General Description

The MAX20340 is a universal bidirectional DC powerline communication (PLC) management IC with a 166.7kbps maximum bit rate. The device is capable of a maximum of 1.2A charge current.

The MAX20340 features a slave detection circuit that flags an interrupt to the system when the PLC master detects the presence of a PLC slave on the power line. This function allows the system to remain in a lowpower state until a slave device is connected.

Many of the features of the MAX20340, such as master/slave mode, I²C address, dual/single PLC slave mode, and PLC slave address, are pin configurable.

The device is available in a 9-bump, 0.4mm pitch, 1.358mm x 1.358mm wafer-level package (WLP).

Applications

- Truly Wireless Earbuds
- Tethered Wireless Headphones
- Hearing Aids
- **Wearables**
- Game Controllers
- Handheld Radios
- Point of Sales Devices

Functional Diagram

MAX20340 Bidirectional DC Powerline Communication Management IC

Benefits and Features

- Compact, Simple Solution for PLC
	- Up to 166.7kbps Bit Rate
	- 5.7kbps Data Throughput in Automatic Mode
	- 1.2A Charge Current
	- Automatic Detection of PLC Slave Presence
- Flexible Configuration
	- Single Resistor to Program
	- PLC Master or Slave
	- Dual or Single Slave Mode (Master Only)
	- PLC Slave Address (Slave Only)
	- I²C Address
- Small Solution Size
	- Space-Saving 0.4mm Pitch, 9-Bump, 1.358mm x 1.358mm WLP

Absolute Maximum Ratings

 V_{CC} , PLC, SCL, SDA, \overline{INT} , BAT, \overline{EN} , RSEL to GND.... .. -0.3V to +6V

Continuous Current V_{CC} , Q1, Q2 closed, PLC ..-1.2A to +1.2A

Continuous Current into Any Other Terminal . -20mA to +20mA

Continuous Power Dissipation (Multilayer Board) (TA = 70° C, derate 11.91mW/°C above +70°C) 952.8mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect *device reliability.*

Package Information

9 WLP

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layerboard. For detailed information on package thermal considerations see www.maxim-ic.com/thermal-tutorial.

Electrical Characteristics

(T_A = -40°C to +85°C, V_{CC} = +3.4V to +5.5V, unless otherwise noted. Typical values are at T_A = +25°C. (Note 1))

 $(T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = +3.4V$ to $+5.5V$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$. (Note 1))

 $(T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = +3.4V$ to $+5.5V$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$. (Note 1))

(T_A = -40°C to +85°C, V_{CC} = +3.4V to +5.5V, unless otherwise noted. Typical values are at T_A = +25°C. (Note 1))

Note 1: All devices are production tested at T_A = +25°C. Specifications over temperature are guaranteed by design.

Typical Operating Characteristics

Pin Configuration

Pin Descriptions

Detailed Description

The MAX20340 is a universal bidirectional DC powerline (PLC) communication management IC with a 166.7kbps maximum bit rate. The device is capable of a maximum of 1.2A charge current.

The MAX20340 features a slave detection circuit that flags an interrupt to the system when the PLC master detects the presence of a PLC slave on the power line. This function allows the system to remain in a low power state until a slave device is connected. Many of the features of the MAX20340, such as master/slave mode, I2C address, dual/single PLC slave mode, and PLC slave address, are pin configurable.

Device Configuration

After power-on reset (POR), the master/slave mode, PLC slave address (slave only), PLC slave address mode (master only) and I2C address are configured based on the value of the RSEL resistor. The configuration status can be queried by reading I2C_ADD and PS_ADD bits of the register 0x05.

Table 1. RSEL Configuration

Device Initialization

After POR, the device starts by checking the resistor present on the RSEL pin. It is recommended to have the OTP bit RSEL DONEm (0x08[4]) default high so that an interrupt occurs at the end of this RSEL identification phase. As an alternative to detecting the interrupt, the user can also choose to wait 3ms or more after POR to give enough time for RSEL to be properly identified. The I²C interface cannot be used until RSEL identification is complete because RSEL defines also the I2C slave address. With RSEL identified, the PLC master/slave mode, the I2C slave address, the number of PLC slaves (master mode), and the PLC slave address (slave mode) are automatically configured. The configuration result can be determined through bit PS_ADD (0x05[0]). The user can also read bits FSM_STAT[2:0] (0x05[4:2]) to determine whether the MAX20340 is configured as a master or a slave. If the MAX20340 is configured as a PLC master, see the *[Master Mode Operation](#page-10-0)* section for more details. Otherwise, see the *Slave Mode Operation* section for PLC slave operation details. Figure 1 shows the flow chart for transmitting 3 bytes from the PLC master and receiving the response from the PLC slave. It assumes that all relevant interrupts have been unmasked.

Figure 1. Flow Chart for Transmitting 3 Bytes

Master Mode Operation

After the RSEL and master mode identifications, the MAX20340 stays in the master low-power shutdown mode as long as \overline{EN} input is high and EN bit of register 0x01[0] is 0. When \overline{EN} is driven low or EN bit is set to 1, the device transitions to the slave detection state. The user can unmask the FSM_STATi interrupt (0x08[0]) to be notified of any change of master FSM (finite state machine) state through the $\overline{\text{INT}}$ pin. When a slave is detected as described in the PLC Master *and Slave Detection* section, the state machine transitions to the slave found state. In this state, both the Q1 and Q2 switches are on to provide a low-resistance charging path between V_{CC} and PLC pins with a 1.2A maximum charge current on the PLC line. In the slave found state, PLC communication can be initiated by the PLC master using the following procedure:

www.maximintegrated.com exercise that the extension of the extension

Set PLC_STATm bit of the DEV_STATUS_MASK (0x08) register to 1 to unmask the PLC_STAT interrupts. Then unmask the PLC interrupts in the PLC_IRQ register (0x0B) and the PLC_MASK (0x0C) register.

Load the bytes to be transmitted into TX DATAx registers (0x0D, 0x0E, and 0x0F).

Select the desired slave response time through the TWAIT_TMR (0x02[1:0]) bit or leave it at the default setting.

Choose the desired PLC speed through the FREQ[1:0] (0x09[5:4]) bit, the parity through the PARITY[1:0] (0x09[3:2]) bit, and the PLC sink current through the PLC_SINK[1:0] (0x09[7:6]) bit. Write 01 into TX[1:0] (0x09[1:0]) to send one byte, 10 to send two bytes, or 11 to send three bytes. The checksum is automatically calculated by the MAX20340 and appended after the actual data bytes.

The master state machine transitions automatically to PLC mode and starts sending data.

If the transmission is completed without errors, PLC_TX_OKi (0x0B[5]) goes high. Otherwise, PLC_TX_ERRi (0x0B[6]) goes high instead.

If the PLC slave responds within the time specified by the Rx wait timer bits 0x02[1:0], the received data are available in the RX_DATAx registers (0x10, 0x11, and 0x12). The response includes one, two, or three bytes plus the checksum. If the response is received without errors, NEW_DATA2i (0x0B[1]) or NEW_DATA1i (0x0B[2]) bits (or both at the same time) are high. In case of parity, checksum or any other error, PLC_RX_ERRi (0x0B[3]) goes high and the new data is not be updated in RX_DATAx.

The master state machine switches automatically between PLC mode and slave found states based on the PLC communication requirements.

Slave Mode Operation

After RSEL and slave mode identification, the MAX20340 stays in the slave low-power shutdown mode as long as EN input is high and the EN bit of register $0 \times 01[0]$ is 0. When \overline{EN} is driven low or EN bit is set to 1, the device transitions to master detection state. The user can unmask the FSM_STATi interrupt using FSM_STATm (0x08[0]) to notify through the $\overline{\text{INT}}$ pin when any change of state occurs. When a master is detected as described in the *PLC Master and Slave Detection* section, the state machine switches to master found state. In this state, PLC communication is enabled. The detected PLC master is always the one that initiates the communication by sending one, two or three data bytes. When the PLC slave detects the beginning of a valid PLC communication, PLC_RX_DETi (0x0B[0]) becomes high. If the packet is received without errors, NEW_DATA2i (0x0B[1]) or NEW_DATA1i (0x0B[2]) bits (or both at the same time) becomes high and the received data are available in the RX DATAx registers (0x10, 0x11, and 0x12). The PLC slave can be switched from master found state to slave idle state by setting SLAVE_TO_IDLE (0x04[3]) to 1.

In the master found state, use the following procedure to control the PLC slave for PLC communication:

Set PLC_STATm bit of the DEV_STATUS_MASK (0x08) register to 1 to unmask PLC_STAT interrupts. Then unmask the PLC interrupts in the PLC_IRQ register (0x0B) through the PLC_MASK (0x0C) register.

Configure the slave to match the PLC speed (FREQ[1:0]) and parity (PARITY[1:0]) of the master through the PLC_COM_CTRL register (0x09).

When ongoing PLC communication is detected, the PLC slave indicates that by setting PLC_RX_DETi (0x0B[0]) to high. After that, wait for the assertion of interrupts NEW_DATA2i (0x0B[1]) or NEW_DATA1i (0x0B[2]) indicating that the received data is available in the RX_DATAx registers. In case of parity, checksum or any other error, PLC_RX_ERRi (0x0B[3]) is high and the new data is not updated in the RX_DATAx registers.

To respond to the PLC master after processing the received data, load the bytes to be transmitted into the slave's TX DATAx registers (0x0D, 0x0E, and 0x0F).

Write 01 into TX[1:0] bits (0x09[1:0]) to send just one byte, 10 to send two bytes, or 11 to send three bytes. The checksum is automatically calculated by the MAX20340 and appended after the actual data bytes.

PLC Master and Slave Detection

When the PLC master is in slave detection state, its PLC line is pulled up to BAT through an internal 8.4k Ω (typical) resistor. If a PLC slave is attached, the PLC line is pulled below the V_{PLC} SHT threshold by the clamp circuit of the slave. Once the master detects that V_{PLC} is less than V_{PLC_SHT} , it enters the slave found charging state, disconnects the 8.4k Ω internal pullup resistor, and closes the power switch between V_{CC} M (V_{CC} of the master) and PLC line.

After the master enters the slave found charging state, the power source (e.g., a buck-boost regulator) providing V_{CC} M needs to be enabled (if not already) to pull V_{PLC} above V_{PLC} DET within the short-circuit detection blanking time tSHT_BLK. Failing to do so causes the master to leave the slave found charging state and enter the safe state. The application processor (AP) can unmask FSM_STATi interrupt to be notified of the slave found charging state change event through the $\overline{\text{INT}}$ pin so that it can enable the power source before t_{SHT_BLK} elapses. With the master now in the slave found charging, the slave detects that V_{PLC} is above V_{PLC} $_{DET}$ and enters the master found communication enabled state. This completes the PLC master and slave detection.

After a slave is detected, there is no build-in mechanism for the master to detect when the slave is detached. This means that the master stays in the slave found charging state even if the slave is removed. Therefore, the master AP should poll the slave intermittently through PLC and set DET_RST to 1 to return to the slave detection state based on the polled result.

Dual Slave Configuration

When an MAX20340 PLC master interfaces with two MAX20340 PLC slaves in the dual slave configuration, both PLC slaves should be configured to have a different PLC slave address using different RSEL values according to Table 1. The configured PLC slave address can be determined by reading bit PS_ADD (0x05[0]). When the PLC master intends to send a packet to one of the PLC slaves, the PLC slave address of the intended recipient should be embedded in the data bytes. The user has the flexibility to assign the PLC slave address to any bit of the data bytes. Since both PLC slaves receive the same data, each slave's application processor is expected to extract the PLC slave address from the userdefined bit location in the PLC frame and compare it with the PLC slave address indicated by PS_ADD bit to determine which slave is the intended recipient. The intended slave then processes the data accordingly while the other slave simply discards the data.

LDO Operation

When the device is in PLC slave mode, the V_{CC} pin becomes the LDO output. The LDO has two output ranges selected by LDO_RNG. When LDO_RNG is 0, the output voltage on V_{CC} follows the battery voltage plus a voltage difference programmable by the D_LDO_BAT[2:0] (register 0x02[4:2]) until V_{CC} drops to a threshold programmable by V_LDO_MIN[2:0] (register 0x02[7:5]), in which case the MAX20340 keeps V_{CC} regulated at the voltage set by V_LDO_MIN[2:0].

When LDO_RNG is 1, the output voltage is always regulated at the voltage set by the V_LDO_MIN[2:0] regardless of V_{BAT} , provided that the LDO input (V_{PLC}) is above the output regulation voltage (V_{CC}).

The PLC slave can also operate in the LDO-bypassed mode. Regardless of the value of LDO_RNG, the V_{CC} output of the slave follows the V_{PLC} input voltage when D_LDO_BAT[2:0] is set to 000, effectively bypassing the LDO.

Charge Timer

When the MAX20340 is configured as a PLC master. The charge timer starts when the master state machine switches from the slave detection state to the slave found state. It continues counting without being interrupted or reset when the state machine switches back and forth between the slave found state and the PLC mode state. The charge timer is reset and stopped in the slave detection state and the master low-power shutdown state. The charge timer setting can be changed by CHG_TMR_SET[1:0] bits (0x03[5:4]). The charge timer status is reflected by CHG_TMRS[1:0] bits (0x05[7:6]).

Figure 2. Master and Slave Mode Operation State Diagram

Thermal Shutdown

When the MAX20340 enters thermal shutdown, the Q1/Q2 switches are open and the THM_SHDNi interrupt bit (0x07[5]) becomes high while the master/slave state machines are not affected.

INT Interrupt Output

The MAX20340 interrupts can be unmasked to indicate to the application processor (AP) that the status of the MAX20340 has changed. The $\overline{\text{INT}}$ pin asserts low whenever one or more unmasked interrupts are toggled. The device has two readonly interrupt registers: DEV_STATUS_IRQ and PLC_IRQ. The DEV_STATUS_IRQ register indicates that the top-level block has an interrupt generated. PLC IRQ is an additional interrupt register dedicated to the PLC block for indicating any change of the PLC communication status. The PLC STATi bit in the DEV STATUS IRQ register goes high if any bit of the register PLC_IRQ is asserted.

 $\overline{\text{INT}}$ goes high (cleared) after the last interrupt register that contains an active interrupt is read. All interrupts can be masked to prevent $\overline{\text{INT}}$ from being asserted through the DEV STATUS MASK and PLC MASK registers. The DEV_STATUS1, DEV_STATUS2, and PLC_STATUS registers can still provide the actual interrupt status of the masked interrupts, but $\overline{\text{INT}}$ is not asserted. The interrupt structure is depicted in *[Figure 3](#page-14-0)*.

Figure 3. Interrupt Structure

I2C Interface

The device contains an I2C-compatible interface for data communication with a host controller (SCL and SDA). The interface supports a clock frequency of up to 400kHz. SCL and SDA require pullup resistors that are connected to a positive supply.

www.maximintegrated.com exercise with the state of th

Figure 4. I2C Interface Timing

START, STOP, and REPEATED START Conditions

When writing to the device using $12C$, the master sends a START condition (S) followed by the device $12C$ address. After the address, the master sends the register address of the register that is to be programmed. The master then ends communication by issuing a STOP condition (P) to relinquish control of the bus, or a REPEATED START condition (Sr) to communicate to another I2C slave. See *[Figure 5](#page-15-0)*.

Figure 5. I2C START, STOP, and REPEATED START Conditions

Slave Address

Set the R/ \overline{W} bit high to configure the device to read mode. Set the R/ \overline{W} bit low to configure the device to write mode. The address is the first byte of information sent to the device after the START condition.

Bit Transfer

One data bit is transferred on the rising edge of each SCL clock cycle. The data on SDA must remain stable during the high period of the SCL clock pulse. Changes in SDA while SCL is high and stable are considered control signals. See the START, STOP, and REPEATED START Conditions. Both SDA and SCL remain high when the bus is not active.

Single-Byte Write

In this operation, the master sends an address and two data bytes to the slave device (Figure 6). The following procedure describes the single byte write operation:

- 1) The master sends a START condition.
- 2) The master sends the 7-bit slave address plus a write bit (low).
- 3) The addressed slave asserts an ACK on the data line.
- 4) The master sends the 8-bit register address.
- 5) The slave asserts an ACK on the data line only if the address is valid (NAK if not).
- 6) The master sends 8 data bits.

- 7) The slave asserts an ACK on the data line.
- 8) The master generates a STOP condition.

Figure 6. Write Byte Sequence

Burst Write

In this operation, the master sends an address and multiple data bytes to the slave device (*[Figure 7](#page-16-0)*). The slave device automatically increments the register address after each data byte is sent. The following procedure describes the burst write operation:

- 1) The master sends a START condition.
- 2) The master sends the 7-bit slave address plus a write bit (low).
- 3) The addressed slave asserts an ACK on the data line.
- 4) The master sends the 8-bit register address.
- 5) The slave asserts an ACK on the data line only if the address is valid (NAK if not).
- 6) The master sends eight data bits.
- 7) The slave asserts an ACK on the data line.
- 8) Repeat steps 6 and 7 N 1 times.
- 9) The master generates a STOP condition.

Figure 7. Burst Write Sequence

Single-Byte Read

In this operation, the master sends an address plus two data bytes and receives one data byte from the slave device (*[Figure 8](#page-17-0)*). The following procedure describes the single-byte read operation:

The master sends a START condition.

- 1) The master sends the 7-bit slave address plus a write bit (low).
- 2) The addressed slave asserts an ACK on the data line.
- 3) The master sends the 8-bit register address.
- 4) The slave asserts an ACK on the data line only if the address is valid (NAK if not).
- 5) The master sends a REPEATED START condition.
- 6) The master sends the 7-bit slave address plus a read bit (high).
- 7) The addressed slave asserts an ACK on the data line.
- 8) The slave sends eight data bits.
- 9) The master asserts a NACK on the data line.
- 10) The master generates a STOP condition.

Figure 8. Read Byte Sequence

Burst Read

In this operation, the master sends an address plus two data bytes and receives multiple data bytes from the slave device (*[Figure 9](#page-18-0)*). The following procedure describes the burst-byte read operation:

- 1) The master sends a START condition.
- 2) The master sends the 7-bit slave address plus a write bit (low).
- 3) The addressed slave asserts an ACK on the data line.
- 4) The master sends the 8-bit register address.
- 5) The slave asserts an ACK on the data line only if the address is valid (NAK if not).
- 6) The master sends a REPEATED START condition.
- 7) The master sends the 7-bit slave address plus a read bit (high).
- 8) The slave asserts an ACK on the data line.
- 9) The slave sends eight data bits.
- 10) The master asserts an ACK on the data line.
- 11) Repeat steps 9 and 10 N 2 times.
- 12) The slave sends the last eight data bits.
- 13) The master asserts a NACK on the data line.
- 14) The master generates a STOP condition.

Figure 9. Burst Read Sequence

Acknowledge Bits

Data transfers are acknowledged with an acknowledge bit (ACK) or a not-acknowledge bit (NACK). Both the master and the device generate ACK bits. To generate an ACK, pull SDA low before the rising edge of the ninth clock pulse and hold it low during the high period of the ninth clock pulse (Figure 10). To generate a NACK, leave SDA high before the rising edge of the ninth clock pulse and leave it high for the duration of the ninth clock pulse. Monitoring for NACK bits allows for detection of unsuccessful data transfers.

Figure 10. Acknowledge

Applications Information

Powerline Communication (PLC)

To communicate reliably over the PLC line, it is critical to keep V_{CC} of the master stable by minimizing the trace between V_{CC} and its voltage source. A voltage source with a good load transient, load regulation, and output ripple performance is recommended.

In addition, the capacitance present on the PLC can distort the PLC transmission waveform and therefore should be minimized. This is an important consideration when the LDO of the slave is in the dropout state (LDO_DROP = 1) or when the LDO is bypassed. In both cases, the output capacitance on the LDO output (V_{CC} of the PLC slave) is effectively affecting the PLC line and should therefore be minimized as well. Figure 11 illustrates the voltage waveform on the PLC line during a PLC transmission.

The time unit (t_{UNIT}) determines the PLC transmission speed. A time unit longer than 24 μ s can be selected in case the slave device, such as a battery charger in a wireless earbud, has poor PSRR performance.

Figure 11. Powerline Communication Signal Waveform

High-ESD Protection

Electrostatic discharge (ESD)-protection structures are incorporated on all pins to protect against electrostatic discharges up to ±2kV Human Body Model (HBM) encountered during handling and assembly. PLC pin is further protected against ESD up to ±30kV (HBM), ±3kV (Air-Gap Discharge), and ±10kV (Contact Discharge) without damage. The ESD structures withstand high ESD in both normal operation and when the device is powered down. After an ESD event, the MAX20340 continues to function without latchup.

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

[Figure 12](#page-19-0) shows the Human Body Model. *[Figure 13](#page-20-0)* shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest that is then discharged into the device through a 1.5kΩ resistor.

Figure 12. Human Body ESD Test Model

Figure 13. Human Body Current Waveform

IEC 61000-4-2

The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. It does not specifically refer to integrated circuits. The MAX20340 is specified for ±3kV Air-Gap and ±10kV Contact Discharge IEC 61000-4-2 on the PLC pin.

The main difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2. Because series resistance is lower in the IEC 61000-4-2 ESD test model (*[Figure 14](#page-20-1)*), the ESD-withstand voltage measured to this standard is generally lower than that measured using the Human Body Model. *[Figure 15](#page-21-0)* shows the current waveform for the ±6kV IEC 61000-4-2 Level 4 ESD Contact Discharge test. The Contact Discharge method connects the probe to the device before the probe is energized.

Figure 14. IEC61000-4-2 ESD Test Model

Figure 15. IEC61000-4-2 ESD Generator Current Waveform

Register Map

MAX20340

Register Details

DEVICE_ID (0x0)

CONTROL1 (0x1)

CONTROL2 (0x2)

www.maximintegrated.com Maxim Integrated | 24

CONTROL3 (0x3)

CONTROL4 (0x4)

DEV_STATUS1 (0x5)

www.maximintegrated.com Maxim Integrated | 26

DEV_STATUS2 (0x6)

DEV_STATUS_IRQ (0x7)

DEV_STATUS_MASK (0x8)

PLC_COM_CTRL (0x9)

PLC_STATUS (0xA)

PLC_IRQ (0xB)

PLC_MASK (0xC)

TX_DATA0 (0xD)

www.maximintegrated.com Maxim Integrated | 31

TX_DATA1 (0xE)

TX_DATA2 (0xF)

RX_DATA0 (0x10)

RX_DATA1 (0x11)

RX_DATA2 (0x12)

Typical Application Circuits

Wireless Earbud Charging with Cradle

Ordering Information

+ Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

Revision History

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at [https://www.maximintegrated.com/en/storefront/storefront.html.](https://www.maximintegrated.com/en/storefront/storefront.html)

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. c 2020 Maxim Integrated Products, Inc.