

Is Now Part of

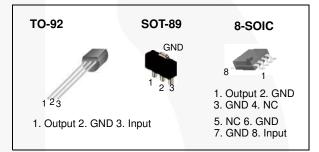
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

July 2015


MC78LXXA / LM78LXXA 3-Terminal 0.1 A Positive Voltage Regulator

Features

- · Maximum Output Current of 100 mA
- Output Voltage of 5 V, 6 V, 8 V, 12 V, and 15 V
- · Thermal Overload Protection
- · Short-Circuit Current Limiting
- Output Voltage Offered in ±5% Tolerance

Description

The MC78LXXA / LM78LXXA series of fixed-voltage monolithic integrated circuit voltage regulators are suitable for applications that required supply current up to 100 mA.

Ordering Information

Product Number	Package	Packing Method	Output Voltage Tolerance	Operating Temperature
LM78L05ACZ		Bulk		
LM78L05ACZX		Tape & Reel		
LM78L05ACZXA		Ammo		
LM78L12ACZ		Bulk		
LM78L12ACZX		Tape & Reel		
MC78L05ACP	TO-92	Bulk		
MC78L05ACPXA		Ammo		
MC78L06ACP		Bulk	±5%	-40 to +125°C
MC78L08ACP		Bulk		
MC78L15ACP		Bulk		
MC78L15ACPXA		Ammo		
MC78L05ACD	8-SOIC	Rail		
MC78L05ACDX	0-3010	Tape & Reel		
MC78L05ACHX	SOT-89	Tape & Reel		
MC78L08ACHX	301-03	Tape & Reel		

Block Diagram

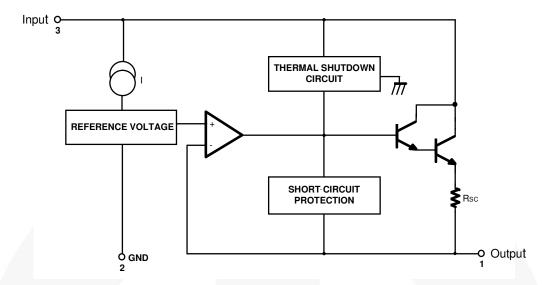


Figure 1. Block Diagram

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}\text{C}$ unless otherwise noted.

Symbol	Parameter		Value	Unit
V _I Inp	Input Voltage	V _O = 5 V to 8 V	30	V
	input voitage	V _O = 12 V to 15 V	35	V
T _{OPR}	Operating Temperature Range	-40 to +125°C	°C	
T _{J(MAX)}	Maximum Junction Temperature	150	°C	
T _{STG}	Storage Temperature Range	-65 to +150	°C	
$R_{\theta JC}$	Thermal Resistance, Junction-Case	TO-92	50	°C/W
		TO-92	150	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction-Air	SOT-89	225	°C/W
		8-SOIC	160	°C/W

Electrical Characteristics (MC78L05A / LM78L05A)

 $V_I=10~V,~I_O=40~mA,~-40^{\circ}C \leq T_J \leq 125^{\circ}C,~C_I=0.33~\mu F,~C_O=0.1~\mu F,~unless~otherwise~specified.$

Symbol	Parameter		Cond	ditions	Min.	Тур.	Max.	Unit
V _O	Output Voltage		T _J = 25°C		4.8	5.0	5.2	V
41/	Line Regulation ⁽¹⁾		T _{.J} = 25°C	7 V ≤ V _I ≤ 20 V		8	150	mV
ΔV _O	Line negulation.		1 j = 25 C	$8~V \leq V_I \leq 20~V$		6	100	mV
۸۷۰	ΔV _O Load Regulation ⁽¹⁾		T _J = 25°C	1 mA ≤ I _O ≤ 100 mA		11	60	mV
ΔνΟ			1 j = 25 C	1 mA ≤ I _O ≤ 40 mA		5.0	30.0	mV
V	V _O Output Voltage		$7 \text{ V} \leq \text{V}_{\text{I}} \leq 20 \text{ V}$	1 mA \leq I _O \leq 40 mA			5.25	V
v o			$7 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{MAX}}^{(2)}$	1 mA \leq I _O \leq 70 mA	4.75		5.25	V
ΙQ	Quiescent Current		$T_J = 25^{\circ}C$			2.0	5.5	mA
ΔI_Q	Quiescent Current	With Line	8 V ≤ V _I ≤ 20 V				1.5	mA
ΔI_{Q}	Change	With Load	1 mA ≤ I _O ≤ 40 mA	1			0.1	mA
V _N	Output Noise Voltag	Э	$T_A = 25^{\circ}C, 10 \text{ Hz}$	≤ f ≤ 100 kHz		40		μV/Vo
$\Delta V_O/\Delta T$	Temperature Coefficient of V _O		I _O = 5 mA			-0.65		mV/°C
RR	Ripple Rejection		f = 120 Hz, 8 V ≤ \	$I_{\rm I} \le 18 \text{ V}, T_{\rm J} = 25^{\circ}\text{C}$	41	80		dB
V_D	Dropout Voltage		$T_J = 25^{\circ}C$			1.7		V

- 1. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.

 2. Power dissipation $P_D \le 0.75 \text{ W}$.

Electrical Characteristics (MC78L06A)

 V_I = 12 V, I_O = 40 mA, -40°C \leq T_J \leq 125°C, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter			Conditions	Min.	Тур.	Max.	Unit
V _O	Output Voltage		$T_J = 25^{\circ}C$		5.75	6.0	6.25	V
ΔV_{O}	Line Regulation ⁽³⁾		T _{.1} = 25°C	$8.5 \text{ V} \le \text{V}_{\text{I}} \le 20 \text{ V}$		64	175	mV
Δν _Ο	Line Regulation		1) = 25 0	9 V ≤ V _I ≤ 20 V		54	125	mV
ΔV_{O}	Load Regulation(3)		T _{.J} = 25°C	1 mA ≤ I _O ≤ 100 mA		12.8	80.0	mV
Δν _Ο	Load Regulation ⁽³⁾		1) = 25 0	1 mA ≤ I _O ≤ 70 mA		5.8	40.0	mV
V	Output Voltage		8.5 V ≤ V ₁ ≤	≤ 20 V, 1 mA ≤ I _O ≤ 40 mA	5.7		6.3	V
V _O			$8.5 \text{ V} \le \text{V}_{\text{I}} \le \text{V}_{\text{MAX}}^{(4)}, 1 \text{ mA} \le \text{I}_{\text{O}} \le 70 \text{ mA}$		5.7		6.3	V
_	Io Quiescent Current		$T_J = 25^{\circ}C$				5.5	mA
ΙQ	Quiescent Current		$T_J = 125^{\circ}C$			3.9	6.0	mA
ΔI_Q	Quiescent Current	With Line	9 V ≤ V ₁ ≤ 2	20 V			1.5	mA
ΔI_Q	Change	With Load	1 mA ≤ I _O ≤	1 mA ≤ I _O ≤ 40 mA			0.1	mA
V _N	Output Noise Voltage		$T_A = 25^{\circ}C$, 10 Hz \leq f \leq 100 kHz			40		μV/Vo
$\Delta V_O/\Delta T$	Temperature Coefficient of V _O		$I_O = 5 \text{ mA}$			0.75		mV/°C
RR	Ripple Rejection	ection		$10 \text{ V} \le \text{V}_{\text{I}} \le 20 \text{ V}, \text{T}_{\text{J}} = 25^{\circ}\text{C}$	40	46		dB
V_D	Dropout Voltage		$T_J = 25^{\circ}C$			1.7		V

- 3. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.

 4. Power dissipation P_D ≤ 0.75 W.

Electrical Characteristics (MC78L08A)

 $V_I=14~V,~I_O=40~mA,~-40^{\circ}C \leq T_J \leq 125^{\circ}C,~C_I=0.33~\mu F,~C_O=0.1~\mu F,~unless~otherwise~specified.$

Symbol	Parameter		Condi	itions	Min.	Тур.	Max.	Unit
V _O	Output Voltage		T _J = 25°C	$T_J = 25^{\circ}C$		8.0	8.3	V
ΔV_{O}	Line Regulation ⁽⁵⁾		T 0500	$10.5 \text{ V} \le \text{V}_{\text{I}} \le 23 \text{ V}$		10	175	mV
ΔνΟ	Line Hegulation		$T_J = 25^{\circ}C$	$11~V \leq V_I \leq 23~V$		8	125	mV
ΔV_{O}	ΔV _O Load Regulation ⁽⁵⁾		T _{.l} = 25°C	$1 \text{ mA} \le I_O \le 100 \text{ mA}$		15	80	mV
700	Load Hegulation	1 _J = 25 C	1 mA \leq I _O \leq 40 mA		8	40	mV	
V _O	V _O Output Voltage		$10.5V \le V_I \le 23V$	1 mA \leq I _O \leq 40 mA	7.6		8.4	V
v 0	Output Voltage		$10.5V \le V_I \le V_{MAX}^{(6)}$	$1 \text{ mA} \le I_{O} \le 70 \text{ mA}$	7.6		8.4	V
IQ	Quiescent Current		$T_J = 25^{\circ}C$			2.0	5.5	mA
ΔI_{Q}	Quiescent Current	With Line	$11~V \leq V_I \leq 23~V$				1.5	mA
ΔI_{Q}	Change	With Load	$1 \text{ mA} \le I_{O} \le 40 \text{ mA}$				0.1	mA
V_N	Output Noise Voltage		$T_A = 25^{\circ}C$, 10 Hz \leq f	≤100 kHz		60		$\mu V/Vo$
$\Delta V_{O}/\Delta T$	Temperature Coefficient of V _O		$I_O = 5 \text{ mA}$			-0.8		mV/°C
RR	Ripple Rejection		$f = 120 \text{ Hz}, 11 \text{ V} \le \text{V}_{\text{I}}$	\leq 21 V, T _J = 25°C	39	70		dB
V_{D}	Dropout Voltage		T _J = 25°C			1.7		V

- 5. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.

 6. Power dissipation $P_D \le 0.75 \text{ W}$.

Electrical Characteristics (MC78L12A / LM78L12A)

 $V_I = 19 \text{ V, } I_O = 40 \text{ mA, } -40^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C, } C_I = 0.33 \text{ } \mu\text{F, } C_O = 0.1 \text{ } \mu\text{F, unless otherwise specified.}$

Symbol	Parame	ter	Condi	tions	Min.	Тур.	Max.	Unit
V _O	Output Voltage		$T_J = 25^{\circ}C$		11.5	12.0	12.5	V
ΔV _O Line Regulation ⁽⁷⁾	')	T _{.1} = 25°C	$14.5 \text{ V} \le \text{V}_{\text{I}} \le 27 \text{ V}$		20	250	mV	
ΔV_{O}	Line negulation	<i>,</i>	1j = 25 G	16 $V \le V_1 \le 27 V$		15	200	mV
ΔV _O	Load Regulation (7)	T _{.I} = 25°C	1 mA ≤ I _O ≤ 100 mA		20	100	mV
ΔνΟ	Load Regulation V	,	1j = 25 G	1 mA ≤ I _O ≤ 40 mA		10	50	mV
V	Output Voltage		$14.5 \text{ V} \le \text{V}_{\text{I}} \le 27 \text{ V}$	1 mA \leq I _O \leq 40 mA	11.4		12.6	V
V _O			$14.5 \text{ V} \le \text{V}_{\text{I}} \le \text{V}_{\text{MAX}}^{(8)}$	$1 \text{ mA} \le I_O \le 70 \text{ mA}$	11.4		12.6	V
ΙQ	Quiescent Curren	t	$T_J = 25^{\circ}C$			2.1	6.0	mA
ΔI_Q	Quiescent	With Line	16 V ≤ V _I ≤ 27 V				1.5	mA
ΔI_Q	Current Change	With Load	1 mA ≤ I _O ≤ 40 mA				0.1	mA
V _N	Output Noise Volt	age	$T_A = 25^{\circ}C, 10 \text{ Hz} \le f$	≤ 100 kHz		80		μV/Vo
$\Delta V_O/\Delta T$	Temperature Coefficient of V _O		$I_O = 5 \text{ mA}$			-1.0		mV/°C
RR	Ripple Rejection		$f = 120 \text{ Hz}, 15 \text{ V} \le \text{V}_{\text{I}}$	≤ 25 V, T _J = 25°C	37	65		dB
V_D	Dropout Voltage		$T_J = 25^{\circ}C$			1.7		V

- 7. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.
- 8. Power dissipation $P_D \le 0.75 \text{ W}$.

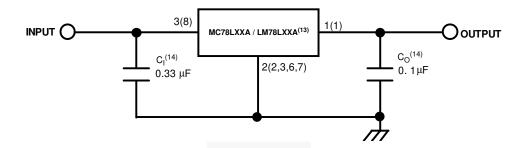
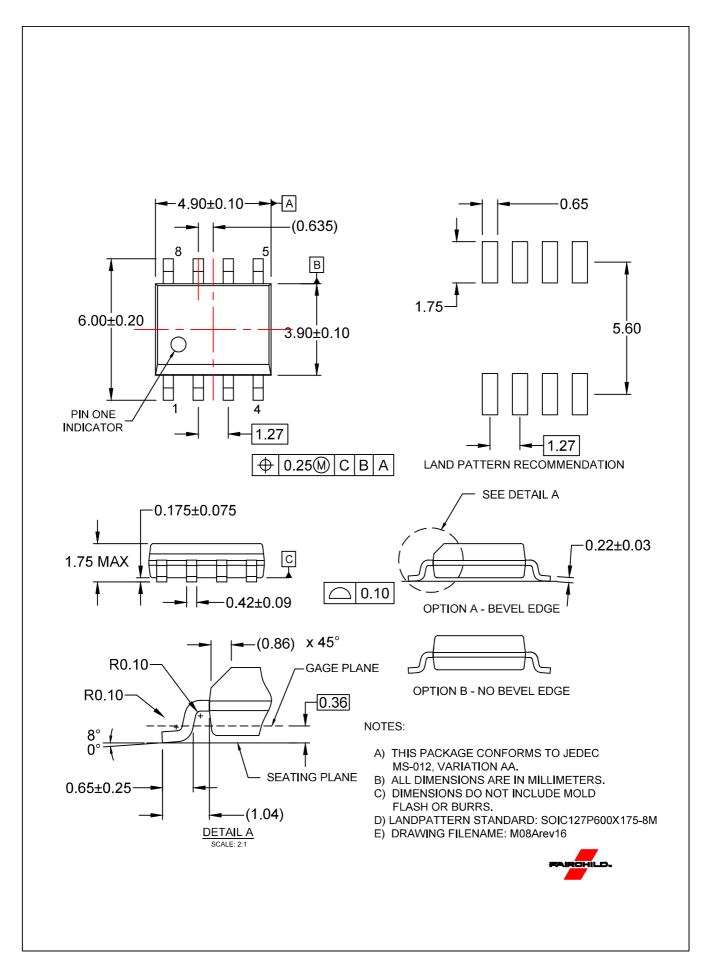
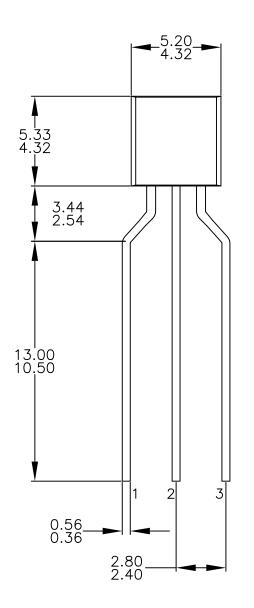
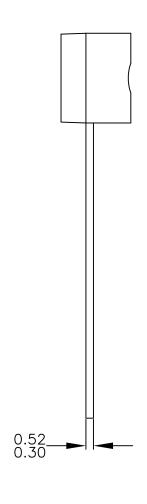
Electrical Characteristics (MC78L15A)

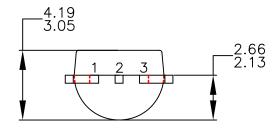
 V_I = 23 V, I_O = 40 mA, -40°C \leq T_J \leq 125°C, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parame	ter	Condit	ions	Min.	Тур.	Max.	Unit
V _O	Output Voltage		T _J = 25°C			15.0	15.6	V
ΔV_{O}	Line Regulation ⁽⁹⁾		T _{.l} = 25°C	$17.5 \text{ V} \le \text{V}_{\text{I}} \le 30 \text{ V}$		25	300	mV
7,0	Line Hegulation		1 J = 25 G	$20~V \leq V_I \leq 30~V$		20	250	mV
ΔV_{O}	Load Regulation ^{(§}	9)	T _{.l} = 25°C	$1 \text{ mA} \le I_{O} \le 100 \text{ mA}$		25	150	mV
7,0	ZVO Load Regulation	, 	1 J = 25 G	$1 \text{ mA} \le I_{O} \le 40 \text{ mA}$		12	75	mV
V _O	Output Voltage		$17.5 \text{ V} \le \text{V}_1 \le 30 \text{ V}$	$1 \text{ mA} \le I_{O} \le 40 \text{ mA}$	14.25		15.75	٧
v 0			$17.5 \text{ V} \le \text{V}_{\text{I}} \le \text{V}_{\text{MAX}}^{(10)}$	$1~\text{mA} \le I_O \le 70~\text{mA}$	14.25		15.75	V
IQ	Quiescent Current		$T_J = 25^{\circ}C$			2.1	6.0	mA
ΔI_{Q}	Quiescent	With Line	$20~V \leq V_I \leq 30~V$				1.5	mA
ΔI_{Q}	Current Change	With Load	1 mA \leq I _O \leq 40 mA				0.1	mA
V _N	Output Noise Voltage		$T_A = 25^{\circ}C$, 10 Hz \leq f \leq	100 kHz		90		$\mu\text{V/Vo}$
$\Delta V_{O}/\Delta T$	Temperature Coefficient of V _O		$I_O = 5 \text{ mA}$			-1.3		mV/°C
RR	Ripple Rejection		$f = 120 \text{ Hz}, 18.5 \text{ V} \le \text{V}_{\text{I}}$	≤28.5 V, T _J = 25°C	34	60		dB
V_{D}	Dropout Voltage		T _J = 25°C			1.7	79	V

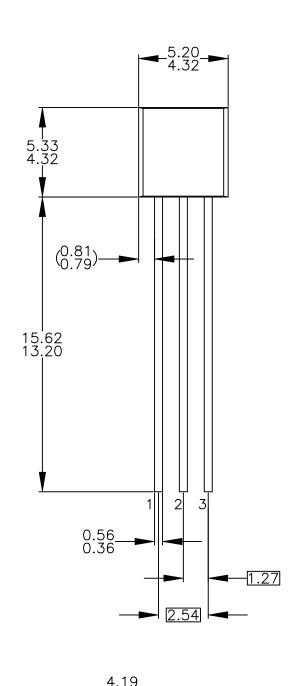
- 9. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.
- 10. Power dissipation $P_D \le 0.75 W$.

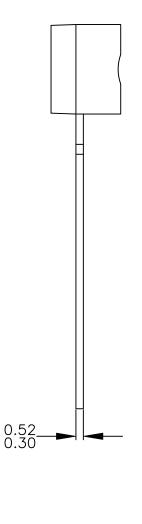
Typical Application

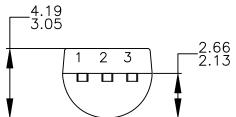

Figure 2. Typical Application

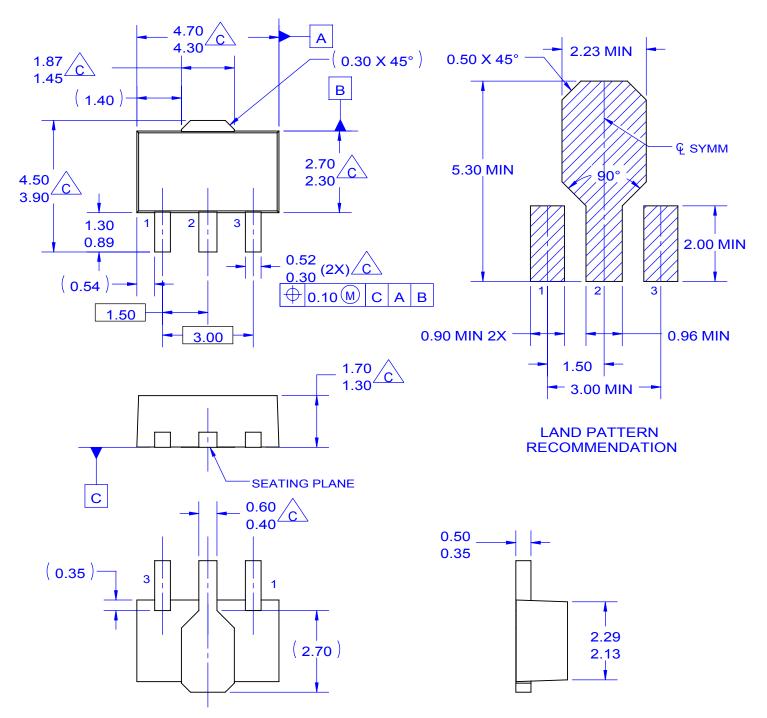
- 13. To specify an output voltage, substitute voltage value for "XX".
- 14. C_1 is required if the regulator is located an appreciable distance from the power supply filter. Though C_0 is not needed for stability, it improves transient response. Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulator.





NOTES: UNLESS OTHERWISE SPECIFIED


- DRAWING CONFORMS TO JEDEC MS-013, VARIATION AC.
 ALL DIMENSIONS ARE IN MILLIMETERS.
 DRAWING CONFORMS TO ASME Y14.5M-2009.
 DRAWING FILENAME: MKT-ZAO3FREV3.
 FAIRCHILD SEMICONDUCTOR.
- B. C. D. E.



NOTES: UNLESS OTHERWISE SPECIFIED

- DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.
 ALL DIMENSIONS ARE IN MILLIMETERS.
 DRAWING CONFORMS TO ASME Y14.5M-2009.
 DRAWING FILENAME: MKT-ZAO3DREV4.

NOTES: UNLESS OTHERWISE SPECIFIED.

A. REFERENCE TO JEDEC TO-243 VARIATION AA.

B. ALL DIMENSIONS ARE IN MILLIMETERS.

C DOES NOT COMPLY JEDEC STANDARD VALUE.

D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSION.

E. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994.

F. DRAWING FILE NAME: MA03CREV3

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative