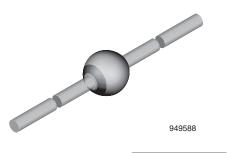
SF5400, SF5401, SF5402, SF5403, SF5404, SF5405, SF5406, SF5407, SF5408

www.vishay.com


Vishay Semiconductors

RoHS

HALOGEN

FREE

Ultra-Fast Avalanche Sinterglass Diode

click logo to get started

DESIGN SUPPORT TOOLS

MECHANICAL DATA

Case: SOD-64

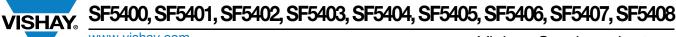
Terminals: plated axial leads, solderable per MIL-STD-750, method 2026

Polarity: color band denotes cathode end

Mounting position: any

Weight: approx. 858 mg

FEATURES


- Glass passivated
- · Hermetically sealed axial leaded glass envelope
- Low reverse current
- · High reverse voltage
- COMPLIANT Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- · Switched mode power supplies
- High-frequency inverter circuits

ORDERING INFORMATION (Example)					
DEVICE NAME	ORDERING CODE	TAPED UNITS	MINIMUM ORDER QUANTITY		
SF5408	SF5408-TR	2500 per 10" tape and reel	12 500		
SF5408	SF5408-TAP	2500 per ammopack	12 500		

PARTS TABLE		
PART	TYPE DIFFERENTIATION	PACKAGE
SF5400	$V_{R} = 50 \text{ V}; I_{F(AV)} = 3 \text{ A}$	SOD-64
SF5401	$V_{R} = 100 \text{ V}; \text{ I}_{F(AV)} = 3 \text{ A}$	SOD-64
SF5402	$V_R = 200 \text{ V}; \text{ I}_{F(AV)} = 3 \text{ A}$	SOD-64
SF5403	$V_{R} = 300 \text{ V}; \text{ I}_{F(AV)} = 3 \text{ A}$	SOD-64
SF5404	$V_{R} = 400 \text{ V}; \text{ I}_{F(AV)} = 3 \text{ A}$	SOD-64
SF5405	$V_{R} = 500 \text{ V}; \text{ I}_{F(AV)} = 3 \text{ A}$	SOD-64
SF5406	$V_{R} = 600 \text{ V}; \text{ I}_{F(AV)} = 3 \text{ A}$	SOD-64
SF5407	$V_{R} = 800 \text{ V}; \text{ I}_{F(AV)} = 3 \text{ A}$	SOD-64
SF5408	$V_{R} = 1000 \text{ V}; \text{ I}_{F(AV)} = 3 \text{ A}$	SOD-64

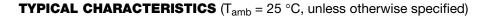
www.vishay.com

Vishay Semiconductors

ABSOLUTE MAXIMUM RATIN	IGS (T _{amb} = 25 °C, unless	otherwise	specified)			
PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT	
	See electrical characteristics	SF5400	$V_{R} = V_{RRM}$	50	V	
		SF5401	$V_{R} = V_{RRM}$	100	V	
		SF5402	$V_{R} = V_{RRM}$	200	V	
		SF5403	$V_R = V_{RRM}$	300	V	
Reverse voltage = repetitive peak reverse voltage		SF5404	$V_{R} = V_{RRM}$	400	V	
leverse voltage		SF5405	$V_{R} = V_{RRM}$	500	V	
		SF5406	$V_R = V_{RRM}$	600	V	
		SF5407	$V_{R} = V_{RRM}$	800	V	
		SF5408	$V_R = V_{RRM}$	1000	V	
Deals familiard autors automat	t _p = 2 ms, half sine wave			150	А	
Peak forward surge current	t _p = 10 ms, half sine wave		IFSM	80		
Average forward current			I _{F(AV)}	3	А	
Junction and storage temperature range			$T_j = T_{stg}$	-55 to +175	°C	
Non repetitive reverse avalanche energy	I _{(BR)R} = 0.4 A		E _R	10	mJ	

MAXIMUM THERMAL RESISTANCE (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL VALUE		UNIT		
Junction ambient	Lead length I = 10 mm, T_L = constant	R _{thJA}	25	K/W		
Sunction ambient	On PC board with spacing 25 mm	R _{thJA}	70	K/W		

PARAMETER	RISTICS (T _{amb} = 25 °C, unles TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
	I _F = 3 A	SF5400	V _F	-	-	1.1	V
		SF5401	V _F	-	-	1.1	V
		SF5402	V _F	-	-	1.1	V
		SF5403	V _F	-	-	1.1	V
Forward voltage		SF5404	V _F	-	-	1.1	V
		SF5405	V _F	-	-	1.7	V
		SF5406	V _F	-	-	1.7	V
		SF5407	V _F	-	-	1.7	V
		SF5408	V _F	-	-	1.7	V
	$V_{R} = V_{RRM}$		I _R	-	-	5	μA
Reverse current	V _R = V _{RRM} , T _j = 125 °C		I _R	-	-	50	μA
	I _R = 100 μA	SF5400	V _{(BR)R}	60	-	-	V
		SF5401	V _{(BR)R}	110	-	-	V
		SF5402	V _{(BR)R}	220	-	-	V
		SF5403	V _{(BR)R}	330	-	-	V
Reverse breakdown voltage		SF5404	V _{(BR)R}	440	-	-	V
Reverse breakdown voltage		SF5405	V _{(BR)R}	550	-	-	V
		SF5406	V _{(BR)R}	660	-	-	V
		SF5407	V _{(BR)R}	880	-	-	V
		SF5408	V _{(BR)R}	1100	-	-	V
	I _F = 0.5 A, I _R = 1 A, i _R = 0.25 A	SF5400	t _{rr}	-	-	50	ns
		SF5401	t _{rr}	-	-	50	ns
		SF5402	t _{rr}	-	-	50	ns
		SF5403	t _{rr}	-	-	50	ns
Reverse recovery time		SF5404	t _{rr}	-	-	50	ns
		SF5405	t _{rr}	-	-	75	ns
		SF5406	t _{rr}	-	-	75	ns
		SF5407	t _{rr}	-	-	75	ns
		SF5408	t _{rr}	-	-	75	ns


Rev. 1.9, 22-Feb-18

2

Document Number: 86061

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u> SF5400, SF5401, SF5402, SF5403, SF5404, SF5405, SF5406, SF5407, SF5408 www.vishay.com

Vishay Semiconductors

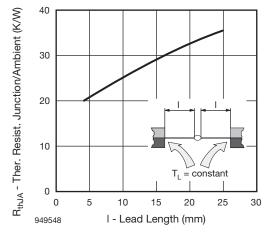


Fig. 1 - Max. Thermal Resistance vs. Lead Length

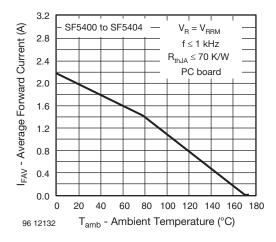


Fig. 2 - Max. Average Forward Current vs. Ambient Temperature

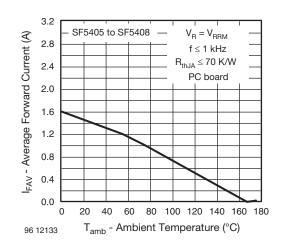


Fig. 3 - Max. Average Forward Current vs. Ambient Temperature

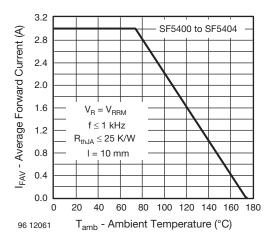


Fig. 4 - Max. Average Forward Current vs. Ambient Temperature



Fig. 5 - Max. Average Forward Current vs. Ambient Temperature

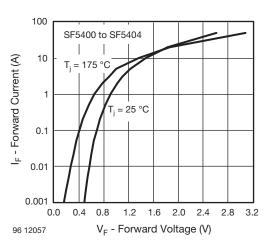
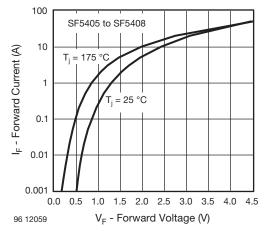


Fig. 6 - Max. Forward Current vs. Forward Voltage


Rev. 1.9, 22-Feb-18

3

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

SF5400, SF5401, SF5402, SF5403, SF5404, SF5405, SF5406, SF5407, SF5408

Vishay Semiconductors

www.vishay.com

Fig. 7 - Max. Forward Current vs. Forward Voltage

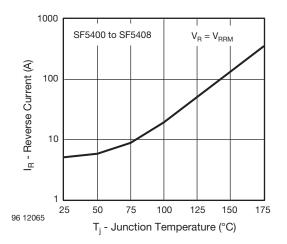


Fig. 8 - Max. Reverse Current vs. Junction Temperature

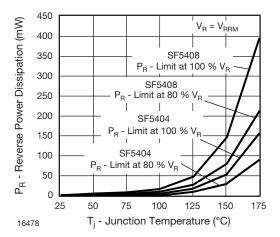


Fig. 9 - Max. Reverse Power Dissipation vs. Junction Temperature

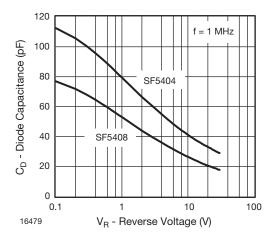
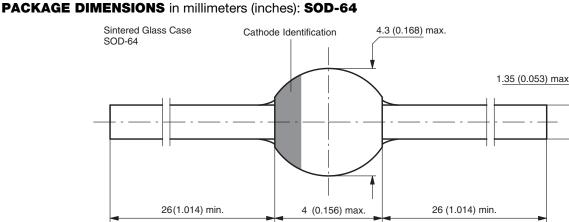



Fig. 10 - Diode Capacitance vs. Reverse Voltage

Document-No.: 6.563-5006.4-4 Rev. 3 - Date: 09.February.2005 94 9587

Rev. 1.9, 22-Feb-18

4

Document Number: 86061

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.