SDS1000X SDS1000X+ Series Digital Oscilloscope

DataSheet-2016.05

SDS1102X SDS1202X SDS1102X+ SDS1202X+

Overview

SIGLENT's new SDS1000X/SDS1000X+ Series Super Phosphor Oscilloscopes are available in two bandwidths, 100 MHz and 200 MHz, have a sampling rate of 1 GSa/s and a standard record length of 14 Mpts. The most commonly used functions can be accessed with its user-friendly one-button design.

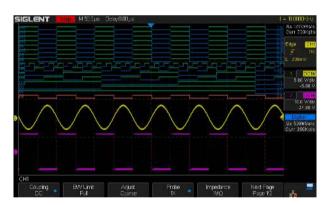
The SDS1000X/SDS1000X+ series employs a new generation of SPO technology. With its excellent signal fidelity, background noise is lower than similar products in the industry. It has a minimum vertical input range of 500 uV/div, an innovative digital trigger system with high sensitivity and low jitter, and a waveform capture rate of 60,000 frames/sec. It also employs not only the common 256-level intensity grading display function but also a color temperature display mode not found in other models in this class. Siglent's new oscilloscopes offering supports multiple powerful triggering modes including serial bus triggering and decoding. History waveform recording and sequential triggering allow for extended waveform records to be captured, stored, and analyzed. SDS1000X+ adds an integrated 25 MHz arbitrary waveform generator (standard), option for 16 digital channels. The features and high-performance of the SDS1000X/SDS1000X+ oscilloscopes cannot be matched else anywhere at this price.

Key Features

- № 200 MHz, 100 MHz bandwidth models
- Real-time sampling rate up to 1 GSa/s
- New generation of SPO technology
 - Waveform capture rate up to 60,000 wfm/s (normal mode), and 400,000 wfm/s (sequence mode)
 - Supports 256-level intensity grading and color temperature display
 - Record length up to 14 Mpts
 - Digital trigger system
- Intelligent trigger: Edge, Slope, Pulse Width, Window, Runt, Interval, Time out (Dropout), Pattern
- Serial bus triggering and decode, supports protocols IIC, SPI, UART, RS232, CAN, LIN
- ✓ Video trigger, supports HDTV
- Low background noise, supports 500μV / div to 10V / div voltage scales
- 10 types of one-button shortcuts, supports Auto Setup, Default, Cursors, Measure, Roll, History, Display/Persist, Clear Sweep, Zoom and Print
- Segmented acquisition (Sequence) mode, dividing the maximum record length into multiple segments (up to 80,000), according to trigger conditions set by the user, with a very small dead time segment to capture the qualifying event.
- History waveform record (History) function, the maximum recorded waveform length is 80,000 frames.
- Automatic measurement function on 37 parameters, supports Statistics, Gating measurement, Math measurement, History measurement and Ref measurement
- Math function (FFT, addition, subtraction, multiplication, division, integration, differential, square root)
- 16 Digital channels (MSO), Maximum waveform capture rate up to 500 MSa/s, Record length up to 14 Mpt/CH (Option for SDS1000X+ models)
- 25 MHz DDS arbitrary waveform generator, built-in 10 kinds of waveforms (Standard for SDS1000X+ models)
- Large 8 inch TFT-LCD display with 800 * 480 resolution
- Abundant interfaces: USB Host, USB Device (USB-TMC), LAN (VXI-11), Pass / Fail, Trigger Out
- Supports SCPI remote control commands

Models and Key Specifications

Model	SDS1102X SDS1102X+	SDS1202X SDS1202X+	
Bandwidth	100 MHz	200 MHz	
Sampling Rate (Max.)	1 GSa/s		
Channels	2+EXT		
Memory Depth (Max.)	7 Mpts/CH (Dual-Channel); 14 Mpts/CH (Single-Channel)		
Waveform Capture Rate (Max.)	60,000 wfm/s (normal mode), 400,000 wfm/s (sequence mode)		
Trigger Type	Edge, Slope, Pulse width, Window, Runt, Interval, Dropout, Pattern	, Video	
Serial Trigger	I ² C, SPI, UART/RS232, CAN, LIN		
Decode Type (Optional)	I ² C, SPI, UART/RS232, CAN, LIN		
DDS Waveform Generator	Single Channel, Max. Frequency up to 25 MHz, 125 MSa/s sampling	rate, 16 Kpts wave length	
DDS Waveloriii Gerierator	SDS1000X+ Supported (Standard); SDS1000X Not supported		
16 Digital Channels (MSO	Maximum waveform capture rate up to 500 MSa/s, Record length u	p to 14 Mpts/CH	
Option)	SDS1000X+ Supported (Optional); SDS1000X Not supported		
Logic Probe	SPL1016 (Optional)		
I/O	USB Host, USB Device, LAN, Pass/Fail, Trigger Out, 1 KHz Cal		
Probe (Std)	2 pcs passive probe PP510	2 pcs passive probe PP215	
Display	8 inch TFT-LCD (800x480)		
Weight	Without package 3.26 Kg; with package 4.25 Kg		

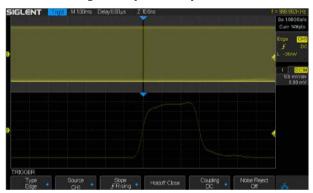

Function & Characteristics

8 inch TFT-LCD display and 10 one-button menus

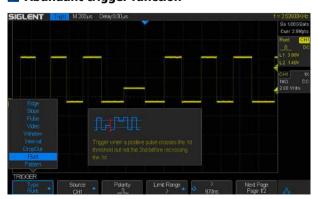
Most commonly used functions are accessible using 10 different one-button operation keys: Auto Setup, Default, Cursor, Measure, Roll, History, Persist, Clear Sweep, Zoom, Print

■ 16 Digital Channels/MSO (Optional for SDS1000X+)

2 analog channels plus 16 digital channels enables users to acquire and trigger on the waveforms then analyze the pattern, simultaneously with one instrument.


Characteristics

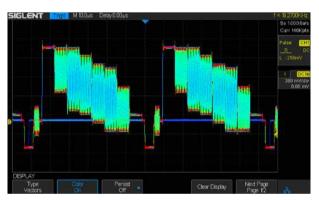
■ Waveform capture rate up to 400,000 wfms/s


With a waveform capture rate of up to 400,000 wfm/s (sequence mode), the oscilloscope can easily capture the unusual or low-probability events.

Record length of up to 14 Mpts

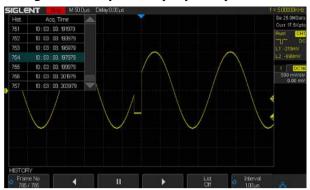
Using hardware-based Zoom technologies and record length of up to 14 Mpts, users are able to use a higher sampling rate to capture more of the signal, and then quickly zoom in to focus on the area of interest

Abundant trigger function

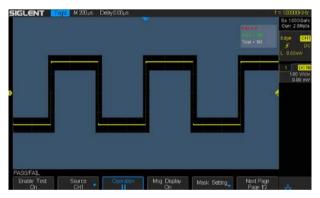

SDS1000X/SDS1000X+ has a wealth of trigger modes, including Edge, Slope, Pulse, Video, Windows, Runt, Interval, Time out (Dropout), Pattern, IIC, SPI, UART/RS232, LIN, CAN

256 intensity grading and color temperature display

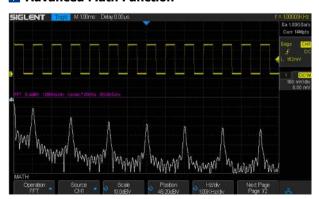
SPO display technology provides for fast refresh rates. The resulting intensity-graded trace is brighter for more often-occurring display points and dimmer in less-often-occurring points


The color temperature display is similar to the intensity-graded trace except that the trace occurrence is represented by different colors (color "temperature") as opposed to changes in the intensity of one color. Red represents the most common occurrences or probabilities while blue is the least common points.

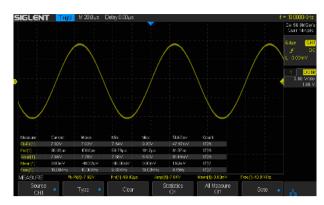
Serial bus decoding function (optional)


SDS1000X/SDS1000X+ displays the decoding through the events list. Bus protocol information can be quickly and intuitively displayed in table form.

History Waveforms (History) mode and segmented acquisition (Sequence)


Playback history waveform to observe unusual events and locate the source quickly through the cursor or measurements, located on the keyboard Panel, this function is easily enabled. Segmented memory collection will store the waveform into multiple (up to 80,000) memory segments, each segment will store a triggered waveform and dead time information

Hardware-Based High Speed Pass/Fail Function


The SDS1000X/SDS1000X+ utilizes a hardware-based Pass / Fail function, performing up to 40,000 Pass / Fail decisions each second. With easy to generate user-defined test templates, the SDS1000X/SDS1000X+ compares the current measured trace to the template mask trace making it suitable for long-term signal monitoring or automated production line testing.

Advanced Math Function

In addition to the traditional (+, -, X, /) operation, SDS1000X/SDS1000X+ oscilloscopes supports FFT, integration, differentiation, and square root operations.

Comprehensive statistical functions

Parametric statistical functions to display any parameters of the five measurements: current, average, minimum value, maximum value, and the standard deviation. The measurement count is also displayed. The maximum number of parameters that can be measured and simultaneously analyzed statistically is five. Supports Gating measurements, Math measurement, History measurement, Ref measurement.

■ Built-in 25 MHz function/arbitrary waveform generator (Standard for SDS1000X+ Models)

The SDS1000X+ has a built-in 25 MHz function / arbitrary waveform generator (standard), including 10 built-in waveforms plus 4 ARBs. The arbitrary waveforms can be accessed and edited by the EasyWave PC software

Complete connectivity

SDS1000X/SDS1000X+ supports USB Host, USB Device (USB-TMC), LAN(VXI-11), Pass/Fail and Trigger Out

Specifications

Acquire System	
Sampling Rate	1 GSa/s (Single-Channel), 500 MSa/s (Daul-Channel)
Memory Depth	Max 14 Mpts/Ch (Single-Channel), 7 Mpts/Ch (Dual-Channel)
Peak Detect	1 ns
Average	Averages: 4,16, 32,64,128,256,512,1024
Eres	Enhance bits: 0.5, 1, 1.5, 2, 2.5, 3 Selectable
Waveform interpolation	Sinx/x, Linear

Input	
Channel	2
Coupling	DC, AC, GND
- 1	DC: (1 MΩ±2%) (18 pF ±2 pF)
Impedance	50 Ω: 50 Ω±2%
May Tourst valtage	1 M Ω ≤400 Vpk(DC + Peak AC <=10 kHz),
Max Input voltage	50 Ω ≤5 Vrms
CH to CH Isolation	DC~Max BW >40 dB
Probe attenuator	1 X, 10 X, 50 X, 100 X, 500 X , 1000 X

Vertical System	
Bandwidth (-3 dB)	200 MHz (SDS1202X/SDS1202X+) 100 MHz (SDS1102X/SDS1102X+)
Vertical Resolution	8 bit
Vertical Scale (Probe 1X)	500 μV/div - 10 V/div (1-2-5)
Offset Range (Probe 1X)	500 μ V ~ 150 mV: ± 1 V 152 mV ~ 1.5 V: ± 10 V 1.52 V ~ 10 V: ± 100 V
Bandwidth Limit	20 MHz ±40%
Bandwidth Flatness	DC $\sim 10\%$ (BW): ± 1 dB $10\% \sim 50\%$ (BW): ± 2 dB $50\% \sim 100\%$ (BW): $+ 2$ dB / -3 dB
Low Frequency Response (AC-3 dB)	≤10 Hz (at input BNC)
Noise	ST-DEV ≤0.7 division (<1 mV/div) ST-DEV ≤0.3 division(<2 mV/div) ST-DEV ≤0.2 division(≥2 mV/div)
SFDR including harmonics	≥35 dB
DC Gain Accuracy	≤±3.0%: 5 mV/div ~10 V/div ≤±4.0%: ≤2 mV/div
Offset Accuracy	±(1%* Offset+1.5%*8*div+2 mV): ≥2 mV/div ±(1%* Offset+1.5%*8*div+500 uV): ≤1 mv/div
Rise time	Typical 1.8 ns (SDS1202X/SDS1202X+) Typical 3.5 ns (SDS1102X/SDS1102X+)
Overshoot (500 ps Pulse)	<10%

Horizontal System	
Time base Scale	2.0 ns/div ~ 50 s/div
Channel Skew	<100 ps
Waveform Capture Rate	Up to 60,000 wfm/s (normal mode), 400,000 wfm/s (sequence mode)
Intensity grading	256 Levels
Display Format	Y-T, X-Y, Roll
Time base Accuracy	±25 ppm
Roll Mode	50 ms/div ~ 50 s/div (1-2-5 step)

Trigger System	
Trigger Mode	Auto, Normal, Single
	Internal: ±4.5 div from the center of the screen
Trigger Level	EXT: ±0.6 V
	EXT/5: ±3 V
Hold-off Range	80 ns ~ 1.5 s
Trigger Coupling	AC , DC, LFRJ, HFRJ , Noise RJ (CH1~CH2)
	DC: Passes all components of the signal
Coupling Frequency Response	AC: Blocks DC components and attenuates signals below 5.8 Hz
(CH1~CH2)	LFRJ: Blocks the DC component and attenuates the low-frequency components below 2 MHz
	HFRJ: Attenuates the high-frequency components above 1.27 MHz
	DC: Passes all components of the signal
Coupling Frequency Response	AC: Blocks DC components and attenuates signals below 30 Hz
(EXT)	LFRJ: Blocks the DC component and attenuates the low-frequency components below 300 Hz
	HFRJ: Attenuates the high-frequency components above 7 MHz
Trigger Accuracy (Typical)	Internal: ±0.2 div EXT: ±0.4 div
Trigger Sensitivity	CH1~CH2: DC~ Max BW 0.6 div EXT: 200 mVpp DC ~ 10 MHz 300 mVpp 10 MHz ~ BW frequency EXT/5: 1 Vpp DC ~ 10 MHz 1.5 Vpp 10 MHz ~ BW frequency
Trigger Jitter	<100 ps (CH1~CH2)
Trigger Displacement	Pre-Trigger: 0~100% Memory Delay Trigger: 0 to 10,000 div

55:	Delay Trigger: 0 to 10,000 div
Slope Trigger	
Slope	Rising, Falling
Limit Range	<,>,<>,><
Source	CH1/CH2
Time Range	2 ns ~ 4.2 s
Resolution	1 ns
Edge Trigger	
Slope	Rising, Falling, Rising & Falling
Source	CH1/CH2 /EXT/(EXT/5)/AC Line
Pulse Trigger	

ruise Illiggei	
Polarity	+wid , -wid
Limit Range	<, >, <>, ><
Source	CH1/CH2
Pulse Range	2 ns ~ 4.2 s
Resolution	1 ns

video i rigger	
Signal Standard	NTSC, PAL, 720p/50, 720p/60, 1080p/50, 1080p/60, 1080i/50,
Source	1080i/60, Custom CH1/CH2
Sync	Any, Select
Trigger condition	Line, Field

Interval Trigge	r
Slope	Rising, Falling
Limit Range	<, >, <>, ><
Source	CH1/CH2
Time Range	2 ns ~ 4.2 s
Resolution	1 ns

Dropout Trigger

Time out Type Edge, State
Source CH1/CH2
Slope Rising, Falling
Time Range 2 ns ~ 4.2 s
Resolution 1 ns

Runt Trigger

 Polarity
 +wid , -wid

 Limit Range
 <, >, <>, ><</td>

 Source
 CH1/CH2

 Time Range
 2 ns ~ 4.2 s

 Resolution
 1 ns

Pattern Trigger

Pattern Setting Invalid, Low, High Logic AND, OR, NAND, NOR

Source CH1/CH2
Limit Range <,>,<>,><Time Range $2 \text{ ns} \sim 4.2 \text{ s}$ Resolution 1 ns

Window Trigger

Window Type Absolute, Relative Source CH1/CH2

Serial Trigger

I²C Trigger

Condition Start, Stop, Restart, No Ack, EEPROM, 7 bits Address & Data, 10 bits Address & Data, Data Length

Source (SDA/SCL) CH1, CH2
Data format Hex

Limit Range EEPROM: =, >, < Data Length EEPROM: 1 byte Addr & Data: $1\sim2$ byte

Data Length: 1~12 byte

R/W bit Addr & Data: Read, Write, Do not care

SPI Trigger

Condition Data

Source (CS/CL/Data) CH1, CH2

Data format Binary

Data Length 4 ~ 96 bit

Bit Value 0, 1, X

Bit Order LSB, MSB

UART/ RS232 Trigger

Condition Start, Stop, Data, Parity Error

Source (RX/TX) CH1, CH2
Data format Hex
Limit Range =, >, <
Data Length 1 byte

Data Width 5 bit, 6 bit, 7 bit, 8 bit
Parity Check None, Odd, Even
Stop Bit 1 bit, 1.5 bit, 2 bit
Idle Level High, Low

Baud (Selectable) 600/1200/2400/4800/9600/19200/38400/57600/115200 bit/s

(Custom) 300 bit/s ~ 334000 bit/s

CAN Trigger

Condition All, Remote, ID, ID + Data, Error

Source CH1,CH2

ID STD (11 bit), EXT (29 bit)

Data Format Hex

Data Length 1~2 byte

Baud Rate 5k/10k/20k/50k/100k/125k/250k/500k/800k/1M bit/s

(Selectable)

Baud Rate (Custom) 5 kbit/s~1 Mbit/s

LIN Trigger

Condition Break, Frame ID, ID+Data, Error

Source CH1, CH2
ID 1 byte
Data Format Hex
Data Length 1~2 byte

Baud Rate 600/1200/2400/4800/9600/19200 bit/s

Data Length Baud Rate (Selectable)

Baud Rate (Custom) 300 bit/s~20 kbit/s

Serial Decoder (Optional)

I²C Decoder

Signal SCL, SDA

Address 7bit, 10 bit

Threshold -4.5~4.5 div

List 1~7 lines

SPI Decoder

List

List

Signal SCL, MISO, MOSI, CS
Edge Select Rising, Falling
Idle Low, High
Bit Order MSB, LSB
Threshold -4.5~4.5 div

1~7 lines

UART/ RS232 Decoder

Signal RX, TX

Data Width 5 bit, 6 bit, 7 bit, 8 bit
Parity Check None, Odd, Even
Stop Bit 1 bit, 1.5 bit, 2 bit
Idle Level Low, High
Threshold -4.5~4.5 div

CAN Decoder

Signal CAN_H, CAN_L

Source CAN_H, CAN_L, CAN_H-CAN_L

1~7 lines

Threshold $-4.5\sim4.5$ div List $1\sim7$ lines

LIN Decoder

LIN Specification Ver Package Revision

Ver1.3, Ver2.0

Threshold $-4.5 \sim 4.5$ div List $1 \sim 7$ lines

Source OHI, CH2, Meth, Ref, History Number of Despis 5 measurements at the same time Measurement Range Mex Highest value in input waveform Min Lowest value in input waveform Mean Average of data value State of Maximum Lowestorm and Lowestorm Min Lowestor Value State of Maximum Lowestorm and Lowestorm Average of Maximum Lowestorm Rock Moort mean square of all data values Common Rock mean square of all data values Min Lowestorm Rock Maximum Lowestorm Average of C	Measure Syster	n	
Number of Measurement Range Measurement Range Measurement Range Measurement Range Max Highest value in input waveform Vertical (Voltage) Max Difference between maximum and minimum data values Per Werthouse May Difference between maximum and minimum data values Nerge May Number M			h. Ref. History
Measurement Name Screen region, Gate region Measurement Parameters: 277 Types** Vertical (Voltage) Max Highest value in input waveform Vertical (Voltage) Max Libration Lowest value in input waveform Pic-Px Difference between maximum and minimum data values Ampl Difference between top and base in a bimodal signal, or between max and min in an unimodal signal Base Value of most probable loyer state in a bimodal waveform Mean Average of old stat values Gene Average of old stat values in the first cycle Stidev Standard deviation of all data values Citid Standard deviation of all data values in the first cycle FORE Overshoot after a failing edge;(base-min)/Amplitude FORE Overshoot after a failing edge;(base-min)/Amplitude ROV Overshoot after a rising edge;(base-min)/Amplitude FORE Overshoot before a rising edge;(base-min)/Amplitude FORE Overshoot before a rising edge;(base-min)/Amplitude FORE Overshoot before a failing edge;(base-min)/Amplitude FORE Overshoot before a rising edge;(base-min)/Amplitude FORE Workshort before th	Number of		
Vertical (Voltage) Max		6	Colombia
Vertical (Voltage) Max			
Min Lowest value in input waveform Pk-Pk Difference between to pain thas see in a bimodal signal, or between max and min in an unimodal signal Time Time from the first straing edge or channel Application Time from the first straing edge or the minst palling edge or channel Application Time from the first straing edge of channel Application			
PK-PK Difference between maximum and minimum data values	Vertical (Voltage)		
Ampl Difference between top and base in a bimodal signal, or between max and min in an unimodal signal fop Value of most probable in bijder state in a bimodal waveform Base Value of most probable in bijder state in a bimodal waveform Mean Average of all data values Cmean Average of all data values Cited Standard deviation of all data values Cstd Standard deviation of all data values Cstd Standard deviation of all data values Cstd Standard deviation of all data values Crms Root mean square of all data values in the first cycle RVMS Root mean square of all data values in the first cycle FOV Overshoot after a falling edge;(base-min)/Amplitude FPRE Overshoot before a falling edge;(base-min)/Amplitude RRE Overshoot before a falling edge;(base-min)/Amplitude RRE Overshoot before a rising edge;(base-min)/Amplitude RRE Overshoot before a rising edge;(base-min)/Amplitude RRE Overshoot before a rising edge;(base-min)/Amplitude Leveli@X the voltage value of the trigger point Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Rise Time from the first rising edge of the first falling edge, or the first falling edge of the last rising edge at the 50% crossing Time flow for my the firs			·
Top Value of most probable higher state in a bimodal waveform Base Value of most probable lower state in a bimodal waveform Mean Average of ald tala values Cmean Average of ald tala values Stadev Standard deviation of all data values Stadev Standard deviation of all data values Cstd Standard deviation of all data values Cstd Standard deviation of all data values Cms Root mean square of all data values in the first cycle VRMS Root mean square of all data values in the first cycle Covershoot before a falling edge; (max-top)/Amplitude FPRE Overshoot before a rising edge; (max-top)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude Level@X the voltage value of the trigger point Horizontal (Time) Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Widd width measured at 50% level and positive slope Widd width measured at 50% level and negative slope Widd width measured at 50% level and negative slope Rise Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing Time@Level Time from the brisger to the first transition at the 50% crossing Time@Level Time from the trigger to the first transition at the 50% crossing Time@Level Time from the first firsing edge of channel A to the first firsing edge of channel B FFR Time from the first firsing edge of channel A, to the first firsing edge of channel B LRF Time from the first firsing edge of channel A, to the first falling edge of channel B LRF Time from the first firsing edge of channel A, to the last falling edge of channel B LRF Time from the first firsing edge of channel A, to the last falling edge of channel B LRF Time from the f			
Base Value of most probable lower state in a bimodal waveform		·	
Mean Average of alt data values		•	
Cmean Average of data values in the first cycle Standard deviation of all data values Cstd Standard deviation of all data values Cstd Standard deviation of all data values Cstd Standard deviation of all data values Cms Root mean square of all data values Root mean square of all data values Cms Root mean square of all data values Root			·
Stdev Standard deviation of all data values			
Cstd Standard deviation of all data values in the first cycle VRMS Root mean square of all data values Crms Root mean square of all data values FPRE Overshoot after a falling edge;(base-min)/Amplitude FPRE Overshoot before a falling edge;(max-top)/Amplitude ROV Overshoot after a rising edge;(max-top)/Amplitude RPRE Overshoot before a falling edge;(max-top)/Amplitude RPRE Overshoot before a falling edge;(base-min)/Amplitude RPRE Overshoot before a rising edge;(base-min)/Amplitude Level@X the voltage value of the trigger point Level@X the voltage value of the trigger point Freq Frequency for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope HWid Width measured at 50% level and positive slope HWid Width measured at 50% level and positive slope HWid Width measured at 50% level and positive slope Hall Time Duration of falling edge from 10-90% Baid Time from the first failing edge to the last falling edge to the last rising edge at the 50% crossing Fall Time Duration of falling edge from 90-10% Bud Time from the first failing edge to the last falling edge to the last rising edge at the 50% crossing Firme@Level Time from the first failing edge to the last falling edge of chanel Fall Time Form the first falling edge of chanel and slope, include: Current, Max, Min, Mean, Std-dev Fall Time from the first failing edge of channel A, to the first falling edge of channel B Firme Time from the first falling edge of channel A, to the first falling edge of channel B Firme Time from the first falling edge of channel A, to the first falling edge of channel B Firme Time from the first falling edge of channel A, to the first falling edge of channel B Firme Time from the first falling edge of channel A, to the first falling edge of channel B Firme Time from the first falling edge of channel A, to the first falling edge of channel B F			
VRMS Root mean square of all data values Crms Root mean square of all data values FOV Overshoot after a falling edge;(base-min)/Amplitude FPRE Overshoot before a falling edge;(max-top)/Amplitude ROV Overshoot after a rising edge;(max-top)/Amplitude RPRE Overshoot before a rising edge;(max-top)/Amplitude RPRE Overshoot before a rising edge;(base-min)/Amplitude Level®X the voltage value of the trigger point FPRE Period Period for every cycle in waveform at the 50% level and positive slope Freq Prequency for every cycle in waveform at the 50% level and positive slope -Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and positive slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of rising edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period -Dut Ratio of positive width to period Firme from the fright rising edge for the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time from the first rising edges of the two channels FRF Time from the first rising edge of channel A, to the first falling edge of channel B FFF Time from the first rising edge of channel A, to the first falling edge of channel B FFF Time from the first rising edge of channel A, to the first falling edge of channel B FFF Time from the first rising edge of channel A, to the first falling edge of channel B FFF Time from the first rising edge of channel A, to the first falling edge of channel B FFF Time from the first rising edge of channel A, to the first falling edge of channel B FFF Time from the first rising edge of channel A, to the first falling edge of channel B FFF Time from the first rising edge of channel			
Crms Root mean square of all data values in the first cycle FOV Overshoot after a falling edge; (base-min)/Amplitude ROV Overshoot after a falling edge; (max-top)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude ROV Overshoot before a rising edge; (base-min)/Amplitude ROV			·
FOV Overshoot after a falling edge;(base-min)/Amplitude ROV Overshoot before a falling edge;(max-top)/Amplitude ROV Overshoot before a rising edge;(max-top)/Amplitude ROV Overshoot before a rising edge;(base-min)/Amplitude ROV Overshoot before a rising edge;(base-min)/Amplitude Level@X the voltage value of the trigger point Level@X the voltage value of the trigger point Period Period for every cycle in waveform at the 50% level and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope -Wild Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing Time@Level Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time from the first rising edge of channel A, to the first rising edge of channel B FFF Time from the first rising edge of channel A, to the first rising edge of channel B FFF Time from the first rising edge of channel A, to the first rising edge of channel B LFF Time from the first falling edge of channel A, to the first rising edge of channel B LFF Time from the first falling edge of channel A, to the last falling edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last falling edge of channel B LFF Time from the first falling edge of channel A, to the last falling edge of channel B LFF Time from the first falling edge of channel A, to the last falling edge of channel B LFF Time from the first falling edge of channel A, to the last falling edge of channel B LFF Time from the first falling edge of channel A, to the last fa			
FPRE Overshoot before a falling edge;(max-top)/Amplitude ROV Overshoot after a rising edge;(max-top)/Amplitude RPRE Overshoot before a rising edge;(base-min)/Amplitude Level@X the voltage value of the trigger point Horizontal (Time) Period Period for every cycle in waveform at the 50% level and positive slope Freq Frequency for every cycle in waveform at the 50% level and positive slope -Wild Wildth measured at 50% level and positive slope -Wild Wildth measured at 50% level and negative slope -Wild Wildth measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwild Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period -Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time between the first rising edge of channel A, to the first falling edge of channel B FFF Time from the first falling edge of channel A, to the first falling edge of channel B FFR Time from the first falling edge of channel A, to the first falling edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, t			
ROV Overshoot after a rising edge:(max-top)/Amplitude RRRE Overshoot before a rising edge:(base-min)/Amplitude Level@X the voltage value of the trigger point Horizontal (Time) Period Period for every cycle in waveform at the 50% level and positive slope Freq Frequency for every cycle in waveform at the 50% level and positive slope +Wid Width measured at 50% level and positive slope Width measured at 50% level and positive slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time from the first rising edge of channel A , to the first falling edge of channel B FRF Time from the first falling edge of channel A , to the first falling edge of channel B LRR Time from the first rising edge of channel A , to the first falling edge of channel B LRR Time from the first rising edge of channel A , to the last rising edge of channel B LRR Time from the first rising edge of channel A , to the last rising edge of channel B LRF Time from the first rising edge of channel A , to the last rising edge of channel B LRF Time from the first rising edge of channel A , to the last rising edge of channel B LRF Time from the first rising edge of channel A , to the last rising edge of channel B LRF Time from the first rising edge of channel A , to the last rising edge of channel B LRF Time from the first rising edge of channel A , to the last rising edge of channel B LRF Time from the first rising edge of channel A , to the last rising edge of channel B LRF Time from the first rising edge of channel A , to the last rising edge of ch			
RPRE Level@X the voltage value of the trigger point Horizontal (Time) Period Period for every cycle in waveform at the 50% level and positive slope Freq Frequency for every cycle in waveform at the 50% level and positive slope +Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and positive slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge ,or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of negative width to period -Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Firm from the first rising edge of channel A, to the first falling edge of channel B FFR Time from the first falling edge of channel A, to the first first ing edge of channel B LRR Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge			
Level@X			
Horizontal (Time) Period Period for every cycle in waveform at the 50% level ,and positive slope Freq Frequency for every cycle in waveform at the 50% level ,and positive slope +Wid Width measured at 50% level and positive slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge ,or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time between the first rising edges of the two channels FRF Time from the first rising edge of channel A ,to the first falling edge of channel B FFR Time from the first falling edge of channel A ,to the first falling edge of channel B LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LRR Time from the first rising edge of channel A ,to the last falling edge of channel B LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LFF Time from the first rising edge of channel A ,to the last rising edge of channel B LFF Time from the first rising edge of channel A ,to the last rising edge of channel B LFF Time from the first rising edge of channel A ,to the last rising edge of channel B LFF Time from the first rising edge of channel A ,to the last rising edge of channel B LFF Time from the first rising edge of channel A ,to the last rising edge of channel B LFF Time from the first rising edge of channel A ,to the last rising edge of channel B LFF Time from the first rising edge of channel A ,to the last rising edge of channel B LFF Time from the first rising edge of channel A ,to the last rising edge of channel B LFF Time from the first rising edge of channel A ,to the last rising edge of c			
Freq Frequency for every cycle in waveform at the 50% level and positive slope +Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period -Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time between the first rising edges of the two channels FRF Time from the first rising edge of channel A ,to the first falling edge of channel B FFR Time from the first falling edge of channel A ,to the first falling edge of channel B LRR Time from the first falling edge of channel A ,to the last rising edge of channel B LRF Time from the first rising edge of channel A ,to the last rising edge of channel B LRF Time from the first rising edge of channel A ,to the last rising edge of channel B LFF Time from the first rising edge of channel A ,to the last rising edge of channel B LFF Time from the first falling edge of channel A ,to the last rising edge of channel B LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2).		_	
+Wild Wildth measured at 50% level and positive slope -Wild Wildth measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwild Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period -Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time between the first rising edges of the two channels FRF Time from the first rising edges of channel A, to the first falling edge of channel B FFF Time from the first falling edge of channel A, to the first falling edge of channel B LRR Time from the first rising edge of channel A, to the last falling edge of channel B LRR Time from the first rising edge of channel A, to the last rising edge of channel B LRF Time from the first rising edge of channel A, to the last rising edge of channel B LRF Time from the first falling edge of channel A, to the last rising edge of channel B LRF Time from the first falling edge of channel A, to the last rising edge of channel B LRF Time from the first falling edge of channel A, to the last rising edge of channel B LRF Time from the first falling edge of channel A, to the last rising edge of channel B LRF Time from the first falling edge of channel A, to the last rising edge of channel B LRF Time from the first falling edge of channel A, to the last rising edge of channel B LRF Time from the first falling edge of channel A, to the last rising edge of channel B LRF Time from the first falling edge of channel A, to the last rising edge of channel B LRF Time from the first falling edge of channel B LRF Time from the first falling edge of channel B LRF Time from the first falling edge of channel	Horizontal (Time)		
-Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge ,or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period -Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time between the first rising edges of the two channels FRF Time from the first rising edge of channel A ,to the first falling edge of channel B FFR Time from the first falling edge of channel A ,to the first falling edge of channel B LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LRF Time from the first rising edge of channel A ,to the last rising edge of channel B LRF Time from the first rising edge of channel A ,to the last rising edge of channel B LFF Time from the first fing edge of channel A ,to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count		·	
Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge ,or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period -Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time between the first rising edge of the two channels FRF Time from the first rising edge of channel A, to the first falling edge of channel B FFR Time from the first falling edge of channel A, to the first falling edge of channel B LRR Time from the first falling edge of channel A, to the last rising edge of channel B LRF Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B LFF Time from the		+Wid	Width measured at 50% level and positive slope
Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge ,or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time between the first rising edges of the two channels FRF Time from the first rising edge of channel A ,to the first falling edge of channel B FFR Time from the first falling edge of channel A ,to the first falling edge of channel B LRR Time from the first fising edge of channel A ,to the first falling edge of channel B LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LRF Time from the first falling edge of channel A ,to the last rising edge of channel B LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2), Count		-Wid	Width measured at 50% level and negative slope
Bwid Time from the first rising edge to the last falling edge ,or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time between the first rising edge of the two channels FRF Time from the first rising edge of channel A, to the first falling edge of channel B FFR Time from the first falling edge of channel A, to the first rising edge of channel B LRR Time from the first rising edge of channel A, to the last rising edge of channel B LRF Time from the first rising edge of channel A, to the last falling edge of channel B LFF Time from the first rising edge of channel A, to the last falling edge of channel B Cursors Manual: Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count		Rise Time	Duration of rising edge from 10-90%
+Dut Ratio of positive width to period -Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time between the first rising edges of the two channels FRF Time from the first rising edge of channel A ,to the first falling edge of channel B FFR Time from the first falling edge of channel A ,to the first falling edge of channel B LRR Time from the first rising edge of channel A ,to the first falling edge of channel B LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LFF Time from the first rising edge of channel A ,to the last falling edge of channel B LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count		Fall Time	Duration of falling edge from 90-10%
-Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Phase Calculate the phase difference between two edges FRR Time between the first rising edges of the two channels FRF Time from the first rising edge of channel A ,to the first falling edge of channel B FFR Time from the first falling edge of channel A ,to the first falling edge of channel B LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LRF Time from the first rising edge of channel A ,to the last rising edge of channel B LFF Time from the first rising edge of channel A ,to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count		Bwid	Time from the first rising edge to the last falling edge ,or the first falling edge to the last rising edge at the 50% crossing
Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Phase Calculate the phase difference between two edges FRR Time between the first rising edges of the two channels FRF Time from the first rising edge of channel A ,to the first falling edge of channel B FFR Time from the first falling edge of channel A ,to the first rising edge of channel B FFF Time from the first falling edge of channel A ,to the first falling edge of channel B LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LRF Time from the first rising edge of channel A ,to the last falling edge of channel B LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count		+Dut	Ratio of positive width to period
Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Phase Calculate the phase difference between two edges FRR Time between the first rising edges of the two channels FRF Time from the first rising edge of channel A ,to the first falling edge of channel B FFR Time from the first falling edge of channel A ,to the first rising edge of channel B FFF Time from the first falling edge of channel A ,to the last rising edge of channel B LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LRF Time from the first rising edge of channel A ,to the last falling edge of channel B LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count		-Dut	Ratio of negative width to period
Phase Calculate the phase difference between two edges FRR Time between the first rising edges of the two channels FRF Time from the first rising edge of channel A ,to the first falling edge of channel B FFR Time from the first falling edge of channel A ,to the first rising edge of channel B FFF Time from the first falling edge of channel A ,to the first falling edge of channel B LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LRF Time from the first rising edge of channel A ,to the last falling edge of channel B LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count		Delay	Time from the trigger to the first transition at the 50% crossing
FRR Time between the first rising edges of the two channels FRF Time from the first rising edge of channel A ,to the first falling edge of channel B FFR Time from the first falling edge of channel A ,to the first rising edge of channel B FFF Time from the first falling edge of channel A ,to the first falling edge of channel B LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LRF Time from the first rising edge of channel A ,to the last falling edge of channel B LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count		Time@Level	Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev
FRF Time from the first rising edge of channel A ,to the first falling edge of channel B FFR Time from the first falling edge of channel A ,to the first rising edge of channel B FFF Time from the first falling edge of channel A ,to the first falling edge of channel B LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LRF Time from the first rising edge of channel A ,to the last falling edge of channel B LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual: Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count	Delay	Phase	Calculate the phase difference between two edges
FFR Time from the first falling edge of channel A ,to the first rising edge of channel B FFF Time from the first falling edge of channel A ,to the first falling edge of channel B LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LRF Time from the first rising edge of channel A ,to the last falling edge of channel B LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count		FRR	Time between the first rising edges of the two channels
FFF Time from the first falling edge of channel A ,to the first falling edge of channel B LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LRF Time from the first rising edge of channel A ,to the last falling edge of channel B LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count		FRF	Time from the first rising edge of channel A ,to the first falling edge of channel B
LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LRF Time from the first rising edge of channel A ,to the last falling edge of channel B LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual: Time X1, X2, (X1-X2), (1/\Delta T) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count		FFR	Time from the first falling edge of channel A ,to the first rising edge of channel B
LRF Time from the first rising edge of channel A ,to the last falling edge of channel B LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual: Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count		FFF	Time from the first falling edge of channel A ,to the first falling edge of channel B
LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔΤ) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count		LRR	Time from the first rising edge of channel A ,to the last rising edge of channel B
Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count		LRF	Time from the first rising edge of channel A ,to the last falling edge of channel B
Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count		LFF	Time from the first falling edge of channel A ,to the last rising edge of channel B
	Cursors	Voltage Y1, Y2,	, (Y1-Y2)
Counter Hardware 6 bits counter (channels are selectable)	Statistics	Current, Mean,	Min, Max, Std-Dev, Count
	Counter	Hardware 6 bits	s counter (channels are selectable)

Math Function	
	* / FET d/dt (dt -/
Operation	+, -, *, /, FFT, d/dt,∫dt,√
FFT window	Rectangular, Blackman, Hanning, Hamming Full Screen, Split
FFT display	2
Decoding number	
SDS1000X+)	n Generator (Standard for
Channel	1
Max. Output Frequency	25 MHz
Sampling Rate	125 MSa/s
Frequency Resolution	1 μHz
Frequency Accuracy	±50 ppm
Vertical Resolution	14 bits
Amplitude Range	-1.5 ~ +1.5 V (50 Ω)
	-3 ~ +3 V (High-Z)
Waveform Type	Sine, Square, Ramp, Pulse, DC, Noise, Cardiac, Gaus Pulse, Exp Rise, Exp Fall, Arb
Output impedance	50 Ω±2%
Protection	Short-Circuit Protection
Sine	
Frequency	1 μHz ~ 25 MHz
Offset Accuracy (100 KHz)	±(0.3 dB*Offset Setting Value +1 mVpp)
Amplitude flatness (100 kHz, 5Vpp)	±0.3 dB
SFDR	DC ~ 1 MHz -60 dBc
	1 MHz ~ 5 MHz -55 dBc
	5 MHz ~ 25 MHz -50 dBc
HD	DC-5 MHz -50 dBc
	EMIL OF MILL AF JD-
	5 MHz - 25 MHz -45 dBc
Square/Pulse	5 MHZ - 25 MHZ -45 GBC
Square/Pulse Frequency	
Frequency	1 μHz ~ 10 MHz 20% ~ 80%
Frequency Duty Cycle	1 μHz ~ 10 MHz 20% ~ 80%
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz,	1 μHz ~ 10 MHz
Frequency Duty Cycle Rise/Fall time	1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%)
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical)	1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3%
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter	1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp	1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter	1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100%
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical)	1 μHz \sim 10 MHz 20% \sim 80% $<$ 24 ns (10% \sim 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz \sim 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry)
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency	1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100%
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry DC	1 μHz \sim 10 MHz 20% \sim 80% $<$ 24 ns (10% \sim 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz \sim 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry)
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry	1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% ~ 100% (Adjustable)
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry DC Offset range Accuracy	1 μHz \sim 10 MHz 20% \sim 80% $<$ 24 ns (10% \sim 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz \sim 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% \sim 100% (Adjustable)
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry DC Offset range	1 μHz \sim 10 MHz 20% \sim 80% $<$ 24 ns (10% \sim 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz \sim 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% \sim 100% (Adjustable) \pm 1.5 V (50 Ω) \pm 3 V (High-Z)
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry DC Offset range Accuracy	1 μHz \sim 10 MHz 20% \sim 80% $<$ 24 ns (10% \sim 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz \sim 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% \sim 100% (Adjustable) \pm 1.5 V (50 Ω) \pm 3 V (High-Z)
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry DC Offset range Accuracy Noise	1 μHz \sim 10 MHz 20% \sim 80% $<$ 24 ns (10% \sim 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz \sim 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% \sim 100% (Adjustable) ±1.5 V (50 Ω) ±3 V (High-Z) ±(offset *1%+3 mV)
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry DC Offset range Accuracy Noise Bandwidth	1 μHz \sim 10 MHz 20% \sim 80% $<$ 24 ns (10% \sim 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz \sim 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% \sim 100% (Adjustable) ±1.5 V (50 Ω) ±3 V (High-Z) ±(offset *1%+3 mV)
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry DC Offset range Accuracy Noise Bandwidth Arbitrary Wave	1 μHz \sim 10 MHz 20% \sim 80% $<$ 24 ns (10% \sim 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz \sim 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% \sim 100% (Adjustable) ±1.5 V (50 Ω) ±3 V (High-Z) ±(offset *1%+3 mV)
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry DC Offset range Accuracy Noise Bandwidth Arbitrary Wave Frequency	1 μHz \sim 10 MHz 20% \sim 80% $<$ 24 ns (10% \sim 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz \sim 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% \sim 100% (Adjustable) \pm 1.5 V (50 Ω) \pm 3 V (High-Z) \pm (offset *1%+3 mV) > 25 MHz (-3 dB)
Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry DC Offset range Accuracy Noise Bandwidth Arbitrary Wave Frequency Wave Length	1 μHz \sim 10 MHz 20% \sim 80% $<$ 24 ns (10% \sim 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz \sim 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% \sim 100% (Adjustable) \pm 1.5 V (50 Ω) \pm 3 V (High-Z) \pm (offset *1%+3 mV) > 25 MHz (-3 dB)

Digital Channels (Optional for SDS1000X+)			
16			
500 MSa/s			
14 Mpts/CH			
4 ns			
D0~D7, D8~D15			
-3 V~3 V			
TTL, CMOS, LVCMOS 3.3, LVCMOS 2.5, custom			
D0~D15: ± 1 sampling interval Digital to Analog: \pm (1 sampling interval +1 ns)			

I/O	
Standard	USB Host, USB Device, LAN, Pass/Fail, Trigger Out
Pass/Fail	3.3 V TTL Output
Display (Scree	n)
Display Type	8 inch TFT-LCD
Display Resolution	800×480
Display Color	24 bit
Contrast (Typical)	500:1
Backlight	300 nit
Range	8 x 14 divisions
Display (Wave	form)
Display Mode	Dot, Vector
Persist Time	Off, 1 Sec, 5 Sec, 10 Sec, 30 Sec, Infinite
Color Display	Normal, Color
Screen Saver	1 min, 5 min, 10 min, 30 min, 1 hour, Off
Language	Simplified Chinese, Traditional Chinese, English, French, Japanese, Korean, German, Russian, Italian, Portuguese
Environments	
Temperature	Operating: 10 $^{\circ}$ C \sim +40 $^{\circ}$ C
	Non-operating: -20 $^{\circ}$ C \sim +60 $^{\circ}$ C
Humidity	Operating: 85%RH, 40 °C , 24 hours
	Non-operating: 85%RH, 65 °C , 24 hours
Height	Operating: ≤3000 m
	Non-operating: ≤15,266 m
Electromagnetic	2004/108/EC
Compatibility	Execution Standard EN 61326-1:2006
	EN 61000-3-2:2006 + A2:2009, EN 61000-3-3:2008
Safety	2006/95/EC Execution Standard EN 61010-1:2010/EN 61010-2- 030:2010
Mechanical	
Dimensions	Length 340 mm
	Width 123 mm
	Height 184 mm
Weight	N.W: 3.26 Kg; G.W: 4.25 Kg
Power Supply	
Input Voltage	100 ~ 240 VAC, CAT II, Auto selection
Frequency	50/ 60/ 400 Hz
Power	50 W Max

SDS1000X/SDS1000X+ Probes & Accessories

Туре	Model	Picture	Specifications		
	PP470		Bandwidth: 70 MHz, 1 X/10 X, 1 M/10 Mohm, 300 V/600 V		
Passive Probe	PP510		Bandwidth: 100 MHz, 1 X/10 X, 1 M/10 Mohm, 300 V/600 V		
	PP215		Bandwidth: 200 MHz, 1 X/10 X, 1 M/10 Mohm, 300 V/600 V		
Logic Probe	SPL1016	And Andrews	16 Channel Logic Probe		
Current Probe	CP4020		Bandwidth: 100 KHz; Maximum continuous current 20 Arms; Peak current 60 A; Switching ratio: 50 mV/A; 5 mV/A; DC measurement accuracy: 50 mV/A (0.4 A-10 ApK) ± 2%; 5 mV/A (1 A-60 ApK)±2%; 9 V battery-powered		
	CP4050	THE MOST	Bandwidth: 1 MHz; Maximum continuous current 50 Arms; Peak current 140 A; Switching ratio: 500 mV/A; 50 mV/A; DC measurement measurement accuracy: 500 mV/A (20 mA-14 ApK) ±3%±20 mA; 50 mV/A (200 mA-100 ApK) ±4%± 200 mA; 50 mV/A (100 A-140 ApK)±15% max; 9 V battery-powered		
	CP4070		Bandwidth: 150 KHz; Maximum continuous current 70 Arms; Peak current 200 A; Switching ratio: 50 mV/A; 5 mV/A; DC measurement accuracy: 50 mV/A (0.4 A-10 ApK)±2%±5 mV/A (1 A-200 ApK)±2%; 9 V battery-powered		
	CP4070A		Bandwidth: 300 KHz; Maximum continuous current 70 Arms; Peak current 200 A; Switching ratio: 100 mV/A;10 mV/A; DC measurement accuracy: 100 mV/A (50 mA-10 ApK) ±3%±50 mA; 10 mV/A (500 mA-40 ApK) ±4%±50 mA; 10 mV/A (40 A-200 ApK) ±15% max; 9 V battery-powered		
	CP5030		Bandwidth: 50 MHz; Maximum continuous current 30 Arms; Peak current 50 A;Switching ratio: 100 mV/A, 1 V/A; AC/DC measurement accuracy: 1 A (±1%±1 mA); 100 mV/A (±1%±10 mA); Standard DC 12 V/1.2 A power adapter		
	CP5030A		Bandwidth: 100 MHz; Maximum continuous current 30 Arms; Peak current 50 A; Switching ratio: 100 mV/A, 1 V/A; AC/DC measurement accuracy: 1 A (±1%±1 mA); 100 mV/A (±1%±10 mA); Standard DC 12 V/1.2 A power adapter		
	CP5150		Bandwidth: 12 MHz; Maximum continuous current 150 Arms; Peak current 300 A; Switching ratio: 100 mV/A, 1 V/A; AC/DC measurement accuracy: 100 mV/A (±1%±1 mA); 10 mV/A (±1%±10 mA); Standard DC 12 V/1.2 A power adapter		
	CP5500		Bandwidth: 5 MHz; Maximum continuous current 500 Arms; Peak current 750 A; Switching ratio: 100 mV/A, 10 mV/A; AC/DC measurement accuracy: 100 mV/A (±1%±1 mA); 10 mV/A (±1%±10 mA); Standard DC 12 V/1.2 A power adapter		
High Voltage Differential Probe	DPB4080	The state of the s	Bandwidth: 50 MHz; Maximum input differential voltage 800 V (DC + Peak AC); Range selection (attenuation ratio):10 X/100 X; Accuracy: ±1%; Standard DC 9 V/1 A power adapter		
	DPB5150		Bandwidth: 70 MHz; Maximum input differential voltage 1500 V (DC + Peak AC); Range selection (attenuation ratio): 50 X/500 X; Accuracy: ±2%; Standard 5 V/1 A USB power adapter		

Туре	Model	Picture	Specifications
	DPB5150A		Bandwidth: 100 MHz; Maximum input differential voltage 1500 V (DC + Peak AC); Range selection (attenuation ratio): 50 X/500 X; Accuracy: ±2%; Standard 5 V/1 A USB power adapter
High Voltage Differential Probe	DPB5700		Bandwidth: 70 MHz; Maximum input differential voltage 7000 V (DC + Peak AC); Range selection (attenuation ratio): 100 X/1000 X; Accuracy: ±2%; Standard 5 V/1 A USB power adapter
	DPB5700A		Bandwidth: 100 MHz; Maximum input differential voltage 7000 V (DC + Peak AC); Range selection (attenuation ratio): 100 X/1000 X; Accuracy: ±2%; Standard 5 V/1 A USB power adapter
High Voltage Probe	HPB4010		Bandwidth: 40 MHz; Maximum measurement voltage DC: 10 KV; AC (rms): 7 KV (sine); AC (Vpp): 20 KV (Pulse); attenuation ratio 1:1000; Accuracy: ≤3%
Isolated front end	ISFE	Control of the second of the s	USB 5 V power supply, plug and play, the maximum input voltage 600 Vp-p, floating test. Work with oscilloscopes.
Demo board	STB Test Board		Optional accessories for experimental teaching and product demos
Deskew fixture	DF2001A		Deskew fixture for voltage and current probes

Ordering information

Product Description	Product Name
100 MHz Two Channels	SDS1102X
200 MHz Two Channels	SDS1202X
100 MHz Two Channels, Built-In Waveform Generator (Standard), 16 Digital Channels (Option, *Requires SPL1016 & SDS-1000X-LA)	SDS1102X+
200 MHz Two Channels, Built-In Waveform Generator (Standard), 16 Digital Channels (Option, *Requires SPL1016 & SDS-1000X-LA)	SDS1202X+

S	tan	ıda	rd /	ACC	esso	ries

USB Cable -1

Quick Start-1

Certification-1

Passive Probe-2

Power Cord -1

CD (Included User Manual and EasyScopeX software)-1

CD (Ticluded Oser Manual and EasyScopex Software)-1			
Optional Accessories			
I2C,SPI,UART/RS232,CAN,LIN Decoder	SDS-1000X-DC		
16 Channels MSO (Software)	SDS-1000X-LA		
16 Digital Channels Logic Probe	SPL1016		
Isolated Front End	ISFE		
STB Demo Source	STB		
High Voltage Probe	HPB4010		
Current Probe	CP4020/CP4050/CP4070/ CP4070A/CP5030/CP5030A/ CP5150/CP5500		
Differential Probe	DPB4080/DPB5150/DPB5150A/DPB5700/DPB5700A		

SDS1000X SDS1000X+ Series Digital Oscilloscope

SIGLENT is an international high-tech company, concentrating on R&D, sales, production and services of electronic test & measurement instruments.

SIGLENT®

SIGLENT first began developing digital oscilloscopes independently in 2002. After more than a decade of continuous development, SIGLENT has extended its product line to include digital oscilloscopes, function/arbitrary waveform generators, digital multimeters, DC power supplies, spectrum analyzers, isolated handheld oscilloscopes and other general purpose test instrumentation. Since its first oscilloscope, the ADS7000 series, was launched in 2005, SIGLENT has become the fastest growing manufacturer of digital oscilloscopes. We firmly believe that today SIGLENT is the best value in electronic test & measurement.

Headquarter:

SIGLENT TECHNOLOGIES CO., LTD.

Add: Bldg No.4 & No.5, Antongda Industrial Zone, 3rd Liuxian Road, Bao'an District,

Zone, 3rd Liuxian Road, Bao'an Distr Shenzhen, 518101, China.

Tel: + 86 755 3661 5186 Fax: + 86 755 3359 1582 Email: sales@siglent.com; Website: www.siglent.com/ens/

USA:

SIGLENT Technologies America, Inc 6557 Cochran Rd Solon, Ohio 44139

Tel: 440-398-5800 Toll Free: 877-515-5551 Fax: 440-399-1211 Email: info@siglent.com

Website: www.siglentamerica.com

Europe:

SIGLENT TECHNOLOGIES EUROPE GmbH ADD: Liebigstrasse 2-20, Gebaeude 14,

22113 Hamburg Germany Tel: +49(0)-819-95946 Fax: +49(0)-819-95947 Email: info-eu@siglent.com Website: www.siglenteu.com Follow us on Facebook: SiglentTech