

Tested Mixed-Signal Byte-Programmable EPROM MCU Die in Wafer Form

Analog Peripherals

- 10-Bit ADC
- 500 ksps
- 16 external inputs
- VREF from on-chip VREF, external pin. Internal Regulator or V_{DD}
- Internal or external start of conversion source
- Built-in temperature sensor
- 10-Bit Current Output DAC
- Comparator

 - Programmable hysteresis and response time Configurable as interrupt or reset source Low current (<0.5 μA)

On-Chip Debug

- C8051F336 can be used as code development platform; Complete development kit available
- On-chip debug circuitry facilitates full speed, non-intrusive in-system debug
- Provides breakpoints, single stepping, inspect/modify memory and registers

Supply Voltage 1.8 to 3.6 V

- On-chip LDO for internal core supply
- Built-in voltage supply monitor

Temperature Range: -40 to +85 °C

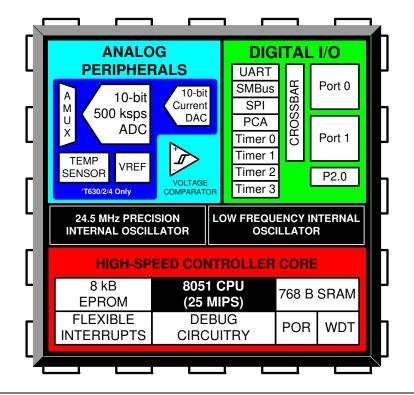
High-Speed 8051 µC Core

- Pipelined instruction architecture; executes 70% of instructions in 1 or 2 system clocks
- 25 MIPS throughput with 25 MHz clock
- Expanded interrupt handler

Memory

- 768 Bytes RAM
- 8 kB byte-programmable EPROM code memory

Digital Peripherals


- 17 Port I/O with high sink current capability
- Hardware enhanced UART, SMBus™, and enhanced SPI™ serial ports
- Four general purpose 16-bit counter/timers
 - Timer 3 supports real-time clock using external clock
- 16-Bit programmable counter array (PCA) with three capture/compare modules and enhanced PWM functionality

Clock Sources

- Two internal oscillators:
 - 24.5 MHz with ±2% accuracy supports crystal-less UART operation and low-power suspend mode with fast wake time
 - 80/40/20/10 kHz low frequency, low power operation External oscillator: RC, C, or CMOS Clock
- Switch between clock sources on-the-fly; useful in power saving modes

Full Technical Data Sheet

C8051T630/1/2/3/4/5

1. Ordering Information

Table 1.1. Product Selection Guide

Ordering Part Number	MIPS (Peak)	EPROM Memory (Bytes)	RAM (Bytes)	Calibrated Internal 24.5 MHz Oscillator	Internal 80 kHz Oscillator	SMBus/I²C	Enhanced SPI	UART	Timers (16-bit)	Programmable Counter Array	Digital Port I/Os	10-bit 500ksps ADC	10-bit Current Output DAC	Internal Voltage Reference	Temperature Sensor	Analog Comparator	Package
C8051T630-GDI	25	8k*	768	Y	Y	Y	Y	Y	4	Y	17	Y	Y	Y	Y	Y	Tested Die in Wafer Form

*Note: 512 bytes reserved for factory use

2. Pin Definitions

Table 2.1 lists the pin definitions for the C8051T630-GDI. For a complete description of the operation of each pin, refer to technical data sheet C8051T630/1/2/3/4/5.

Table 2.1. Pin Definitions for the C8051T630-GDI

Name	Physical Pad Number	Туре	Description	
V _{DD}	3	Pin	Power Supply Voltage.	
GND	2	G	Ground.	
RST/	4	D I/O	Device Reset. Open-drain output of internal POR or V_{DD} monitor. An external source can initiate a system reset by driving this pin low for a least 10 μ s.	
C2CK		D I/O	Clock signal for the C2 Debug Interface.	
P2.0/	5	D I/O	Port 2.0.	
C2D		D I/O	Bi-directional data signal for the C2 Debug Interface.	
P0.0/	1	D I/O or A In	Port 0.0.	
VREF		A In	External VREF input.	
P0.1	21	D I/O or A In	Port 0.1.	
IDA0		AOut	IDA0 Output.	
P0.2/	20	D I/O or A In	Port 0.2.	
V _{PP}	19	A In	V _{PP} Programming Supply Voltage	
P0.3/	18	D I/O or A In	Port 0.3.	
EXTCLK		A I/O or D In	External Clock Pin. This pin can be used as the external clock input for CMOS, capacitor, or RC oscillator configurations.	
P0.4	17	D I/O or A In	Port 0.4.	
P0.5	16	D I/O or A In	Port 0.5.	

Table 2.1. Pin Definitions for the C8051T630-GDI (Continued)

Name	Physical Pad Number	Туре	Description	
P0.6/	15	D I/O or A In	Port 0.6.	
CNVSTR		D In	ADC0 External Convert Start or IDA0 Update Source Input.	
P0.7	14	D I/O or A In	Port 0.7.	
P1.0	13	D I/O or A In	Port 1.0.	
P1.1	12	D I/O or A In	Port 1.1.	
P1.2	11	D I/O or A In	Port 1.2.	
P1.3	10	D I/O or A In	Port 1.3.	
P1.4	9	D I/O or A In	Port 1.4.	
P1.5	8	D I/O or A In	Port 1.5.	
P1.6	7	D I/O or A In	Port 1.6.	
P1.7	6	D I/O or A In	Port 1.7.	

Rev. 1.1

3. Bonding Instructions

Table 3.1. Bond Pad Coordinates (Relative to Center of Die)

Physical Pad Number	Example Package Pin Number (QFN-20)	Package Pin Name	Physical Pad X (μm)	Physical Pad Y (μm)
1	1	P0.0	-689	451
2	2	GND	-689	-53
3	3	VDD	-689	-152
4	4	RESET_B	-689	-282
5	5	P2.0	-689	-4 59
6	6	P1.7	-493	- 655
7	7	P1.6	-336	- 655
8	8	P1.5	-194	- 655
9	9	P1.4	337	- 655
10	10	P1.3	494	- 655
11	11	P1.2	689	-167
12	12	P1.1	689	–11
13	13	P1.0	689	132
14	14	P0.7	689	309
15	15	P0.6	689	451
16	16	P0.5	466	654
17	17	P0.4	324	654
18	18	P0.3	167	654
19	19	VPP	-193	654
20	19	P0.2	-343	654
21	20	P0.1	-486	654

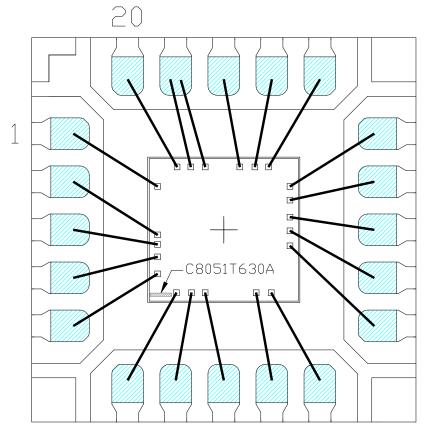


Figure 3.1. Die Bonding (QFN-20)

Table 3.2. Wafer and Die Information

Wafer ID	C8051T630A			
Wafer Dimensions	8 in.			
Die Dimensions	1.58 mm x 1.51 mm			
Wafer Thickness	12 mil ±0.6 mil			
Wafer Identification	Notch			
Scribe Line Width	80u			
Die per Wafer*	Contact Sales for info			
Passivation	Standard			
Wafer Packaging Detail	Wafer Jar			
Bond Pad Dimensions	60 μm x 60 μm			
Maximum Processing Temperature	250 °C			
Electronic Die Map Format	.txt			
Bond Pad Pitch Minimum	99 μm			
	•			

*Note: This is the Expected Known Good Die yielded per wafer and represents the batch order quantity (one wafer).

4. Wafer Storage Guidelines

It is necessary to conform to appropriate wafer storage practices to avoid product degradation or contamination.

- Wafers may be stored for up to 18 months in the original packaging supplied by Silicon Labs.
- Wafers must be stored at a temperature of 18–24 °C.
- Wafers must be stored in a humidity-controlled environment with a relative humidity of <30%.
- Wafers should be stored in a clean, dry, inert atmosphere (e.g. nitrogen or clean, dry air).

DOCUMENT CHANGE LIST

Revision 1.0 to Revision 1.1

■ Changed Wafer Packaging Detail to "Wafer Jar" in Table 3.2 on page 7.

CONTACT INFORMATION

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page:

https://www.silabs.com/support/pages/contacttechnicalsupport.aspx

and register to submit a technical support request.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

10 Rev. 1.1