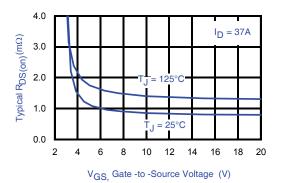
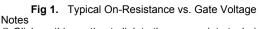


Della Compliant Containing No. Load and Promide (1)	<u>HEX</u>					ottky Diode② vise specified)	
 <u>RoHs Compliant Containing No Lead and Bromide</u> Integrated Monolithic Schottky Diode Low Profile (<0.7 mm) 	V _{DSS}	V _{GS}		R _{DS(on)}		R _{DS(on)}	
 <u>Dual Sided Cooling Compatible</u> ① Low Package Inductance 	25V min	-		0.9mΩ @ 10		1.4mΩ @ 4.5V	
 Optimized for High Frequency Switching 	Q g tot	\mathbf{Q}_{gd}	Q _{gs}	2 Q rr	Qos	ss V _{gs(th)}	
Ideal for CPU Core DC-DC Converters	31nC	10nC	3.0n0	C 58nC	33n	C 1.6V	
 Optimized for Sync. FET socket of Sync. Buck Converte Low Conduction and Switching Losses <u>Compatible with existing Surface Mount Techniques</u> 100% Rg tested Footprint compatible to DirectFET <u>Applicable DirectFET[™] Outline and Substrate Outline (see p.7</u>	D	<u>1</u>		MX	Direc	CtFET™ ISOMETRIC	
SQ SX ST MQ	MX	МТ	MP				

Description


The IRF6894MPbF combines the latest HEXFET[®] Power MOSFET Silicon technology with the advanced DirectFET[™] packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET[™] package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note <u>AN-1035</u> is followed regarding the manufacturing methods and processes. The DirectFET[™] package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.


The IRF6894MPbF balances industry leading on-state resistance while minimizing gate charge along with low gate resistance to reduce both conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further reducing the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The IRF6894MPbF has been optimized for parameters that are critical in synchronous buck converter's Sync FET sockets.

Bass part number	Beekege Type	Standard P	ack	Orderable Port Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
IRF6894MTRPbF	DirectFET [®] Medium Can	Tape and Reel	4800	IRF6894MTRPbF

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	25	V
V _{GS}	Gate-to-Source Voltage	±16	v
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited) ④	37	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	29	•
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)③	163	A
I _{DM}	Pulsed Drain Current®	296	
E _{AS}	Single Pulse Avalanche Energy 6	540	mJ
I _{AR}	Avalanche Current 6	30	А

- ① Click on this section to link to the appropriate technical paper.
 ② Click on this section to link to the DirectFET[™] Website.
- Surface mounted on 1 in. square Cu board, steady state.

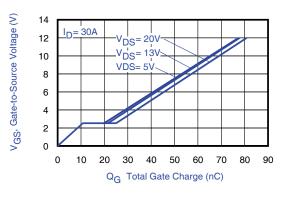


Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage

- ④ TC measured with thermocouple mounted to top (Drain) of part.
- $\ensuremath{\textcircled{}^{\circ}}$ Repetitive rating; pulse width limited by max. junction temperature.
- \circledast Starting T_J = 25°C, L = 1.2mH, R_G = 50 $\Omega,$ I_{AS} = 30A.

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	25			V	$V_{GS} = 0V, I_{D} = 1.0mA$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.02		V/°C	I _D = 10mA (25°C-125°C)
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.9	1.3		V _{GS} = 10V, I _D = 37A ⑦
			1.4	1.8	mΩ	V _{GS} = 4.5V, I _D = 30A ⑦
V _{GS(th)}	Gate Threshold Voltage	1.1	1.6	2.1	V	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Temp. Coefficient		-3.8		mV/°C	$V_{DS} = V_{GS}, I_D = 10 \text{mA}$
I _{DSS}	Drain-to-Source Leakage Current			500	μA	$V_{DS} = 20 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$
	Gate-to-Source Forward Leakage			100		V _{GS} = 16V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -16V
gfs	Forward Transconductance	193			S	V _{DS} = 13V, I _D = 30A
Q _g	Total Gate Charge		31	47		
Q _{gs1}	Pre– Vth Gate-to-Source Charge		8.1			V _{DS} = 13V
Q _{gs2}	Post– Vth Gate-to-Source Charge		3.0			$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		10		nC	I _D = 30A
Q _{godr}	Gate Charge Overdrive		10			See Fig 15
Q _{sw}	Switch Charge (Q _{gs2 +} Q _{gd)}		13			
Q _{oss}	Output Charge		33		nC	V _{DS} = 16V, V _{GS} = 0V
R _G	Gate Resistance		0.2		Ω	
t _{d(on)}	Turn-On Delay Time		17			V _{DD} = 13V, V _{GS} = 4.5V⊘
t _r	Rise Time		47			I _D = 30A
t _{d(off)}	Turn-Off Delay Time		23		ns	R _G = 1.8Ω
t _f	Fall Time		13			See Fig 17
C _{iss}	Input Capacitance		4232			V _{GS} = 0V
C _{oss}	Output Capacitance		1260		pF	V _{DS} = 13V
C _{rss}	Reverse Transfer Capacitance		255			f = 1.0MHz
Diode Chara	acteristics		1		1	Г
	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			37		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ⑤			296	A	integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			0.75	V	T_{J} = 25°C, I_{S} = 30A, V_{GS} = 0V \odot
t _{rr}	Reverse Recovery Time		28	42	ns	T _J = 25°C, I _F = 30A
Q _{rr}	Reverse Recovery Charge		58	87	nC	di/dt = 320A/µs ⑦

Notes:

(s) Repetitive rating; pulse width limited by max. junction temperature. ⑦ Pulse width ≤ 400 μ s; duty cycle ≤ 2%.

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
P _D @T _A = 25°C	Power Dissipation 3 ④	2.8	
P _D @T _A = 70°C	Power Dissipation 34	1.8	W
P _D @T _C = 25°C	Power Dissipation ④	54	
T _P	Peak Soldering Temperature	270	
TJ	Operating Junction and	-40 to + 150	•••
T _{STG}	Storage Temperature Range		°C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JA}$	Junction-to-Ambient 3		45	
$R_{ ext{ heta}JA}$	Junction-to-Ambient ®	12.5		
$R_{ heta JA}$	Junction-to-Ambient	20		°C/W
$R_{ ext{ heta}JC}$	Junction-to-Can @ 10		2.3	
R _{0JA-PCB}	Junction-to-PCB Mounted	1.0		
	Linear Derating Factor 3	0.022		W/°C

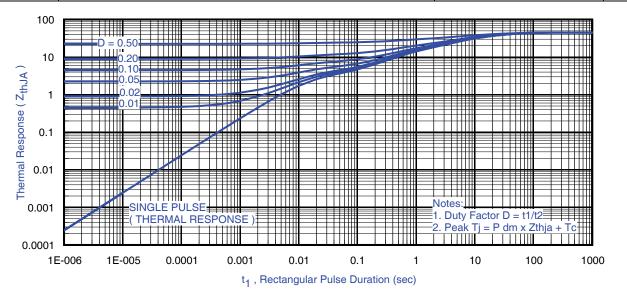


Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient®

Notes:

③ Surface mounted on 1 in. square Cu board, steady state.

- $\circledast\ensuremath{\,\text{T}_{\text{C}}}$ measured with thermocouple incontact with top (Drain) of part.

 - ③ Surface mounted on 1 in. square Cu board (still air).

- Mounted to a PCB with small clip heatsink (still air)

back and with small clip heatsink. (1) R_{θ} is measured at T_{J} of approximately 90°C.

Ised double sided cooling, mounting pad with large heatsink.

Mounted on minimum footprint full size board with metalized

 Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)

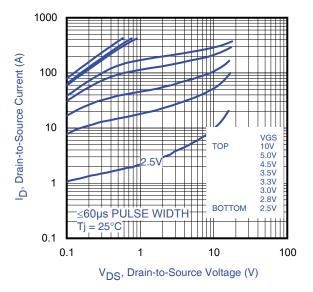


Fig 4. Typical Output Characteristics

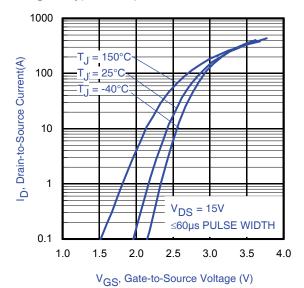


Fig 6. Typical Transfer Characteristics

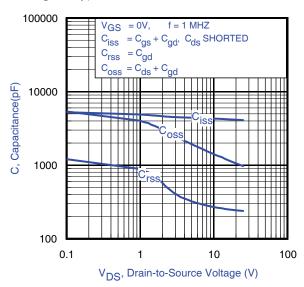


Fig 8. Typical Capacitance vs. Drain-to-Source Voltage

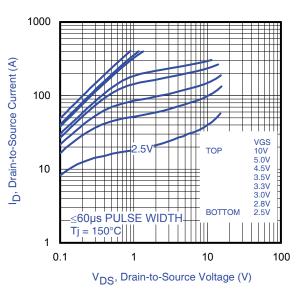
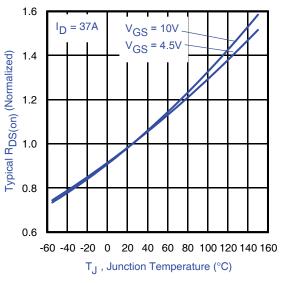
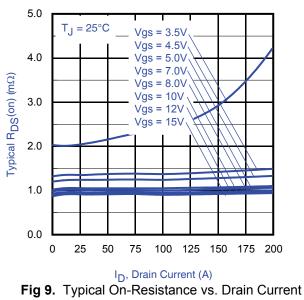
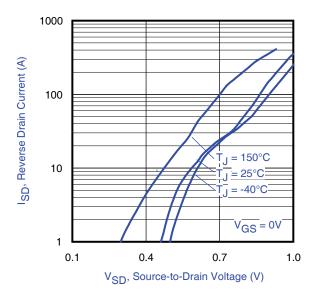


Fig 5. Typical Output Characteristics


Fig 7. Normalized On-Resistance vs. Temperature

and Gate Voltage

IRF6894MTRPbF

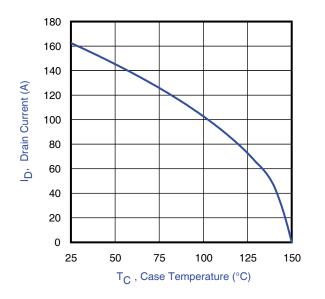


Fig 12. Maximum Drain Current vs. Case Temperature

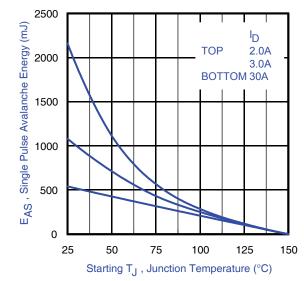


Fig 14. Maximum Avalanche Energy vs. Drain Current

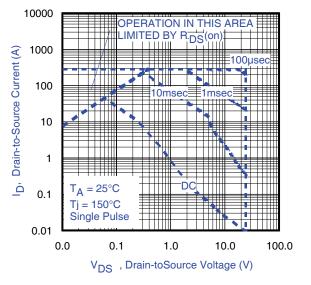


Fig 11. Maximum Safe Operating Area

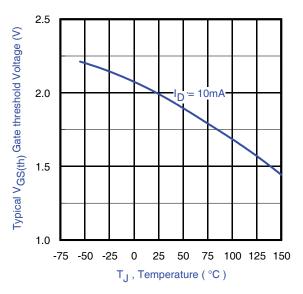


Fig 13. Typical Threshold Voltage vs. Junction Temperature

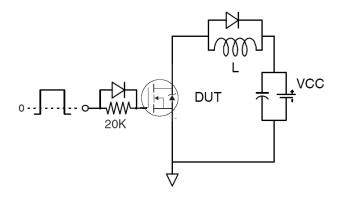


Fig 15a. Gate Charge Test Circuit

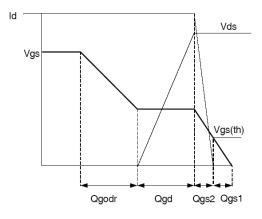


Fig 15b. Gate Charge Waveform

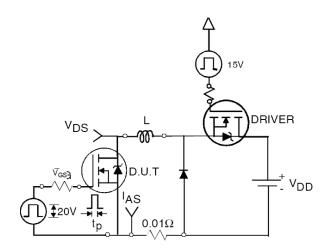


Fig 16a. Unclamped Inductive Test Circuit

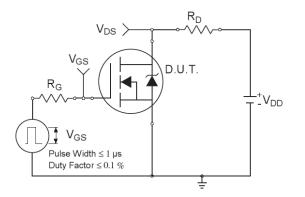


Fig 17a. Switching Time Test Circuit

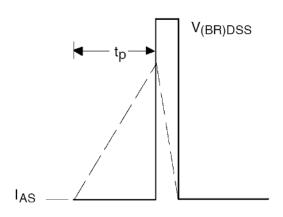


Fig 16b. Unclamped Inductive Waveforms

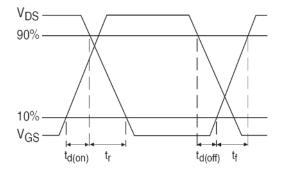
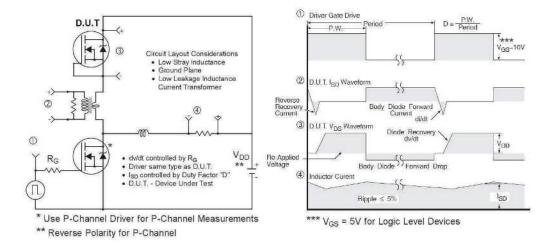
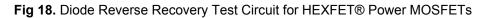
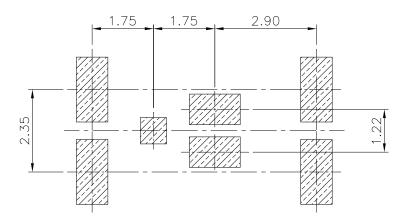
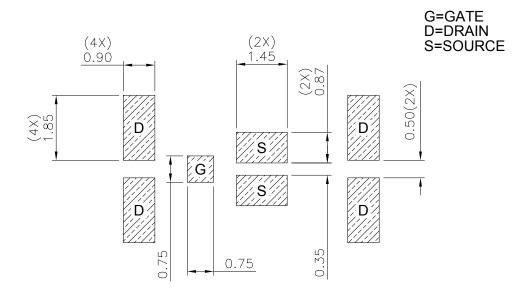




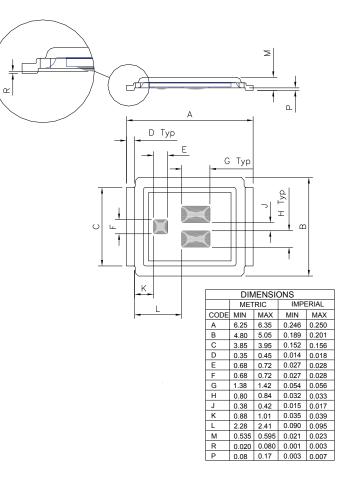
Fig 17b. Switching Time Waveforms



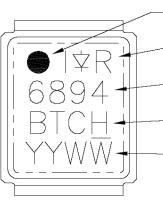


DirectFET[™] Board Footprint, MX Outline

(Medium Size Can, X-Designation). Please see DirectFET[™] application note <u>AN-1035</u> for all details regarding the assembly of DirectFET[™]. This includes all recommendations for stencil and substrate designs.



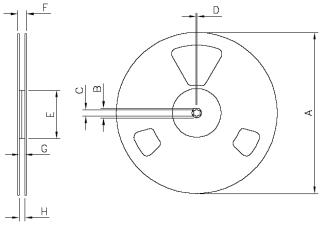
Note: For the most current drawing please refer to website at http://www.irf.com/package/



DirectFET[™] Outline Dimension, MX Outline (Medium Size Can, X-Designation).

Please see DirectFET[™] application note <u>AN-1035</u> for all details regarding the assembly of DirectFET[™]. This includes all recommendations for stencil and substrate designs.

DirectFET[™] Part Marking

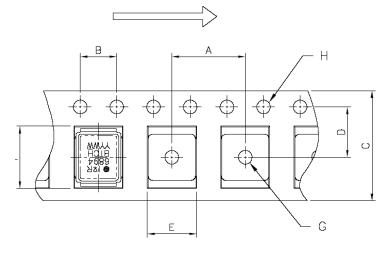


GATE MARKING
 LOGO
 PART NUMBER
 BATCH NUMBER
 DATE CODE
 Line above the last character of the date code indicates "Lead-Free"

Note: For the most current drawing please refer to website at http://www.irf.com/package/

infineon

DirectFET[™] Tape & Reel Dimension (Showing component orientation).



NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6894MTRPBF). For 1000 parts on 7° reel, order $\:$ IRF6894MTR1PBF

	REEL DIMENSIONS							
STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000)						00)		
	ME	TRIC	IMP	ERIAL	ME	METRIC		ERIAL
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
А	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C
E	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C

LOADED TAPE FEED DIRECTION

NOTE: CONTROLLING DIMENSIONS IN MM

	DIMENSIONS						
	MET	RIC	IMPERIAL				
CODE	MIN	MAX	MIN	MAX			
A	7.90	8.10	0.311	0.319			
В	3.90	4.10	0.154	0.161			
С	11.90	12.30	0.469	0.484			
D	5.45	5.55	0.215	0.219			
E	5.10	5.30	0.201	0.209			
F	6.50	6.70	0.256	0.264			
G	1.50	N.C	0.059	N.C			
Н	1.50	1.60	0.059	0.063			

Note: For the most current drawing please refer to website at http://www.irf.com/package/

Qualification Information

Qualification Level	Industrial [†]				
Moisture Sensitivity Level	DirectFET [™] Medium Can	MSL1 (per JEDEC J-STD-020D ^{†)}			
RoHS Compliant	Yes				

+ Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comment
10/13/2016	 Changed datasheet with "Infineon" logo –all pages. Changed Rth from "60°C/W" to "45°C/W" –page 3 Changed ID @ TA 25C/70C from "32A/25A" to "37A/29A" –page 1 & 2. Changed Fig.1 to Fig.15 –page 1 to 9. Added disclaimer on last page.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.