rugged plastic construction
- Directly compatible with integrated circuits
- High brightness with high contrast
- Categorized for Luminous Intensity (See Note 6)
- Wide angle viewing...150°
- Low forward voltage
- Red face and Red segment for good ON or OFF contrast
- These devices have a Red face and Red segments

APPLICATIONS

For industrial and consumer applications such as:

- Digital readout displays
- Instrument panels
- Point of sale equipment
- Digital clocks
- TV and radios

MODEL N	IUMBERS		
PART NUMBER	COLOR	DESCRIPTION	PACKAGE DRAWING
MAN8910 MAN8940	High Efficiency Red High Efficiency Red	Common Anode; Right Hand Decimal Common Cathode; Right Hand Decimal	1

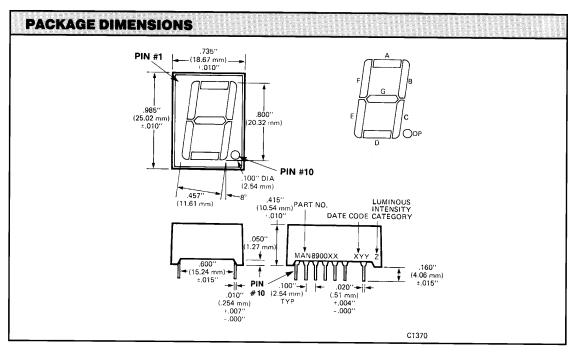
RECOMMENDED FILTERS

For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:

Panelgraphic Scarlet 65 Homalite 100-1670

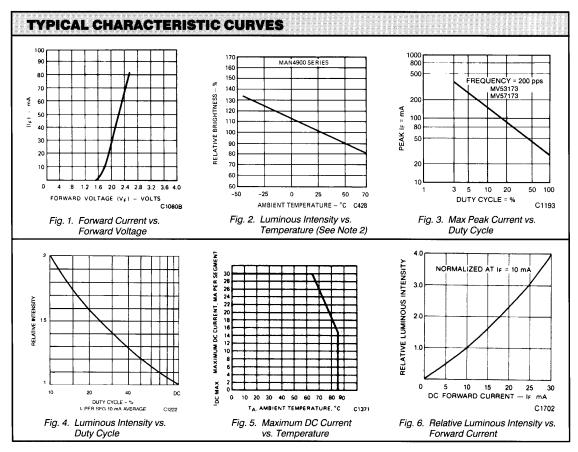
ELECTRO-OPTICAL CHA (25°C Free Air Temperature Unless					
	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Luminous Intensity, digit average (See Note 1)	600	2200		μ cd	I _F =10 mA
Peak emission wavelength		635		nm	···
Spectral line half width		40		nm	
Forward voltage Segment Decimal point			2.5 2.5	V	I _F =20 mA I _F =20 mA
Dynamic resistance Segment Decimal point		26 26		Ω	I _F =20 mA I _F =20 mA
Capacitance Segment Decimal point		35 35		pF pF	V=0 V=0
Reverse current Segment Decimal point			100 100	μA μA	V _R =3.0 V V _R =3.0 V
Luminous Intensity Ratio I _L (segment-to-segment)			2:1	_	I _F =10 mA

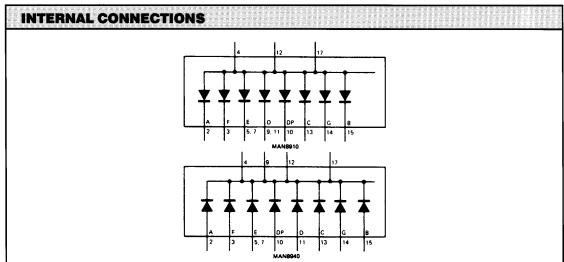
Power dissipation at 25°C ambient. Derate linearly from 50°C	
Derate linearly from 50°C	
Storage and operating temperature	40°C to +85°C
Continuous forward current	
Total Per segment. Decimal point.	
Per segment	
Decimal point	
Reverse voltage	
Per segment	6.0 \
Decimal point	60\
Soldering time at 260°C (See Note 4)	5 800


TYPICAL THERMAL CHARACTERISTICS	
Thermal resistance junction to free air Φ _{JA}	160°C/W
Wavelength temperature coefficient (case temperature)	1.0Å/°C
Forward voltage temperature coefficient	−2.0 mV/°C

NOTES

- 1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total number of segments. Intensity will not vary more than ±33.3% between all segments within a digit.


 2. The curve in Figure 3 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating temperature
- 3. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140°C.
- 4. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.
 5. All displays are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part number.



ELECTRICAL CONNECTIONS				
	MAN8910	MAN8940		
	Digit	Digit		
	Common Anode	Common Cathode		
PIN#	Package Dimensions	Package Dimensions		
1	No Connection	No Connection		
2	A Cathode	A Anode		
3	F Cathode	F Anode		
4	Common Anode	Common Cathode		
5	E Cathode	E Anode		
6		_		
7	E Cathode	E Anode		
8				
9	D Cathode	Common Cathode		
10	DP Cathode	DP Anode		
11	D Cathode	D Anode		
12	Common Anode	Common Cathode		
13	C Cathode	C Anode		
14	G Cathode	G Anode		
15	B Cathode	B Anode		
16				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.