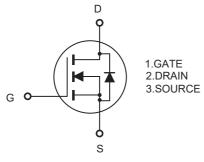
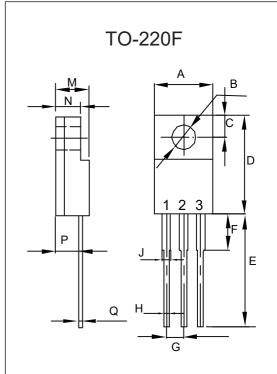


Features


- · High Current Rating
- Lower R_{DS(ON)}
- Lower Capacitance
- Lower Total Gate Charge
- Tighter V_{SD} Specifications
- Avalanche Energy Specified
- Epoxy Meets UL 94 V-0 Flammability Rating
- Moisture Sensitivity Level 1
- Halogen Free Available Upon Request By Adding Suffix "-HF"

Maximum Ratings


- Operating Junction Temperature Range: -55°C to +150°C
- Storage Temperature Range: -55°C to +150°C
- Thermal Resistance: 62.5°C/W Junction to Ambient

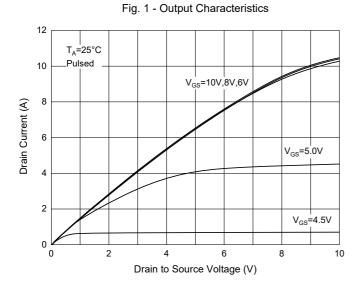
Parameter	Symbol	Rating	Unit
Drain -Source Voltage	V _{DS}	650	V
Gate -Source Volltage	V _{GS}	±30	V
Drain Current-Continuous	I _D	12.0	Α
Drain Current-Pulse ^(Note4)	I _{DM}	48	Α
Power Dissipation	P _D	2.0	W
Single Pulsed Avalanche Energy ^(note 1)	E _{AS}	540	mJ
Maximum Lead Temperure for Soldering Purposes,1/8" from Case for 5 Seconds	T _L	260	ů

Internal Structure

N-Channel Enhancement Mode Field Effect Transistor

DIMENSIONS					
DIM	INCHES		MM		NOTE
Dilvi	MIN	MAX	MIN	MAX	NOTE
Α	0.392	0.421	9.96	10.70	
В	0.1	38	3.	50	Ф
С	0.1	06	2.	70	TYP.
D	0.567	0.642	14.40	16.30	
E	0.5	20	13.	20	TYP.
F		0.177		4.50	
G	0.1	00	2.	54	TYP.
Н	0.020	0.035	0.50	0.90	
J	0.043	0.053	1.10	1.35	
М	0.169	0.201	4.30	5.10	
N		0.140		3.56	
Р	0.083	0.126	2.10	3.20	
Q	0.020	0.032	0.50	0.80	

Electrical Characteristics @ 25°C (Unless Otherwise Noted)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Off Characteristics				I	1	1
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{(BR)DSS}$ V_{GS} =0V, I_D =250 μ A 65				
Drain-Source Diode Forward Voltage ^(note2)	V _{SD}	V _{GS} =0V, I _S =12.0A			1.4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =650V, V _{GS} =0V			1.0	μA
Gate-Body Leakage Current, Forward ^(note2)	I _{GSSF}	V _{DS} =0V, V _{GS} =30V			100	nA
Gate-Body Leakage Current, Reverse ^(note2)	I _{GSSR}	V _{DS} =0V, V _{GS} =-30V			-100	
On Characteristics(note2)	1	I				
Gate-Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0	3.5	4.0	V
Static Drain-Source On-Resistance	R _{DS(on)}	V _{GS} =10V, I _D =6A		0.7	0.85	Ω
Dynamic Characteristics(note 3)						
Input Capacitance	C _{iss}			1800		
Output Capacitance	C _{oss}	V _{DS} =25V,V _{GS} =0V,f=1MHz		200		pF
Reverse Transfer Capacitance	C _{rss}			25		
Switching characteristics(note2,3,4)	I	I				
Total Gate Charge	Qg			42	5	nC
Gate-Source Charge	Q_{gs}	V _{DS} =520V,V _{GS} =10V,I _D =12A		8.6		
Gate-Drain Charge	Q_{gd}			21		-
Turn-On Delay Time(note 3)	t _{d(on)}	V _{DD} =325V,V _{GS} =10V,		30		
Turn-On Rise Time(note 3)	t _r			90		ns
Turn-Off Delay Time(note 3)	t _{d(off)}	$R_{G}=25\Omega,I_{D}=12.0A$		160		
Turn-Off Fall Time(note 3)	t _f			90		
Drain-Source Diode Characteristics		I				1
Maximum Continuous Drain-source Diode Forward Current	Is				12	А
Maximum Pulsed Drain-source Diode Forward Current	I _{SM}				48	А

Notes:

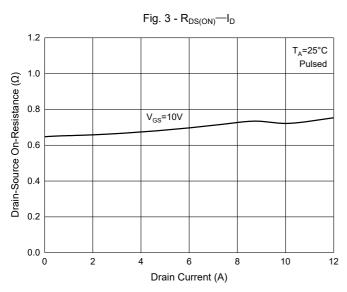
- 1. L=7.5mH, I_L =12A, V_{DD} =50V, R_G =25 Ω , Starting T_J =25°C.
- 2. Pulse Test : Pulse width $\!\!\!\! \leqslant\! 300\mu s,$ duty cycle $\!\!\! \leqslant\! \! 2\%.$
- 3. These parameters have no way to verify.
- 4. Pulse width limited by maximum junction temperature

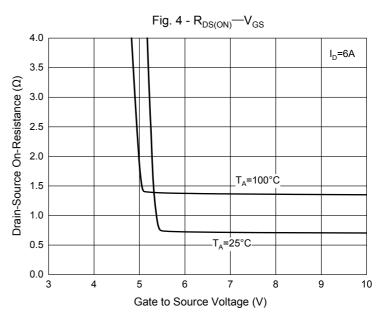
Curve Characteristics

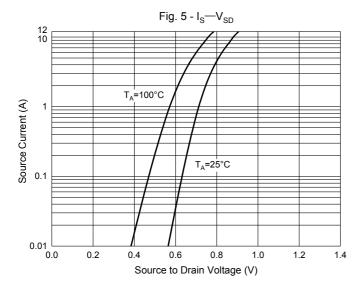
1.6
V_{DS}= 10V
Pulesd

1.2

(Y)
T_A=100°C


T_A=25°C


3


Gate to Source Voltage (V)

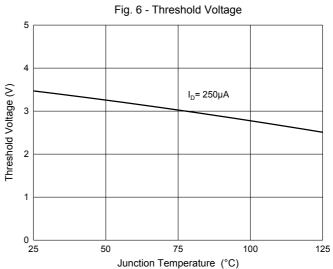

2

Fig. 2 - Transfer Characteristics

0.0

Ordering Information

Device	Packing
Part Number-BP	Bulk:50pcs/Tube,1Kpcs/Box,5Kpcs/Carton

Note: Adding "-HF" Suffix For Halogen Free, eg. Part Number-BP-HF

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages. **Micro Commercial Components Corp.** products are sold subject to the general terms and conditions of commercial sale, as published at

https://www.mccsemi.com/Home/TermsAndConditions.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

Rev.3-3-12012020 4/4 MCCSEMI.COM