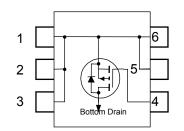
FAIRCHILE

P-Channel 2.5V PowerTrench[®] MOSFET

General Description

This P-Channel 2.5V specified MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications with a wide range of gate drive voltage (2.5V - 12V).

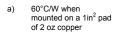

SuperSOT-6[™] FLMP

Applications

- Battery management
- Load Switch
- Battery protection

Features

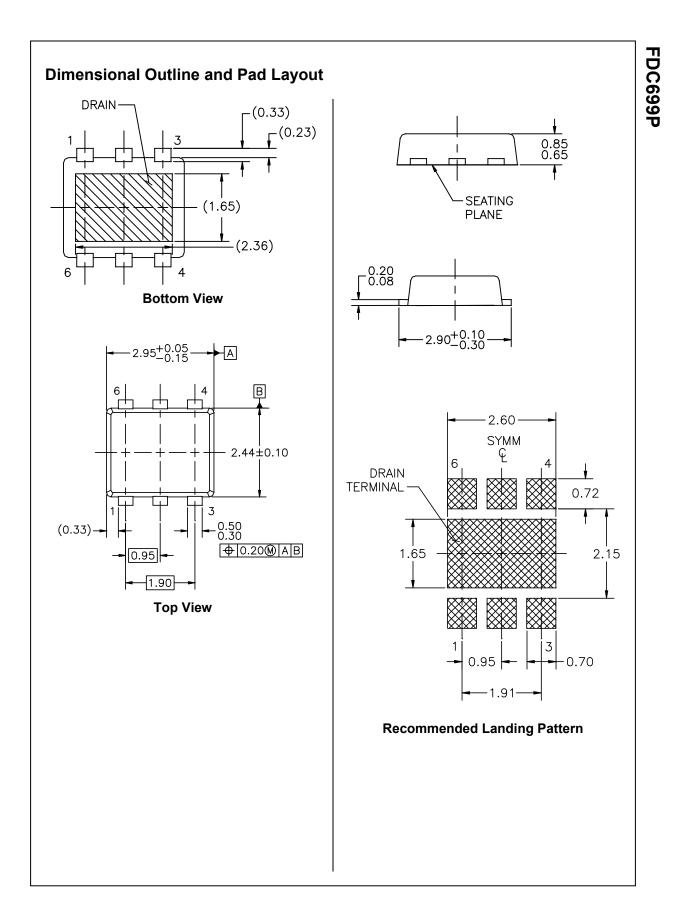
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- Fast switching speed
- FLMP SuperSOT-6 package: Enhanced thermal performance in industry-standard package size

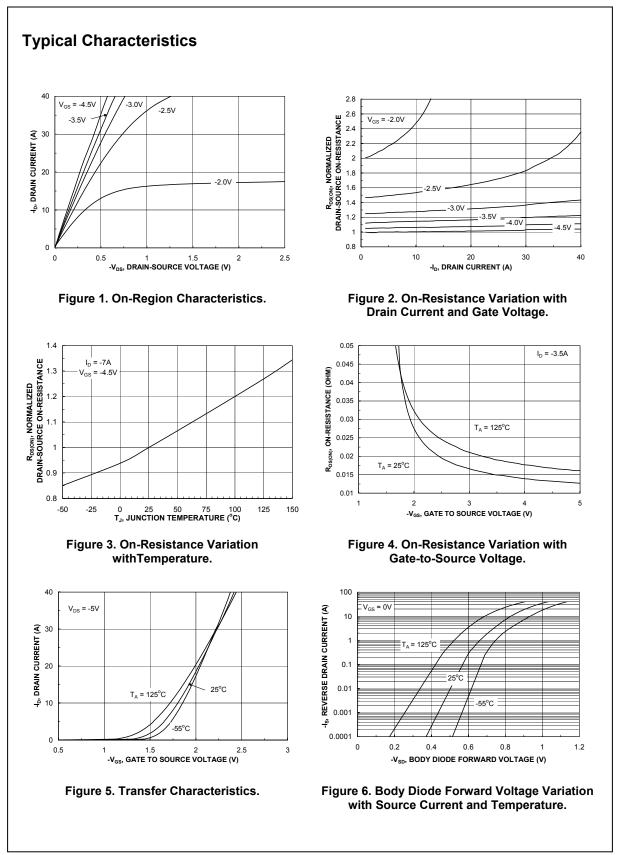

Absolute Maximum Ratings T_A=25°C unless otherwise noted

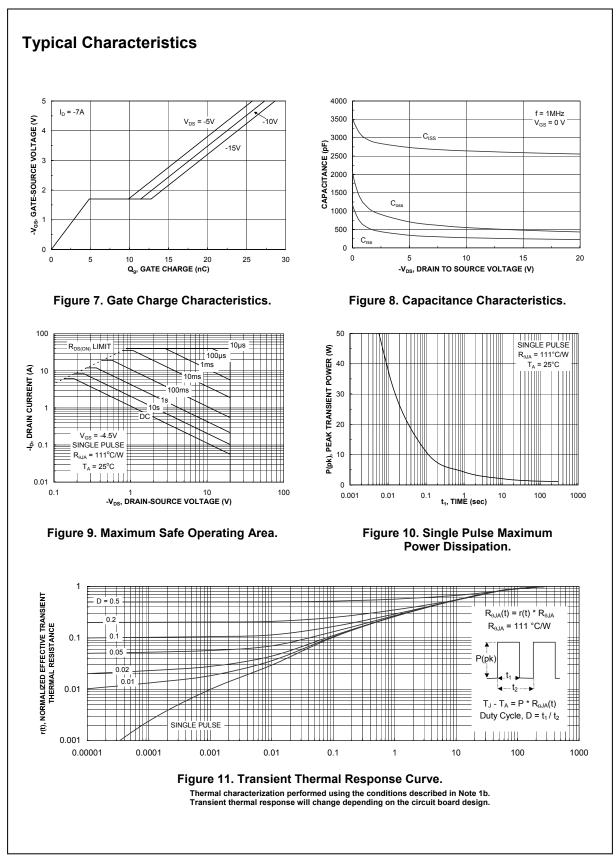
Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source Voltage			-20	V
V _{GSS}	Gate-Source	e Voltage		±12	V
I _D	Drain Curre	nt – Continuous	(Note 1a)	-7	A
		– Pulsed		-40	
P _D	Power Dissi	pation	(Note 1a)	2	W
			(Note 1b)	1.5	
T _J , T _{STG}	Operating a	nd Storage Junction Tempe	–55 to +150		
	Thermal Res	eristics sistance, Junction-to-Ambie	nt (Note 1a)	60	°C/W
	1		nt (Note 1a) (Note 1b)	60 111	°C/W
$R_{\theta JA}$	Thermal Res				°C/W
$R_{\theta JA}$ $R_{\theta JC}$	Thermal Res	sistance, Junction-to-Ambie	(Note 1b)	111	°C/W
R _{0JA} R _{0JC} Packag	Thermal Res	sistance, Junction-to-Ambie sistance, Junction-to-Case	(Note 1b)	111	C/W

©2004 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = -250 \mu A$	-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		-12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 V$, $V_{GS} = 0 V$			-1	μA
I _{GSS}	Gate–Body Leakage	V_{GS} = ±12 V, V_{DS} = 0 V			±100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$	-0.6	-0.9	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = – 250 µA, Referenced to 25°C		3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{l} V_{\rm GS} = -4.5 \ V, I_{\rm D} = -7 \ A \\ V_{\rm GS} = -2.5 \ V, \ I_{\rm D} = -6 \ A \\ V_{\rm GS} = -4.5 \ V, \ I_{\rm D} = -7 \ A, \ T_{\rm J} = 125^{\circ} C \end{array} $		14 21 17	22 30 31	mΩ
g _{FS}	Forward Transconductance	$V_{DS} = -5 V$, $I_{D} = -7 A$		30		S
Dvnamio	Characteristics				•	
C _{iss}	Input Capacitance	$V_{DS} = -10 V$, $V_{GS} = 0 V$,		2640	1	pF
C _{oss}	Output Capacitance	f = 1.0 MHz		560		pF
C _{rss}	Reverse Transfer Capacitance			280		pF
R _G	Gate Resistance	V_{GS} = 15 mV, f = 1.0 MHz		3.6		Ω
Switchir	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -10 V$, $I_D = -1 A$,		16	28	ns
tr	Turn–On Rise Time	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		11	19	ns
t _{d(off)}	Turn–Off Delay Time			75	120	ns
t _f	Turn–Off Fall Time			41	65	ns
Qg	Total Gate Charge	$V_{DS} = -10 V$, $I_D = -7 A$,		27	38	nC
Q _{gs}	Gate–Source Charge	$V_{GS} = -5 V$		5		nC
Q_{gd}	Gate-Drain Charge			7		nC
Drain-S	ource Diode Characteristics	and Maximum Ratings				
ls	Maximum Continuous Drain-Source	e Diode Forward Current			-1.6	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = -1.6 A$ (Note 2)		-0.7	-1.2	V
t _{rr}	Reverse Recovery Time	$I_{\rm F} = -7 {\rm A},$		28		ns
Q _{rr}	Reverse Recovery Charge	d _{iF} /d _t = 100 A/µs		14	1	nC







b) 111°C/W when mounted on a minimum pad of 2 oz copper

Scale 1 : 1 on letter size paper 2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

FDC699P Rev C2 (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTMFACT Quiet SeriesTMActiveArrayTMFAST®BottomlessTMFASTrTMCoolFETTMFPSTMCROSSVOLTTMFRFETTMDOMETMGlobalOptoisolatorTMEcoSPARKTMGTOTME²CMOSTMHiSeCTMEnSignaTM $PCTM$ FACTTMImpliedDisconnectTMAcross the board. Around the world.TMThe Power FranchiseTMProgrammable Active DroopTM	$ISOPLANAR^{TM}$ $LittleFET^{TM}$ $MICROCOUPLER^{TM}$ $MicroFET^{TM}$ $MicroPak^{TM}$ $MICROWIRE^{TM}$ MSX^{TM} $MSXPro^{TM}$ OCX^{TM} $OCXPro^{TM}$ $OCXPro^{TM}$ $OPTOLOGIC^{(B)}$ $OPTOPLANAR^{TM}$ $PACMAN^{TM}$	POP TM Power247 TM PowerTrench [®] QFET [®] QS TM QT Optoelectronics TM Quiet Series TM RapidConfigure TM RapidConnect TM SILENT SWITCHER [®] SMART START TM SPM TM Stealth TM	SuperFET TM SuperSOT TM -3 SuperSOT TM -6 SuperSOT TM -8 SyncFET TM TinyLogic [®] TINYOPTO TM TruTranslation TM UHC TM UltraFET [®] VCX TM
---	--	---	---

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production

BUY

Datasheet

datasheet

PDF

Download this

Home >> Find products >>

FDC699P

P-Channel 2.5V Power Mosfet MOSFET Recommend FDC699P_F077

Contents

•<u>General description</u> •<u>Features</u> •<u>Applications</u> •Product status/pricing/packaging

•<u>Order Samples</u> •<u>Models</u> •Qualification Support

General description

This P-Channel 2.5V specified MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications with a wide range of gate drive voltage (2.5V - 12V).

back to top

Features

- -7 A, -20V R_{DS(ON)} = 22 mOhm @ VGS = -4.5 V R_{DS(ON)} = 30 mOhm @ VGS = -2.5 V
- High performance trench technology for extremely low R_{DS(ON)}
- Fast switching speed
- FLMP SuperSOT-6 package: Enhanced thermal performance in industry-standard package size

back to top

Applications

- Battery management
- Load Switch
- Battery protection

Related Links

Request samples

- How to order products
- Product Change Notices (PCNs)

<u>Support</u>

- Sales support
- **A 1 1 1 1 1 1**

Quality and reliability

Design center

This page Print version

This product Use in FETBench

back to top

Product status/pricing/packaging

BUY

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**
FDC699P	Not recommended for new designs	Ø	\$0.45	SSOT-6 FLMP	6	TAPE REEL	Line 1: &E& Y (Binary Calendar Year Coding) Line 2: .699
FDC699P_F077	Full Production	Full Production	\$0.57	SSOT-6 FLMP	6	TAPE REEL	Line 1: &E& Y (Binary Calendar Year Coding) Line 2: .699

* Fairchild 1,000 piece Budgetary Pricing
 ** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a <u>Fairchild distributor</u> to obtain samples

Ø Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product FDC699P is available. Click here for more information .

back to top

Models

Package & leads	Condition	n Temperature range Software version Revis		Revision date
		PSPICE		
SSOT-6 FLMP-6	<u>Electrical</u>	25°C to 125°C	Orcad 9.1	Jan 6, 2004

back to top

Qualification Support

Click on a product for detailed qualification data

Product			
FDC699P			
FDC699P_F077			

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions (