

Typical Applications

The HMC-C002 Wideband LNA is ideal for:

- Telecom Infrastructure
- Microwave Radio & VSAT
- Military & Space
- Test Instrumentation
- Fiber Optics

Functional Diagram

Features

Noise Figure: 2 dB @ 8 GHz Flat Gain: 13 dB \pm 0.5 dB

P1dB Output Power: +18 dBm @ 8 GHz

50 Ohm Matched Input/Output

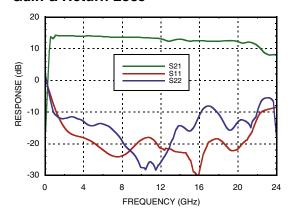
Regulated Supply and Bias Sequencing

Hermetically Sealed Module

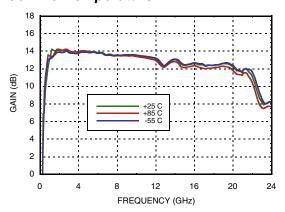
Field Replaceable SMA connectors

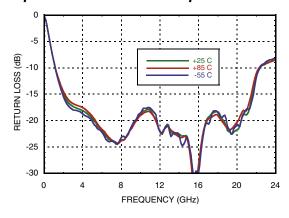
-55 °C to +85 °C Operating Temperature

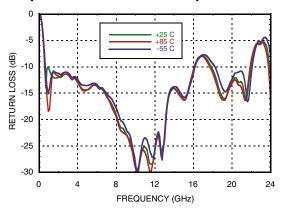
General Description

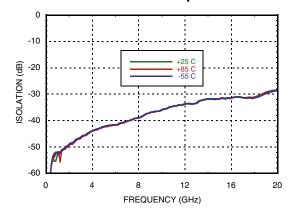

The HMC-C002 is a GaAs MMIC pHEMT Low Noise Distributed Amplifier in a miniature, hermetic module with replaceable SMA connectors which operates between 2 and 20 GHz. The self-biased amplifier provides 13 dB of gain, 2 to 3 dB noise figure and up to +18 dBm of output power at 1 dB gain compression while requiring a single +12V supply. Gain flatness is excellent from 2 - 18 GHz making the HMC-C002 ideal for EW, ECM RADAR and test equipment applications. The wideband amplifier I/Os are internally matched to 50 Ohms and are internally DC blocked.

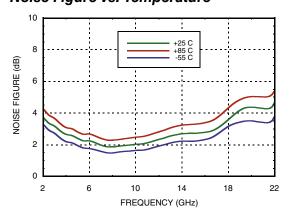
Electrical Specifications, $T_{\Delta} = +25^{\circ}$ C, Vs = +11.6V to +12.4V


Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	2.0 - 6.0		6.0 - 12.0			12.0 - 20.0			GHz	
Gain	12	14		11	13		10	12		dB
Gain Flatness		±.025			±0.5			±0.5		dB
Gain Variation Over Temperature		0.008	0.015		0.008	0.015		0.008	0.015	dB/ °C
Noise Figure		2.5	4.5		2.0	3.0		3.0	5.0	dB
Input Return Loss		17			18			18		dB
Output Return Loss		12			15			8		dB
Output Power for 1 dB Compression (P1dB)	15	18		13	16		9	12		dBm
Saturated Output Power (Psat)		21.5			21			19		dBm
Output Third Order Intercept (IP3)		26.5			26			23		dBm
Spurious Response		-50			-60			-60		dBc
Supply Current		93			93			93		mA

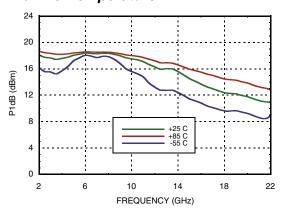

Gain & Return Loss


Gain vs. Temperature

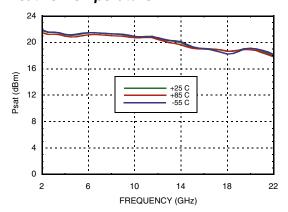

Input Return Loss vs. Temperature

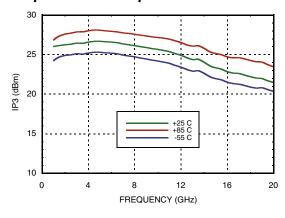

Output Return Loss vs. Temperature

Reverse Isolation vs. Temperature



Noise Figure vs. Temperature



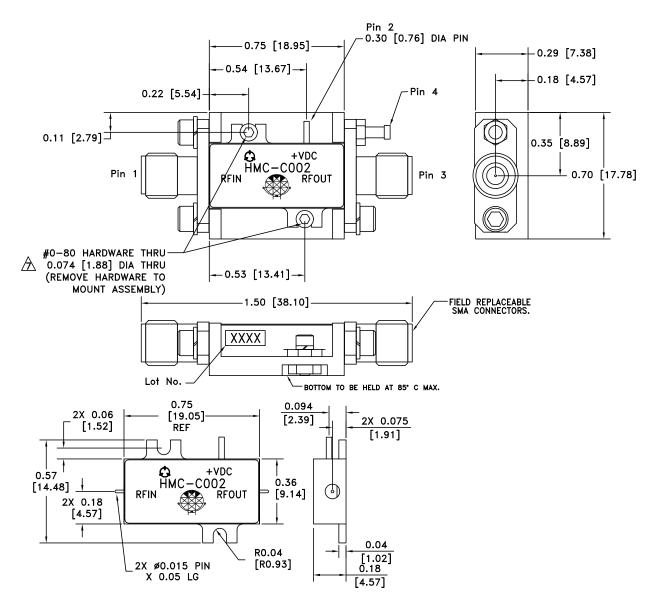

P1dB vs. Temperature

Psat vs. Temperature

Output IP3 vs. Temperature

Absolute Maximum Ratings

Bias Supply Voltage (Vs)	+11 Vdc to +13 Vdc
RF Input Power (RFIN)	+18 dBm
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C



Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1	RFIN & RF Ground	RF input connector, SMA female, field replaceable. This pin is AC coupled and matched to 50 Ohms.	RFINO— —	
2	Vs	Power supply voltage for the amplifier.	VS VOLTAGE REGULATOR	
3	RFOUT & RF Ground	RF output connector, SMA female. This pin is AC coupled and matched to 50 Ohms.	→ → RFOUT	
4	GND	Power supply ground.	GND =	

Outline Drawing

Package Information

Package Type	C-2
Package Weight [1]	11.2 gms ^[2]
Spacer Weight	N/A

- [1] Includes the connectors
- [2] ±1 gms Tolerance

NOTES

- 1. PACKAGE, LEADS, COVER MATERIAL: KOVAR™
- 2. BRACKET MATERIAL: ALUMINUM
- 3. PLATING: ELECTROLYTIC GOLD 50 MICROINCHES MIN., OVER ELECTROLYTIC NICKEL 75 MICROINCHES MIN.
- 4. ALL DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. TOLERANCES $\pm .005$ [0.13] UNLESS OTHERWISE SPECIFIED.
- 6. FIELD REPLACEABLE SMA CONNECTORS. TENSOLITE 5602 - 5CCSF OR EQUIVALENT.
- ↑TO MOUNT MODULE TO SYSTEM PLATFORM REPLACE 0 -80 HARDWARE WITH DESIRED MOUNTING SCREWS.