

REF_5BR3995CZ_16W1

About this document

Scope and purpose

This document is a reference design for a 16 W auxiliary power supply for single-phase electric meter with the latest fifth-generation Infineon fixed-frequency (FF) CoolSET[™] ICE5BR3995CZ. The power supply is designed with ultra-wide input compatible with most geographic regions and three isolated outputs (12 V/1 A, 5 V/0.2 A, 5 V/0.2 A).

Highlights of the auxiliary power supply for smart metering are:

- Tightly regulated output voltages, high efficiency under light load and low standby power
- Comprehensive protection for a robust system
- 950 V rated MOSFET for ultra-wide input range
- Input line overvoltage protection (OVP)

Intended audience

This document is intended for power supply design engineers who are designing auxiliary power supplies for a single-phase electric meter or ultra-wide input range flyback converter.

Table of contents

Abou	t this document	1
Table	of contents	1
1	System introduction	3
1.1	High efficiency under light load and low standby power	3
1.2	Simplified circuitry with good integration of power and protection features	4
1.3	Auto-restart protection scheme to minimize interruption to enhance end-user experience	4
2	Reference board design	5
3	Power supply specifications	6
4	Circuit diagram	7
5	Circuit description	8
5.1	EMI filtering and line rectification	8
5.2	Flyback converter power stage	8
5.3	Control of flyback converter through fifth-generation FF CoolSET™ ICE5BR3995CZ	8
5.3.1	Current sensing	8
5.3.2	Feedback and compensation network	8
5.4	Unique features of the fifth-generation FF CoolSET™ ICE5BR3995CZ	9
5.4.1	Fast self-start-up and sustaining of V _{cc}	9
5.4.2	CCM, DCM operation with frequency reduction	9
5.4.3	Frequency jittering with modulated gate drive	9
5.4.4	System robustness and reliability through protection features	10

Table of contents

5.5	Clamper circuit	10
5.6	PCB design tips	10
5.7	EMI reduction tips	11
6	PCB layout	12
6.1	Top side	12
6.2	Bottom side	12
7	Bill of materials	13
8	Transformer specification	15
9	Measurement data and graphs	16
9.1	Efficiency curve	17
9.2	Standby power	17
9.3	Output voltage regulation	18
9.4	ESD immunity (EN 61000-4-2)	18
9.5	Surge immunity (EN 61000-4-5)	18
9.6	Conducted emissions (EN 55022 class B)	19
9.7	Thermal measurement	20
10	Waveforms and oscilloscope plots	21
10.1	Start-up at full load	21
10.2	Soft-start at full load	21
10.3	Drain and CS voltage at full load	22
10.4	Frequency jittering and modulated gate drive	22
10.5	Load-transient response	23
10.6	Output ripple voltage at full load	23
10.7	Output ripple voltage at ABM	24
10.8	Entering ABM	24
10.9	During ABM	25
10.10	Leaving ABM	25
10.11	V _{cc} OV/UV protection	26
10.12	Overload protection	26
10.13	Line overvoltage protection	27
11	Appendix A: Transformer design and spreadsheet	28
12	References	36
Revis	ion history	37

System introduction

1 System introduction

With the advancement of technology, the energy meter had also been undergoing continuous development to improve accuracy, power consumption, communication interfaces, measuring parameters, anti-tempering features, etc. These requirements are driving the demand for more innovative power supply designs to power electric meters. Infineon has introduced the latest fifth-generation FF CoolSET[™] to address this need in an efficient and cost-effective manner.

An auxiliary SMPS is needed to power the various modules, which typically operate from a stable DC voltage source. The Infineon CoolSET[™] (as shown in **Figure 1**) forms the heart of the system, providing the necessary protection and AC-DC conversion from the mains to multiple regulated DC voltages to power the various blocks.

Figure 1 Simplified electric meter system diagram

Table 1 lists the system requirements for an auxiliary power supply for an electric meter, and the corresponding Infineon solution is shown in the right-hand column.

Tuble		
	System requirement for electric meter	Infineon solution - ICE5BR3995CZ
1	High efficiency under light load and low standby power	Digital frequency reduction and active burst mode (ABM)
2	Robust system and protection features	Comprehensive CoolSET™ protection feature in DIP-7 package
3	Line voltage fluctuation	950 V rated CoolMOS™ integrated for ultra-wide input voltage

1.1 High efficiency under light load and low standby power

System requirements and Infineon solutions

Low power consumption of the meter is a key operating criterion. Smart meters in the field are consuming energy, which is a cost that must be paid by the end user. And in most cases, the system will reside in an idle state, in which the loading toward the auxiliary power supply is low. It is crucial that the auxiliary power supply operates as efficiently as possible, because it will be in this particular state for most of the time. Under light-

Table 1

System introduction

load conditions, losses incurred with the power switch are usually dominated by the switching operation. The choice of switching scheme and frequency plays a crucial role in ensuring high conversion efficiency.

In this reference design, ICE5BR3995CZ was primarily chosen due to its frequency reduction switching scheme. Compared with a traditional FF flyback, the CoolSET[™] reduces its switching frequency from medium to light load, thereby minimizing switching losses. Therefore, an efficiency of more than 80 percent is achievable under 25 percent loading conditions and nominal input voltages.

1.2 Simplified circuitry with good integration of power and protection features

To relieve the designer of the complexity of PCB layout and circuit design, CoolSET[™] is a highly integrated device with both a controller and a 950 V MOSFET integrated into a single, space-saving DIP-7 package. These certainly help the designer to reduce component count as well as simplifying the layout into a simple PCB design for ease of manufacturing.

1.3 Auto-restart protection scheme to minimize interruption to enhance end-user experience

For a commercial electric meter unit, it would be annoying to both the end user and the manufacturer if the system were to halt and latch after protection. To minimize interruption, the CoolSET[™] implements autorestart mode for all protections.

Reference board design

2 Reference board design

This document provides complete design details including specifications, schematics, bill of materials (BOM), PCB layout and transformer design. Performance results pertaining to line/load regulation, efficiency, transient load, thermal conditions, conducted EMI scans and so on are also included.

Figure 2 REF_5BR3995CZ_16W1

Power supply specifications

3 Power supply specifications

The table below shows the minimum acceptable performance of the design at 25°C ambient temperature. Actual performance is listed in the measurements section.

Description	Symbol	Min		Max	Unit	Comments
Description	Symbol	MIN.	тур.	мах.	Unit	Comments
Input						
Voltage	V _{IN}	85	-	460	V AC	2 wires (no P.E.)
Frequency	f _{line}	47	50/60	63	Hz	
Output						
Output voltage 1	V ₀₁	-	12	-	V	
Output current 1	I ₀₁	-	-	1.0	А	
Output voltage ripple 1	V _{RIPPLE1}	-	-	120	mV	±1 percent
Output voltage 2	V ₀₂	-	5	-	V	
Output current 2	I ₀₂ – – 0.2		А	±1 percent, tapped from 8 V output via LDO		
Output voltage ripple 2	V _{RIPPLE2}	-	-	50	mV	
Output voltage 3	V _{O3}	-	5		V	
Output current 3		-	-	0.2	А	±1 percent, tapped from 8 V output via LDO
Output voltage ripple 3	V _{RIPPLE3}	-	-	50	mV	
Output power	P_{OUT_Nom}		14	-	W	
Overcurrent protection (12 V)	I _{OCP}		1.2	-	А	
Start-up time	$t_{\text{start_up}}$		-	350	ms	With full load on other outputs
Environmental						
Conducted EMI			10		dB	Margin, CISPR 22 class B
ESD						EN 61000-4-2
Contact discharge		±6			kV	
Air discharge			±8		kV	
Surge immunity						EN 61000-4-5
Differential mode			±2		kV	
Common mode			±6		kV	
PCBA dimension		14	40 x 45 x 3	5	mm²	LxWxH

Table 2 Specifications of REF_5BR3995CZ_16W1

Circuit diagram

Circuit diagram 4

Circuit description

5 Circuit description

In this section, the design circuit for the SMPS unit will be briefly described by the different functional blocks. For details of the design procedure and component selection for the flyback circuitry please refer to the IC design guide [2] and calculation tool [3].

5.1 EMI filtering and line rectification

The input of the power supply unit is in the range of 85 V AC ~ 460 V AC. The fuse F1 is directly connected to the input line to protect the system in case of excess current entering the system circuit due to any fault. Following is the varistor R27, which is connected across the input to absorb excess energy during line-surge transient. Thermistor R26 is placed to reduce inrush current during the turning-on period. The X-capacitor C30 reduces EMI noise. The bridge rectifier D3 rectifies the AC input into DC voltage, filtered by the Pi circuit, which reduces the EMI noise.

5.2 Flyback converter power stage

The flyback converter power stage consists of transformer TR1, CoolSET[™], secondary rectification diodes D1, D4 and D6, and secondary output capacitors C2, C15 and C23.

When the primary HV MOSFET turns on, energy is stored in the transformer. When it turns off, the stored energy is discharged to the output capacitors and into the output load.

For the output rectification, lower forward voltage and ultrafast recovery diodes can improve efficiency. There are two separate 5 V outputs from low dropout (LDO) regulator (U2, U4), and these outputs are not affected by cross-regulation. However, their inputs should be maintained within the operating range of the LDO.

5.3 Control of flyback converter through fifth-generation FF CoolSET™ ICE5BR3995CZ

5.3.1 Current sensing

The ICE5BR3995CZ is a current mode controller. The primary peak current is controlled cycle-by-cycle through the current sense (CS) resistors R20 and R22 in the CS pin (pin 3). Transformer saturation can be avoided through peak-current limitation (PCL); therefore, the system is more protected and reliable.

5.3.2 Feedback and compensation network

Resistor dividers R30 and R32 are used to sense the V_{OUT} and send the reference voltage to the feedback (FB) pin (pin 2) via error amplifier TL431(U6) and optocoupler (U5). A Type II compensation network (C25, C26 and R29) is implemented to stabilize the system.

The FB pin of ICE5BR3995CZ is a multifunction pin, which is used to select the entry burst power level (there are three levels available) through the resistor at the FB pin (R31) and also the burst-on/burst-off sense input during ABM. Here R31 is not placed for default ABM configuration.

Circuit description

5.4 Unique features of the fifth-generation FF CoolSET[™] ICE5BR3995CZ

5.4.1 Fast self-start-up and sustaining of V_{cc}

The IC uses a cascode structure to fast-charge the V_{cc} capacitor. Pull-up resistor R3 connected to the GATE pin (pin 4) is used to initiate the start-up phase. At first, $I_{VCC_Charge1}$ is used to charge the V_{cc} capacitor from 0 V to V_{CC_SCP} . This is a protection which reduces the power dissipation of the power MOSFET during V_{cc} short-to-GND condition. Thereafter, a much higher charging current of $I_{VCC_Charge2}$ will charge the V_{cc} capacitor until the V_{cc_ON} is reached.

After start-up, the IC V_{cc} supply is usually sustained by the auxiliary winding of the transformer, which needs to support the V_{cc} to be above undervoltage lockout (UVLO) voltage (10 V typ.).

5.4.2 CCM, DCM operation with frequency reduction

ICE5BR3995CZ can be operated in either discontinuous conduction mode (DCM) or continuous conduction mode (CCM) with frequency-reduction features. This reference board is designed to operate in DCM at operating input voltage and load conditions. When the system is operating at high output load, the controller will switch at 65 kHz FF. In order to achieve a better efficiency between light load and medium load, frequency reduction is implemented as a function of V_{FB} , as shown in **Figure 4**. Switching frequency will not reduce further once the minimum switching frequency of 28 kHz is reached.

Figure 4 Frequency reduction curve

5.4.3 Frequency jittering with modulated gate drive

The ICE5BR3995CZ has a frequency jittering feature with modulated gate drive to reduce the EMI noise. The jitter frequency is internally set at 65 kHz (±4 percent), and the jitter period is 4 ms.

Circuit description

5.4.4 System robustness and reliability through protection features

Protection is one of the major factors in determining whether the system is safe and robust – therefore sufficient protection is necessary. ICE5BR3995CZ provides comprehensive protection to ensure the system is operating safely. This includes line overvoltage protection (LOVP), V_{cc} OV and undervoltage (UV), overload, overtemperature and V_{cc} short-to-GND. When those faults are found, the system will enter protection mode. Once the fault is removed, the system resumes normal operation. A list of protections and failure conditions is shown in the table below.

Protection function	Failure condition	Protection mode					
VIN LOVP	V_{VIN} greater than $V_{VIN_{LOVP}}$	Non-switch auto-restart					
V _{cc} OV	V_{VCC} greater than V_{VCC_OVP}	Odd-skip auto-restart					
V _{cc} UV	V _{vcc} less than V _{vccoff}	Auto-restart					
Overload	V_{FB} greater than V_{FB_OLP} and lasts for $t_{FB_OLP_B}$	Odd-skip auto-restart					
Overtemperature	TJ greater than 140°C (40°C hysteresis)	Non-switch auto-restart					
V _{cc} short-to-GND	V_{vcc} less than V_{cc_scP} , $I_{vcc_charge1} \approx -0.2$ mA	Connectedart					
$(V_{VCC} = 0 \text{ V}, \text{ R}_{start-up} = 50 \text{ M}\Omega, \text{ V}_{DRAIN} = 90 \text{ V})$		Cannot start up					

Table 3 Protection functions of ICE5BR3995CZ

5.5 Clamper circuit

A clamper network (D2, C7, R2, R6, R9) is used to reduce the switching voltage spikes across the DRAIN pin of the integrated HV MOSFET of the CoolSET[™], which are generated by the leakage inductance of the transformer TR1. This is a dissipative circuit; therefore, the value of clamper devices need to be fine-tuned depending on the voltage derating factor and efficiency requirement.

5.6 PCB design tips

For a good PCB design layout, there are several points to note.

• The switching power loop needs to be as small as possible (see **Figure 5**). There are four power loops in the reference design; one on the HV side and three on the output side. The HV side loop starts from the bulk capacitor (C10) positive terminal, primary transformer winding (pin 7 and pin 5 of TR1), CoolSET[™], CS resistors and back to the C17 negative terminal. The first output side loop (12 V output) starts at the transformer winding (pin 8 of TR1), output diode D1, output capacitor C2 and back to pin 9 of TR1. The second output side loop (8 V output) starts at the transformer winding (pin 11 of TR1), output diode D4, output capacitor C15 and back to pin 12 of TR1. The third output side loop (8 V output) starts at the transformer winding (pin 13 of TR1), output diode D6, output capacitor C23 and back to pin 14 of TR1.

Circuit description

- Star-ground connection should be used to reduce high-frequency (HF) noise coupling that can affect the functional operation. The ground of the small-signal components should connect directly to the IC ground (pin 8 of U3).
- Separating the HV components and LV components, e.g., clamper circuit, main switching circuit can help to reduce spark-over chance of the high energy surge during a lightning surge test.
- Make the PCB copper pour on the DRAIN pin of the MOSFET act as a heatsink.

5.7 EMI reduction tips

EMI compliance is always a challenge for the power supply designer. There are several critical points to consider in order to achieve a satisfactory EMI performance.

- A proper transformer design can significantly reduce EMI. Low leakage inductance can incur a low switching spike and HF noise. Interlaced winding technique is the most common practice to reduce leakage inductance. Winding shield, core shield and whole transformer shield are also some of the techniques used to reduce EMI.
- Input CMC greatly reduces EMI, but this is costly and impractical especially for low-power applications.
- Short-switching power-loop design in the PCB (as described in section 5.6) can reduce radiated EMI due to the antenna effect.
- An output diode snubber circuit can reduce HF noise.
- Ferrite beads can reduce HF noise, especially on critical nodes such as the DRAIN pin, clamper diode and output diode terminals. There is no ferrite bead used in this design, as this can reduce the efficiency due to additional losses, especially on high-current terminals.

PCB layout

6 PCB layout

6.1 Top side

Top-side component legend

6.2 Bottom side

12 of 38

Figure 7 Bottom-side component legend

Bill of materials

7 Bill of materials

Tabl	e 4 BOM					
No.	Designator	Description	Part number	Manufacturer	Quantity	
1	C19, C29	Ceramic capacitor 330 pF 50 V COG/NP0 0603			2	
2	C2	Aluminum capacitor 1000 μF 20% 25 V radial	25PX1000MEFCT810 X16	Rubycon	1	
3	С3	Aluminum capacitor 220 μF 20% 25 V radial	UHD1E221MPD1TD	Nichicon	1	
4	C13, C21	Capacitor 100 µF 20% 10 V	10YXF100MEFCT15X 11	Rubycon	2	
5	С7	Ceramic capacitor 1206 1 nF 500 V X7R 10%	12067C102KAT2A	AVX	1	
6	C4, C6, C9, C12, C20	Ceramic capacitor 100 nF 50 V X7R 0603			5	
7	C10, C11, C16, C17	Aluminum capacitor 47 μF 20% 400 V	EPAG401ELL470MK3 0S	United Chemi- Con	4	
8	C14, C22	Ceramic capacitor 1206 330 nF 50 V X7R			2	
9	C15, C23	Aluminum capacitor 330 μF 20% 16 V	luminum capacitor 330 μF 20% 16 V 5			
10	C24	Capacitor 22 μF 20% 35 V	UPW1H220MDD1TD	Nichicon	1	
11	C25	Ceramic capacitor 1000 pF 50 V X7R 0603			1	
12	C26	Ceramic capacitor 220 nF 50 V X7R 0603			1	
13	C27	Ceramic capacitor 3300 pF 50 V X7R 0603			1	
14	C28	Ceramic capacitor 2200 pF 440 V AC radial	DE1E3RA222MN4AN 01F	Murata	1	
15	C30	Capacitor, SUP, X1, 0.047 µF, 480 V AC		Кеуа	1	
16	D1	Ultrafast diode 400 V 3 A SMC	STTH3R04S	STMicroelectron ics	1	
17	D2	General-purpose diode 1 kV 1 A DO214AC	General-purpose diode 1 kV 1 A S1M D0214AC		1	
18	D3	Bridge rectifier 1-phase 1 kV 1.5 A 4-DIP	DF10M ON Semiconductor		1	
19	D4, D6	General-purpose diode 200 V 2 A SMB	MURS220T3G ON Semiconductor		2	
20	D5	General-purpose diode 200 V 1 A SMA	MURA120T3G	ON Semiconductor	1	
21	F1	Surge-resistant TeleLink fuse	04611.25ER	Littelfuse	1	
22	L1	Fixed inductor 4.7μH 4.2 A 30 mΩ TH			1	
23	L2	CMC 20 mH 500 mA 2LN TH	744821120	Würth Elektronik	1	
24	R2, R6	SMD resistor 200 kΩ 1% 1/4 W 1206			2	
25	R3	SMD resistor 100 MΩ 1% 300 mW 1206	CRHA1206AF100MFK EF	Vishay	1	
26	R4	SMD resistor 5 MΩ 1% 300 mW 1206	CRHV1206AF5M00FK FT	Vishay	1	
27	R13, R14, R18, R19	SMD resistor 0.25 W 1 M Ω 1% 100 ppm	RCV12061M00FKEA	Vishay	4	
28	R9, R23	SMD resistor 10 Ω 1% 1/10 W 0603			2	
29	R17	SMD resistor 20.5 kΩ 1% 1/10 W 0603			1	
30	R20, R22	SMD resistor 1.8 Ω 1% 1/4 W 1206			2	
31	R5, R28	SMD resistor 1 kΩ 1% 1/10 W 0603			2	
32	R29	SMD resistor 22 kΩ 1% 1/10 W 0603			1	
33	R30	SMD resistor 38 kΩ 1% 1/10 W 0603			1	
34	R32	SMD resistor 10 kΩ 1% 1/10 W 0603			1	

Bill of materials

35	R26	ICL 25 Ω 20% 2.5 A 11.5 mm	B57236S0250M051	ТДК	1
36	R27	Varistor 820 V 6.5 kA disk 14 mm	V14H510AUTO	Littelfuse	1
37	TR1	Transfomer EE25/13/7	750344869(rev.02)	Würth Elektronik	1
38	U2, U4	IC linear regulator 5 V 1.5 A TO-220AB	L7805ABV	STMicroelectron ics	2
39	U3	FF 950 V CoolSET™	ICE5BR3995CZ	Infineon	1
40	U5	Opto-isolator 5.3 kV transistor 4-DIP	SFH617A-3	Vishay	1
41	U6	IC V _{REF} shunt 36 V 0.4% TO92-3	TL431BVLPG	ON Semiconductor	1
42	+5 V1, +5 V2, +5 V3, +12 V, DRAIN, neutral	Test point THT, red	5010	Keystone	6
43	GND, GND1, line, GND2, GND3	Test point THT, black	5011	Keystone	5
44	CS, FB, GATE, V _{CC} , V _{IN}	Test point THT, white	5002	Keystone	5

Transformer specification

8 Transformer specification

Refer to Appendix A for transformer design.

Core name and material: EE25/13/7, TP4A (TDG)

Primary inductance: L_P = 730 μ H (±10 percent), measured between pin 5 and pin 7

Manufacturer and part number: Würth Elektronik Midcom (750344869) Rev. 02

Measurement data and graphs

9 Measurement data and graphs

Table 5	Efficiend	cy and sta	ndby perfo	ormance				1	T
Input (V AC/Hz)	P _{IN} (W)	V ₀₁ (V)	І _{о1} (А)	V ₀₂ (V)	I ₀₂ (A)	V ₀₃ (V)	І _{оз} (А)	Р _{оит} (W)	Efficiency (%)
	0.226	12.015	0.000	5.010	0.005	4.980	0.005	0.050	
85 V AC/60 Hz	19.490	12.000	0.996	4.985	0.198	4.968	0.198	13.918	71.41
	0.245	12.015	0.000	5.010	0.005	4.980	0.005	0.050	
115 V AC/60 Hz	18.926	12.000	0.996	4.985	0.198	4.968	0.198	13.918	73.54
	0.361	12.015	0.000	5.010	0.005	4.980	0.005	0.050	
230 V AC/50 Hz	18.720	12.000	0.996	4.992	0.198	4.968	0.198	13.919	74.36
2643/46/5211	0.455	12.015	0.000	5.010	0.005	4.980	0.005	0.050	
264 V AC/50 Hz	18.689	12.000	0.996	4.992	0.198	4.968	0.198	13.919	74.48
	0.447	12.015	0.000	5.010	0.005	4.980	0.005	0.050	
300 V AC/50 Hz	18.753	12.000	0.996	4.992	0.198	4.968	0.198	13.919	74.22
	0.805	12.015	0.000	5.010	0.005	4.980	0.005	0.050	
460 V AC/50 Hz	19.650	12.000	0.996	4.992	0.198	4.968	0.198	13.919	70.84

19.650 12.000 0.996 4.992

Minimum-load condition: 12 V/0 mA, 5 V/5 mA, 5 V/5 mA;

Full-load condition: 12 V/1.0 A, 5 V/200 mA, 5 V/200 mA;

Minimum-load current for LDO regulation is 5 mA.

Input (V AC/Hz)	P _{IN} (W)	V ₀₁ (V)	I ₀₁ (A)	P _{out} (W)	Efficiency					
	0.052	12.078	0.000	0.000						
85 V AC/60 HZ	15.570	12.046	0.996	11.998	77.06%					
	0.067	11.984	0.000	0.000						
115 V AC/60 HZ	15.190	12.046	0.996	11.998	78.98%					
2201/46/5011-	0.164	12.078	0.000	0.000						
230 V AC/50 HZ	15.100	12.046	0.996	11.998	79.46%					
	0.206	12.078	0.000	0.000						
264 V AC/50 HZ	15.150	12.046	0.996	11.998	79.19%					
2001/ 46/50 11-	0.256	12.078	0.000	0.000						
300 V AC/50 HZ	15.220	12.046	0.996	11.998	78.83%					
	0.563	12.780	0.000	0.000						
460 V AC/50 HZ	16.070	12.046	0.996	11.998	74.66%					

Table 6Efficiency and standby performance with a single-output configuration

Note:

Single-output (+12 V) configuration efficiency measurement was done by removing two LDO outputs; the actual board comes with LDO circuits. The overall circuit is not optimized for single-output configuration; the above efficiency data is for illustration only.

Measurement data and graphs

9.1 Efficiency curve

9.2 Standby power

Measurement data and graphs

9.3 Output voltage regulation

9.4 ESD immunity (EN 61000-4-2)

This system was subjected to ESD testing according to EN 61000-4-2 for both contact and air discharge. A test failure was defined as non-recoverable.

• Air discharge: pass ±8 kV; contact discharge: pass ± 6 kV.

	Table 7	System ESD test result
--	---------	------------------------

D			Number of strike	To share sold	
Description	ESD test	Level	Voi	GND	l est result
115/2201/ 40	Contact	±6 kV	10	10	Pass
115/230 V AC	Air	±8 kV	10	10	Pass

9.5 Surge immunity (EN 61000-4-5)

The reference board was subjected to a surge immunity test (±2 kV DM and ±6 kV CM) according to EN 61000-4-5. It was tested at full load (resistive load). A test failure was defined as non-recoverable.

Table 8System surge immunity test result

Description	Tost	Loval	Number of strikes				Tost result
Description	Test	Level	0°	90°	180°	270°	restresult
115/220 \/ AC	DM	±2 kV	3	3	3	3	Pass
115/230 V AC	СМ	±6 kV	3	3	3	3	Pass

Measurement data and graphs

9.6 Conducted emissions (EN 55022 class B)

The conducted EMI was measured by Schaffner (SMR4503) and followed the test standard of EN 55022 (CISPR 22) class B. The reference board was tested at full load (resistive load) at an input voltage of 115 V AC and 230 V AC.

- 115 V AC: pass with greater than 10 dB margin for quasi-peak measurement
- 230 V AC: pass with greater than 10 dB margin for quasi-peak measurement

Figure 12 Conducted emissions at 115 V AC and full load on line (left) and neutral (right)

Figure 13 Conducted emissions at 230 V AC and full load on line (left) and neutral (right)

Measurement data and graphs

9.7 Thermal measurement

Thermal measurement was done using an infrared thermography camera (FLIR-T62101) at an ambient temperature of 25°C taken after one hour running at full load. The temperature of the components was taken in an open-frame set-up.

Table 9 Thermal measurement of components (open-frame)

No.	Components	Temperature at 85 V AC (°C)	Temperature at 460 V AC (°C)
1	U3 (ICE5BR3995CZ)	68.3	83.1
2	D3 (bridge diode)	55.5	37.4
3	TR1 (transformer)	56.6	65.5
4	D1 (output 1 diode)	97.2	97.8
5	D4 (output 2 diode)	68.6	69.8
6	D6 (output 3 diode)	64.7	65.6

Figure 14 Top-layer (left) and bottom-layer (right) thermal image at 85 V AC input voltage

Figure 15 Top-layer (left) and bottom-layer (right) thermal image at 460 V AC input voltage

Waveforms and oscilloscope plots

10 Waveforms and oscilloscope plots

All waveforms and scope plots were recorded with a Teledyne LeCroy HDO4034 oscilloscope.

10.1 Start-up at full load

Figure 16 Start-up

10.2 Soft-start at full load

Figure 17 Soft-start

Waveforms and oscilloscope plots

10.3 Drain and CS voltage at full load

Figure 18 Drain and CS voltage

10.4 Frequency jittering and modulated gate drive

Figure 19 Frequency jittering and modulated gate drive

Load-transient response

Waveforms and oscilloscope plots

10.5

 Figure 20 Load-transient response with +12 V output load change from 10 percent load to 100 percent load at 0.4 A/μs slew rate, 100 Hz. +5 V2 and +5 V3 output load are fixed at 0.2 A. Probe terminals are decoupled with 10 μF electrolytic and 0.1 μF ceramic capacitors. Oscilloscope is bandwidth filter limited to 20 MHz

10.6 Output ripple voltage at full load

Figure 21 Output ripple voltage at full load. Probe terminals are decoupled with 10 µF electrolytic and 0.1 µF ceramic capacitors. Oscilloscope is bandwidth filter limited to 20 MHz

Output ripple voltage at ABM

Waveforms and oscilloscope plots

10.7

Figure 22 Output ripple voltage at minimum load. Probe terminals are decoupled with 10 μF
 electrolytic and 0.1 μF ceramic capacitors. Oscilloscope is bandwidth filter limited to
 20 MHz

10.8 Entering ABM

Figure 23 Entering ABM

Waveforms and oscilloscope plots

During ABM

10.9

Figure 24 During ABM

10.10 Leaving ABM

Waveforms and oscilloscope plots

10.11 V_{cc} OV/UV protection

Figure 26 V_{cc} OV/UV protection

10.12 Overload protection

Figure 27 Overload protection

Waveforms and oscilloscope plots

10.13 Line overvoltage protection

Figure 28 Line overvoltage protection

Appendix A: Transformer design and spreadsheet

11 Appendix A: Transformer design and spreadsheet

Calculation tool for FF flyback converter using fifth-generation CoolSET[™] (Version 1.1)

Project:	REF_5BR3995CZ_16W1
Application:	Aux for metering
CoolSET™:	ICE5BR3995CZ
Date:	30 June 2021
Revision:	Version 1.1

Notes:

Enter design variables in orange-colored cells

Read design results in green-colored cells

Equation numbers are according to the design guide

Component designators refer to the calculation tool

Select component values based on standard values available

Voltage/current rating does not include design margin, voltage spikes and transient currents

In "Output regulation", only fill in either isolated or non-isolated, whichever is applicable

		Description	Eq. #	Parameter	Unit	Value	
Inpu	ut, output, C	oolSET™ specs					
	Line input						
	Input	Minimum AC input voltage		V _{ACMin}	[V]	85	
	Input	Maximum AC input voltage		V _{ACMax}	[V]	460	
	Input	Line frequency		f _{AC}	[Hz]	60	
	Input	Bus capacitor DC ripple voltage		VDCRipple	[V]	30	

Output 1 specs V_{Out1} Input Output voltage 1 [V] 12 Input Output current 1 [A] 1 I_{Out1} Input Forward voltage of output diode 1 V_{FOut1} [V] 0.6 Output ripple voltage 1 [V] 0.2 Input V_{OutRipple1} Result Output power 1 Eq. 001 [W] 12 P_{Out1} Eq. 004 Result Output load weight 1 K_{L1} 0.79

Output 2 and 3 specs

Input	Output voltage 2		V _{Out2}	[V]	8
Input	Output current 2		I _{Out2}	[A]	0.2
Input	Forward voltage of output diode 2		V _{FOut2}	[V]	0.2
Input	Output ripple voltage 2		V _{OutRipple2}	[V]	0.2
Result	Output power 2	Eq. 002	P _{Out2}	[W]	1.6
Result	Output load weight 2	Eq. 005	K _{L2}		0.11
Input	Output voltage 3		V _{Out2}	[V]	8
Input	Output current 3		I _{Out2}	[A]	0.2
Input	Forward voltage of output diode 3		V _{FOut2}	[V]	0.2
Input	Output ripple voltage 3		V _{OutRipple2}	[V]	0.2
Result	Output power 3	Eq. 002	P _{Out2}	[W]	1.6

Auxiliary

Input	V _{cc} voltage	V _{Vcc}	[V]	15
Input	Forward voltage of V _{cc} diode (D2)	V _{FVcc}	[V]	0.6

Power

1 Ower							
Input	Efficiency		η		0.83		
Result	Nominal output power	Eq. 003	PoutNom	[W]	15.2		

Appendix A: Transformer design and spreadsheet

Input	Maximum output power for overload protection		P _{OutMax}	[W]	17		
Result	Maximum input power for overload protection	Eq. 006	PinMax	[W]	19.88		
Input	Minimum output power		P _{OutMin}	[W]	0.2		
Controller/CoolSET™							
	Controller/CoolSET™				ICE5BR3995CZ		
Input	Controller/CoolSET™ Switching frequency		fs	[Hz]	ICE5BR3995CZ 65000		
Input Input	Controller/CoolSET™ Switching frequency Targeted max. drain source voltage		f _s V _{DSMax}	[Hz] [V]	ICE5BR3995CZ 65000 850		

Diode bridge and input capacitor

Diode bridge						
Input	Powerfactor		соѕф		0.6	
Result	Maximum AC input current	Eq. 007	I _{ACRMS}	[A]	0.39	
Result	Peak voltage at V _{ACMax}	Eq. 008	V _{DCMaxPk}	[V]	650.54	

Input capacitor

Result	Peak voltage at V _{ACMin}	Eq. 009	V _{DCMinPk}	[V]	120.21
Result	Selected minimum DC input voltage	Eq. 010	V _{DCMinSet}	[V]	90.21
Result	Discharging time at each half-line cycle	Eq. 011	TD	[ms]	6.42
Result	Required energy at discharging time of input capacitor	Eq. 012	Win	[Ws]	0.13
Result	Calculated input capacitor	Eq. 013	CINCal	[µF]	40.42
Input	Select input capacitor (C1)		C _{in}	[μF]	47
Result	Calculated minimum DC input voltage	Eq. 015	V _{DCMin}	[V]	94.98

Transformer design

Primary inductance and winding currents

Input	Reflection voltage		V _{RSET}	[V]	80
Result	Maximum duty cycle	Eq. 016	D _{мах}		0.46
Input	Select current ripple factor		K _{RF}		1
Result	Primary inductance	Eq. 017	L _P	[H]	7.30E-04
Result	Primary turn-on average current	Eq. 018	I _{AV}	[A]	0.46
Result	Primary peak-to-peak current	Eq. 019	ΔΙ	[A]	0.92
Result	Primary peak current	Eq. 020	I _{PMax}	[A]	0.92
Result	Primary valley current	Eq. 021	Ivalley	[A]	0.00
Result	Primary RMS current	Eq. 022	I _{PRMS}	[A]	0.357

Select core type

2

Appendix A: Transformer design and spreadsheet

Result	Core type			E25/13/7
Result	Core material			N87
Result	Maximum flux density	B _{Max}	[T]	0.3
Result	Cross-sectional area	Ae	[mm ²]	52
Result	Bobbin width	BW	[mm]	15.6
Result	Winding cross-section	A _N	[mm ²]	61
Result	Average length of turn	l _N	[mm]	50

Winding calculation

Result	Calculated minimum number of primary turns	Eq. 023	N _{PCal}	Turns	42.82
Input	Select number of primary turns		Np	Turns	58
Result	Calculated number of secondary 1 turns	Eq. 024	N _{S1Cal}	Turns	9.14
Input	Select number of secondary 1 turns		N _{S1}	Turns	9
Result	Calculated number of secondary 2 turns	Eq. 025	Ns2Cal	Turns	5.95
Input	Select number of secondary 2 turns		N _{S2}	Turns	6
Result	Calculated number of auxiliary turns	Eq. 026	N_{VccCal}	Turns	11.14
Input	Select number of auxiliary turns		Nvcc	Turns	10
Result	Calculated V _{cc} voltage	Eq. 027	V _{VccCal}	[V]	13.40

Post calculation

Result	Primary to secondary 1 turns ratio	Eq. 028	N _{PS1}		6.44
Result	Primary to secondary 2 turns ratio	Eq. 029	N _{PS2}		9.67
Result	Post-calculated reflected voltage	Eq. 030	V _{RPost}	[V]	81.20
Result	Post-calculated maximum duty cycle	Eq. 031	D _{MaxPost}		0.46
Result	Duty cycle prime	Eq. 032	D _{Max} '		0.53
Result	Actual flux density	Eq. 033	B _{MaxAct}	[T]	0.222
Result	Maximum DC input voltage for CCM operation	Eq. 034	VDCmaxCCM	[V]	93.34

Transformer winding design

Input	Margin according to safety standard		М	[mm]	0
Input	Copper space factor		f _{Cu}		0.4
Result	Effective bobbin window	Eq. 035	BW _E	[mm]	15.6
Result	Effective winding cross-section	Eq. 036	A _{Ne}	[mm ²]	61.0
Input	Primary winding area factor		AF _{NP}		0.45
Input	Secondary 1 winding area factor		AF _{NS1}		0.25
Input	Secondary 2 winding area factor		AF _{NS2}		0.20
Input	Auxiliary winding area factor		AF _{NVcc}		0.10

Primary winding 0.1893 Calculated copper wire cross-sectional area Eq. 037 [mm²] Result A_{PCal} Result Calculated maximum wire size Eq. 038 24 28 Input Select wire size AWG_P Select number of parallel wire 1 Input nw_{P} 0.32 Result Copper wire diameter Eq. 039 d_P [mm] Result Copper wire cross-sectional area Eq. 040 AP [mm²] 0.0821 Result Wire current density Eq. 041 S_P $[A/mm^2]$ 4.35 Insulation thickness **INS**_P 0.01 Input [mm] Result Turns per layer Eq. 042 NLP Turns/layer 45 Result Number of layers Eq. 043 Ln_P Layers 2

Secondary 1 winding

Result	Calculated copper wire cross-sectional area	Eq. 044	A _{NS1Cal}	[mm ²]	0.6778
Result	Calculated maximum wire size	Eq. 045	AWG_{S1Cal}		19
Input	Select wire size		AWG _{S1}		22

Appendix A: Transformer design and spreadsheet

Input	Select number of parallel wires		nws1		1
Result	Copper wire diameter	Eq. 046	ds1	[mm]	0.6465
Result	Copper wire cross-sectional area	Eq. 047	A _{S1}	[mm ²]	0.3282
Result	Peak current	Eq. 048	I _{S1Max}	[A]	4.6537
Result	RMS current	Eq. 049	I _{S1RMS}	[A]	1.9648
Result	Wire current density	Eq. 050	S _{S1}	[A/mm ²]	5.99
Input	Insulation thickness		INS _{S1}	[mm]	0.02
Result	Turns per layer	Eq. 051	NL _{S1}	Turns/layer	9
Result	Number of layers	Eq. 052	Ln _{S1}	Layers	1

Secondary 2 winding

Result	Calculated copper wire cross-sectional area	Eq. 053	A _{NS2Cal}	[mm ²]	0.8133
Result	Calculated maximum wire size	Eq. 054	AWG _{S2Cal}		18
Input	Select wire size		AWG _{S2}		26
Input	Select number of parallel wires		nw _{s2}		1
Result	Copper wire diameter	Eq. 055	d _{s2}	[mm]	0.4073
Result	Copper wire cross-sectional area	Eq. 056	A _{S2}	[mm ²]	0.1303
Result	Peak current	Eq. 057	I _{S2Max}	[A]	0.9307
Result	RMS current	Eq. 058	I _{S2RMS}	[A]	0.3930
Result	Wire current density	Eq. 059	S _{S2}	[A/mm ²]	3.02
Input	Insulation thickness		INS ₅₂	[mm]	0.02
Result	Turns per layer	Eq. 060	NL _{S2}	Turns/layer	34
Result	Number of layers	Eq. 061	Ln _{S2}	Layers	1

RCD clamper and CS resistor

RCD clamper circuit

Input	Leakage inductance percentage		Llk%	[%]	1
Result	Leakage inductance	Eq. 062	L _{LK}	[H]	7.30E-06
Result	Clamping voltage	Eq. 063	V _{Clamp}	[V]	118.26
Result	Calculated clamping capacitor	Eq. 064	C _{ClampCal}	[nF]	0.26
Input	Select clamping capacitor value (C2)		C _{clamp}	[nF]	1
Result	Calculated clamping resistor	Eq. 065	$R_{clampCal}$	[k Ω]	167.0
Input	Select clamping resistor value (R4)		R _{clamp}	[k Ω]	400

CS resistor

Input	CS threshold value from datasheet		V _{CS_N}	[V]	0.8
Result	Calculated current sense resistor (R8A, R8B)	Eq. 066	R _{sense}	[Ω]	0.87

Output rectifier Secondary 1 output rectifier

Result	Diode reverse voltage	Eq. 067	V _{RDiode1}	[V]	112.95
Result	Diode RMS current		I _{S 1RMS}	[A]	1.96
Input	Max. voltage undershoot at output capacitor		ΔV_{Out1}	[V]	0.3
Input	Number of clock periods		n _{cp1}		20
Result	Output capacitor ripple current	Eq. 068	I _{Ripple1}	[A]	1.69
Result	Calculated minimum output capacitor	Eq. 069	Cout1Cal	[µF]	1026
Input	Select output capacitor value (C152)		C _{Out1}	[µF]	1000
Input	ESR (Z _{max}) value from datasheet at 100 kHz		Resri	[Ω]	0.032
Input	Number of parallel capacitors		nc _{COut1}		1
Result	Zero frequency of output capacitor	Eq. 070	f _{ZCOut1}	[kHz]	4.97
Result	First-stage ripple voltage	Eq. 071	V _{Ripple1}	[V]	0.148919
Input	Select LC filter inductor value (L151)		L _{out1}	[µH]	4.7
Result	Calculated LC filter capacitor	Eq. 072	CLCCal1	[µF]	217.9
Input	Select LC filter capacitor value (C153)		Cici	[uF]	220

Appendix A: Transformer design and spreadsheet

Result	LC filter frequency	Eq. 073	f _{LC1}	[kHz]	4.95
Result	Second-stage ripple voltage	Eq. 074	V _{2ndRipple1}	[mV]	0.86

Secondary 2 output rectifier

Result	Diode reverse voltage	Eq. 075	V _{RDiode2}	[V]	75.30
Result	Diode RMS current		I _{S2RMS}	[A]	0.39
Input	Max. voltage undershoot at output capacitor		ΔV_{Out1}	[V]	0.15
Input	Number of clock periods		n _{cp2}		20
Result	Output capacitor ripple current	Eq. 076	I _{Ripple2}	[A]	0.34
Result	Calculated minimum output capacitor	Eq. 077	C _{Out2Cal}	[µF]	410
Input	Select output capacitor value (C152)		C _{Out2}	[µF]	330

Vcc diode and capacitor

V _{cc} diode a	and capacitor				
Result	Auxiliary diode reverse voltage (D2)	Eq. 083	VRDiodeVCC	[V]	125.56
Input	Soft-start time from datasheet		t _{ss}	[ms]	12
Input	Ivcc,Charge3 from datasheet		Ivcc_Charge3	[mA]	2
Input	V _{cc} on-threshold		Vvcc_on	[V]	16
Input	V _{cc} off-threshold		V _{VCC_OFF}	[V]	10
Result	Calculated V _{CC} capacitor	Eq. 084	Cvcccal	[µF]	22.00
Input	Select V _{cc} capacitor (C3)		Cvcc	[µF]	22
Input	V _{cc} short threshold from datasheet		Vvcc_scp	[V]	1.1
Input	Ivcc_Charge1 from datasheet		Ivcc_Charge1	[mA]	0.2
Result	Start-up time	Eq. 085	t _{StartUp}	[ms]	284.90

Calculation of losses

Input diode bridge

	-				
Input	Diode bridge forward voltage		V _{FBR}	[V]	1
Result	Diode bridge power loss	Eq. 086	P _{DIN}	[W]	0.78

Transformer copper

Result	Primary winding copper resistance	Eq. 087	R _{PCu}	[m Ω]	607.52
Result	Secondary 1 winding copper resistance	Eq. 088	R _{S1Cu}	[m Ω]	23.58
Result	Secondary 2 winding copper resistance	Eq. 089	R _{s2Cu}	[m Ω]	39.60
Result	Primary winding copper loss	Eq. 090	P _{PCu}	[mW]	77.62
Result	Secondary 1 winding copper loss	Eq. 091	P _{S1Cu}	[mW]	91.04
Result	Secondary 2 winding copper loss	Eq. 092	P _{s2Cu}	[mW]	6.12
Result	Total transformer copper loss	Eq. 093	P _{Cu}	[W]	0.1748

Output rectifier diode

Result	Secondary 1 diode loss	Eq. 094	P _{Diode1}	[W]	1.18
Result	Secondary 2 diode loss	Eq. 095	P _{Diode2}	[W]	0.08

RCD clamper circuit

Result	RCD clamper loss	Eq. 096	P _{Clamper}	[W]	0.34	

Current sense resistor

Result	CS resistor loss	Eq. 097	Pcs	[W]	0.11

MOSFET

Input	R _{DS(on)} from datasheet		R _{DS(on)} at T _A = 125°C	[Ω]	7.69
Input	C _{o(er)} from datasheet		C _{o(er)}	[pF]	5
Input	Total capacitance at drain pin (external)		C _{DS}	[pF]	25
Result	Switch-on loss at minimum AC input voltage	Eq. 098	PSONMinAC	[W]	0.0303
Result	Conduction loss at minimum AC input voltage	Eq. 099	PcondMinAC	[W]	0.9825

Appendix A: Transformer design and spreadsheet

Result	Total MOSFET loss at minimum AC input voltage	Eq. 100	PMOSMinAC	[W]	1.0127
Result	Switch-on loss at maximum AC input voltage	Eq. 101	PSONMAXAC	[W]	0.5221
Result	Conduction loss at maximum AC input voltage	Eq. 102	P _{condMaxAC}	[W]	0.1434
Result	Total MOSFET loss at maximum AC input voltage	Eq. 103	Рмозмахас	[W]	0.6655
Result	Total MOSFET loss (from minimum or maximum AC)		P _{MOS}	[W]	1.0127

Controller

Input	Controller current consumption		Ivcc_Normal2	[mA]	2
Result	Controller loss	Eq. 104	P _{Ctrl}	[W]	0.027

Efficiency after losses

Result	Total power loss	Eq. 105	P _{Losses}	[W]	3.70
Result	Post calculated efficiency	Eq. 106	ղ _{Post}	%	81.68%

CoolSET[™]/MOSFET temperature

CoolSET™/MOSFET temperature

Input	Enter thermal resistance junction-ambient (include copper pour)		R _{thJA_As}	[°K/W]	80
Result	Temperature rise	Eq. 107	ΔT	[°K]	81.1
Result	Junction temperature at T _{amax}	Eq. 108	Tjmax	°C	131.1

Line OVP

Line OVP					
Input	Select AC input LOVP		V _{OVP_AC}	[V AC]	500
Input	High-side DC input voltage divider/resistor (R3A, R3B, R3C)		R _{I1}	[MΩ]	5
Input	Controller LOVP threshold		V _{VIN_LOVP}	[V]	2.85
Result	Low-side DC input voltage divider/resistor	Eq. 109	R _{I2Cal}	[kΩ]	20.23
Input	Select low-side DC input voltage divider/resistor (R7)		R ₁₂	[k Ω]	20.5
Result	Post-calculated LOVP	Eq. 110	Vovp_acpost	[V AC]	493.54

Output regulation (isolated using TL431 and optocoupler)

Isolated feedback circuit

Output regulation

Input	TL431 reference voltage		V _{REF_TL}	[V]	2.5
Input	Weighted regulation factor of V _{out1}		W1		1
Input	Current for voltage divider/resistor R26		I _{R26}	[mA]	0.25
Result	Calculated voltage divider/resistor	Eq. 111	R26 _{Cal}	[k Ω]	10
Input	Select voltage divider/resistor value		R26	[k Ω]	10
Result	Calculated voltage divider/resistor	Eq. 112	R25 _{Cal}	[k Ω]	38.00
Input	Select voltage divider/resistor value		R25	[k Ω]	38.0

Optocoupler and TL431 bias					
Input	Current transfer ratio (CTR)		Gc	[Percent]	200%

Appendix A: Transformer design and spreadsheet

Input	Optocoupler diode forward voltage		V _{FOpto}	[V]	1.25
Input	Maximum current for optocoupler diode		I _{Fmax}	[mA]	50
Input	Minimum current for TL431		I _{KAmin}	[mA]	1
Result	Calculated minimum optocoupler bias resistance	Eq. 114	R22 _{Cal}	[k Ω]	0.1650
Input	Select optocoupler bias resistor		R22	[k Ω]	1
Input	FB pull-up reference voltage V _{REF} from datasheet		V _{REF}	[V]	3.3
Input	V _{FB_OLP} from datasheet		V _{FB_OLP}	[V]	2.75
Input	R _{FB} from datasheet		R _{FB}	[k Ω]	15
Result	Calculated maximum TL431 bias resistance	Eq. 115	R23 _{Cal}	[k Ω]	1.27
Input	Selected TL431 bias resistor		R23	[k Ω]	1

Regu	lation	loop
negu	uuuu	worp.

Result	FB transfer characteristic	Eq. 116	K _{FB}		30.00
Result	Gain of FB transfer characteristic	Eq. 117	G _{FB}	[db]	29.54
Result	Voltage divider transfer characteristic	Eq. 118	K _{VD}		0.208333
Result	Gain of voltage divider transfer characteristic	Eq. 119	Gvd	[db]	-13.62
Result	Resistance at maximum load pole	Eq. 120	R _{LH}	[Ω]	8.73
Result	Resistance at minimum load pole	Eq. 121	R _{LL}	[Ω]	48.00
Result	Poles of power stage at maximum load pole	Eq. 122	foн	[Hz]	36.47
Result	Poles of power stage at minimum load pole	Eq. 123	fol	[Hz]	6.63
Result	Zero frequency of the compensation network	Eq. 124	f _{ом}	[Hz]	15.55
Input	Zero dB crossover frequency		fg	[kHz]	5
Input	PWM-OP gain from datasheet		Av		2.03
Result	Transient impedance	Eq. 117	Z _{PWM}	[V/A]	2.2
Result	Power stage at crossover frequency	Eq. 118	F _{PWR} (fg)		0.043
Result	Gain of power stage at crossover frequency	Eq. 119	G _{PWR} (fg)	[db]	-27.31
Result	Gain of the regulation loop at fg	Eq. 120	Gs(ω)	[db]	-11.389
Result	Separated components of the regulator	Eq. 121	Gr(ω)	[db]	11.389
Result	Calculated resistance value of compensation network	Eq. 122	R24 _{Cal}	[k Ω]	29.38
Input	Select resistor value of compensation network		R24	[k Ω]	22
Result	Calculated capacitance value of compensation network	Eq. 123	C26 _{Cal}	[nF]	1.447
Input	Select capacitor value of compensation network		C26	[nF]	1
Result	Calculated capacitance value of compensation network	Eq. 124	C25 _{Cal}	[nF]	464.17

Final design

Electrical

Minimum AC voltage	[V]	85
Maximum AC voltage	[V]	460
Maximum input current	[A]	0.23
Minimum DC voltage	[V]	95
Maximum DC voltage	[V]	651
Maximum output power	[W]	16.5
Output voltage 1	[V]	12.0
Output ripple voltage 1	[mV]	0.9
Output voltage 1	[V]	8.0
Output ripple voltage 1	[mV]	0.0
Transformer peak current	[A]	0.92
Maximum duty cycle		0.46
Reflected voltage	[V]	81
Copper losses	[W]	0.17
MOSFET losses	[W]	1.01
Sum losses	[W]	3.70
Efficiency	[Percent]	81.68%

Transfo<u>rmer</u>

Core type

E25/13/7

Appendix A: Transformer design and spreadsheet

Core material			N87
Effective core area		[mm ²]	52
Maximum flux density		[mT]	222
Inductance		[μH]	730
Margin		[mm]	0
Primary turns		Turns	58
Primary copper wire size		AWG	28
Number of primary copper wires in parallel			1
Primary layers		Layer	2
Secondary 1 turns (N _{S1})		Turns	9
Secondary 1 copper wire size		AWG	22
Number of secondary 1 copper wires in parallel			1
Secondary 1 layers		Layer	1
Secondary 2 turns (Ns2)		Turns	6
Secondary 2 copper wire size		AWG	26
Number of secondary 2 copper wires in parallel			1
Secondary 2 layers		Layer	1
Auxiliary turns		Turns	10
Leakage inductance		[μH]	7.3

Components

Input capacitor (C1)	[µF]	47.0
Secondary 1 output capacitor (C152)	[μF]	1000.0
Secondary 1 output capacitor in parallel		1.0
Secondary 1 LC filter inductor (L151)	[μH]	4.7
Secondary 1 LC filter capacitor (C153)	[μF]	220.0
Secondary 2 output capacitor (C102)	[μF]	330.0
Secondary 2 output capacitor in parallel		1.0
V _{cc} capacitor (C3)	[μF]	22.0
Sense resistor (R8A, R8B)	[Ω]	0.87
Clamping resistor (R4)	[k Ω]	400.0
Clamping capacitor (C2)	[nF]	1
High-side DC input voltage divider/resistor (R3A, R3B, R3C)	[MΩ]	5000.0
Low-side DC input voltage divider/resistor (R7)	[kΩ]	20.5

Regulation components (isolated using TL431 and optocoupler)

Voltage divider	R26	[k Ω]	10.0
Voltage divider (V _{out1} sense)	R25	[k Ω]	38.0
Optocoupler bias resistor	R22	[k Ω]	1.00
TL431 bias resistor	R23	[k Ω]	1.0
Compensation network resistor	R24	[k Ω]	22.0
Compensation network capacitor	C26	[nF]	1.00
Compensation network capacitor	C25	[nF]	220.0

References

12 References

- [1] Infineon Technologies AG: ICE5xRxxxxZ Datasheet (V 1.0); 2022-02-22; ICE5xRxxxxZ Datasheet
- [2] Infineon Technologies AG: Fifth-generation fixed-frequency design guide (V 1.1); 2019-07-24; **Fifth-generation fixed-frequency design guide**
- [3] Infineon Technologies AG: Calculation tool for fixed-frequency flyback converter using fifth-generation CoolSET[™] (V 1.1); 2018-02-26; Calculation tool fixed-frequency CoolSET[™] 5th generation

Revision history

Revision history

Document version	Date of release	Description of changes
V 1.0	2022-06-15	First release
V 1.1	2023-06-11	Changed "m" to "M" in BOM list

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-07-11

Published by Infineon Technologies AG

81726 Munich, Germany

© 2023 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference AN_2101_PL21_2106_102753

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of noninfringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.