PolarP2[™]

Symbol

 $V_{\rm DSS}$

R_{DS(on)}

LIXYS

N-Chann Avalanch Fast Intri

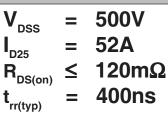
Test Conditions

 $T_{\perp} = 25^{\circ}C$ to $150^{\circ}C$

 $T_{_{1}}^{'}$ = 25°C to 150°C, $R_{_{GS}}$ = 1M Ω

Symbol (T _J = 25°C	Test Conditions C, Unless Otherwise Specified)		Chara Min.	cteristic ∣ Typ.	Values Max.	
BV _{DSS}	$V_{gs} = 0V, I_{D} = 250 \mu A$		500			V
V _{GS(th)}	$V_{_{DS}} = V_{_{GS}}, I_{_{D}} = 250 \mu A$		3.0		5.0	V
I _{gss}	$V_{_{\mathrm{GS}}} = \pm 30 \text{V}, V_{_{\mathrm{DS}}} = 0 \text{V}$				± 100	nA
I _{dss}	$V_{DS} = V_{DSS}, V_{GS} = 0V$	T, = 125°C			5 50	μA μA

nel Enhancement Mode	
ne Rated	
insic Diode	



Maximum Ratings

500

500

Preliminary Technical Information

TO-3P

V

V

V

V А

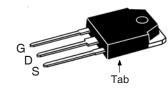
А

А J

V/ns W

°C

°C °C


°C

°C

g

Nm/lb.in.

120 m Ω

G = Gate D = Drain S = SourceTab = Drain

Features

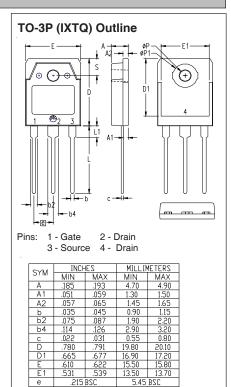
- Avalanche Rated
- Fast Intrinsic Diode
- Dynamic dv/dt Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- Laser Drivers
- AC and DC Motor Drives
- Robotics and Servo Controls


V _{GSS} V _{GSM}	Continuous Transient	± 30 ± 40
I _{D25} I _{DM}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{JM}	52 150
I _A E _{AS}	$T_c = 25^{\circ}C$ $T_c = 25^{\circ}C$	52 1.5
dv/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}, \ V_{_{\mathrm{DD}}} \leq V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \leq 150^\circ C$	10
P _D	$T_c = 25^{\circ}C$	960
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150
T _l T _{sold}	Maximum Lead Temperature for Soldering Plastic Body for 10s	300 260
M _d	Mounting Torque	1.13/10
Weight		5.5

 $V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, \text{ Note 1}$

LIXYS

IXTQ480P2

· · · · · · · · · · · · · · · · · · ·				Characteristic Values			
$(T_{J} = 25^{\circ})$	°CU	nless Otherwise Specified)	Min.	Тур.	Max.		
g _{fs}		$V_{_{DS}}$ = 20V, $I_{_{D}}$ = 0.5 • $I_{_{D25}}$, Note 1	30	48	S		
C _{iss})			6800	pF		
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		680	pF		
C _{rss}	J			44	pF		
t _{d(on)})	Resistive Switching Times		22	ns		
t,		$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_D = 0.5 \cdot I_{D25}$ $R_G = 1\Omega$ (External)		11	ns		
t _{d(off)}	ſ			40	ns		
t _r				8	ns		
Q _{g(on)})			108	nC		
Q _{gs}	}	$V_{_{ m GS}}$ = 10V, $V_{_{ m DS}}$ = 0.5 • $V_{_{ m DSS}}$, $I_{_{ m D}}$ = 0.5 • $I_{_{ m D25}}$		37	nC		
\mathbf{Q}_{gd}	J			38	nC		
R _{thJC}					0.13 °C/W		
R _{thCS}				0.25	°C/W		

.134

.126

.272. 193. All metal area are tin plated.

Ø

ØP1 S

.142 .134

.280 .201

6.90 4.90

.40

Source-Drain Diode

Symbol (T _J = 25°C U	Test Conditions nless Otherwise Specified)	Cha Min.	racteristic Typ.	Values Max.	
I _s	$V_{gs} = 0V$			52	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			204	Α
V _{sd}	$I_{\rm F} = I_{\rm S}$, $V_{\rm GS} = 0$ V, Note 1			1.5	V
t _{rr}	$I_{_{F}} = 26A, -di/dt = 100A/\mu s$		400		ns
	$V_{_{\rm R}} = 100V, V_{_{ m GS}} = 0V$				

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

IXYS MOSFETs and IGBTs are covered	4,835,592	4,931,844	5,049,961	5,237,481	6,162,665	6,404,065 B1	6,683,344	6,727,585	7,005,734 B2	7,157,338B2
by one or more of the following U.S. patents:	4,860,072	5,017,508	5,063,307	5,381,025	6,259,123 B1	6,534,343	6,710,405 B2	6,759,692	7,063,975 B2	
	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728 B1	6,583,505	6,710,463	6,771,478 B2	2 7,071,537	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.