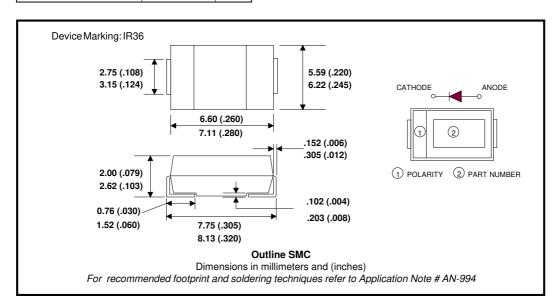

International Rectifier

MBRS360TR

SCHOTTKY RECTIFIER

3 Amp


Major Ratings and Characteristics

Characteristics	MBRS360TR	Units
I _{F(AV)} Rectangular waveform	3.0	Α
V _{RRM}	60	V
I _{FSM} @t _p =5μs sine	790	Α
V _F @3.0Apk,T _J =125°C	0.61	V
T _J range	- 55 to 150	°C

Description/Features

The MBRS360TR surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Bulletin PD-20586 rev. C 03/03

International TOR Rectifier

Voltage Ratings

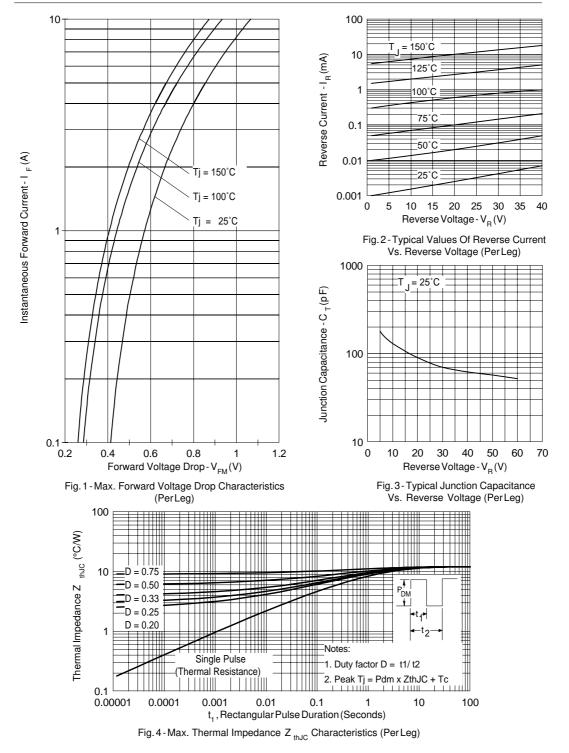
Part number	MBRS360TR
V _R Max. DC Reverse Voltage (V)	60
V _{RWM} Max. Working Peak Reverse Voltage (V)	

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions		
I _{F(AV)}	Max. Average Forward Current	3.0	Α	50% duty cycle@T _L =118°C, rectangular wave form		
		4.0		50% duty cycle@T _L =105°C, rectangular wave form		
I _{FSM}	Max. Peak One Cycle Non-Repetitive	790	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and	
	Surge Current	80		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied	
E _{AS}	Non Repetitive Avalanche Energy	5.0	mJ	T _J =25°C, I _{AS} =1.0A, L=10mH		
I _{AR}	Repetitive Avalanche Current	1.0	Α	Current decaying linearly to zero in 1 µsec Frequency limited by T _J max. Va = 1.5 x Vr typical		

Electrical Specifications

	Parameters	Тур	Max	Units	Conditions	3
V _{FM}	Max. Forward Voltage Drop (1)	0.57	0.74	V	@ 3A	T 05 °C
		0.72	0.9	V	@ 6A	T _J = 25 °C
		0.51	0.61	V	@ 3A	T 405.00
		0.62	0.77	V	@ 6A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage (1)	-	0.5	mA	T _J = 25 °C	
	Current	-	20	mA	T _J = 100°C	$V_R = \text{rated } V_R$
		-	30	mA	T _J = 125 °C	
C _T	Max. Junction Capacitance	-	180	pF	V _R =5V _{DC} (test signal range 100KHz to 1Mhz) 25°C	
L _S	Typical Series Inductance	-	3.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	-	10000	V/µs	(Rated V _R)	


⁽¹⁾ Pulse Width < 300 μ s, Duty Cycle < 2%

Thermal-Mechanical Specifications

	<u> </u>					
	Parameters	Value	Units	Conditions		
T _J	Max. Junction Temperature Range (*)	-55 to 150	°C			
T _{stg}	Max. Storage Temperature Range	-55 to 150	°C			
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	12	°C/W	DCoperation		
R _{thJA}	Max. Thermal Resistance Junction to Ambient	46	°C/W	DCoperation		
wt	Approximate Weight	0.24(0.008)	g (oz.)			
	Case Style	SMC		Similar to DO-214AB		
	Device Marking	IR36				

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}} \quad \text{thermal runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

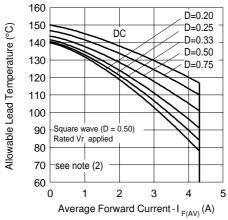


Fig. 4-Maximum Average Forward Current Vs. Allowable Lead Temperature

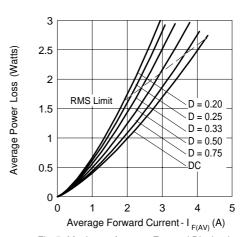


Fig. 5 - Maximum Average Forward Dissipation Vs. Average Forward Current

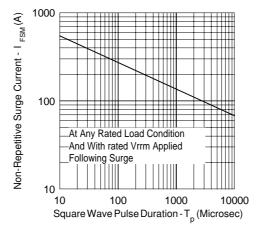
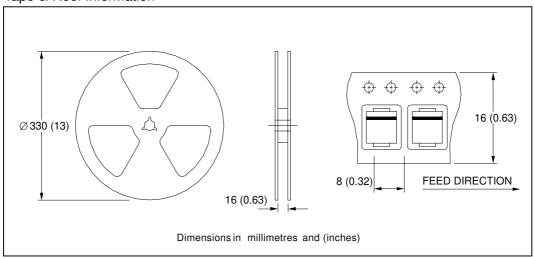
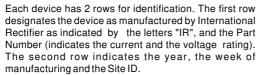
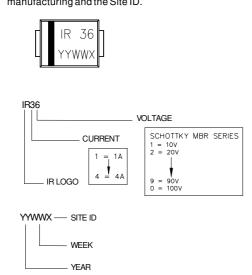



Fig. 6-Maximum Peak Surge Forward Current Vs. Pulse Duration


 $\begin{tabular}{ll} \textbf{(2)} & Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC};$\\ & Pd = Forward Power Loss = $I_{F(AV)} \times V_{FM} @ (I_{F(AV)}/D)$ (see Fig. 6);$\\ & Pd_{REV} = Inverse Power Loss = $V_{R1} \times I_R (1-D); I_R@V_{R1} = 80\% rated V_R$ \\ \end{tabular}$


Tape & Reel Information

Marking & Identification

Ordering Information

MBRS360TR - TAPE AND REEL

WHEN ORDERING, INDICATE THE PART NUMBER AND THE QUANTITY (IN MULTIPLES OF 3000 PIECES).

EXAMPLE: MBRS360TR - 6000 PIECES

MBRS360TR
Bulletin PD-20586 rev. C 03/03

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 03/03