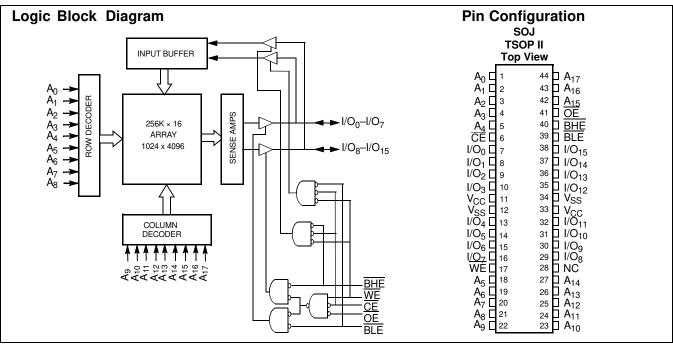


# 4-Mbit (256K x 16) Static RAM

#### **Features**

- Pin equivalent to CY7C1041BV33
- Temperature Ranges
  - Commercial: 0°C to 70°C
     Industrial: -40°C to 85°C
     Automotive: -40°C to 125°C
- High speed
  - t<sub>AA</sub> = 10 ns
- · Low active power
- 324 mW (max.)
- · 2.0V data retention
- · Automatic power-down when deselected
- · TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features

### Functional Description<sup>[1]</sup>


The CY7C1041CV33 is a high-performance CMOS Static RAM organized as 262,144 words by 16 bits.

Writing to the device is <u>acc</u>omplished by taking Chip Enable ( $\overline{\text{CE}}$ ) and Write Enable ( $\overline{\text{WE}}$ ) inputs LOW. If Byte LOW Enable (BLE) is LOW, then data from I/O pins (I/O<sub>0</sub>–I/O<sub>7</sub>), is written into the location specified on the address pins (A<sub>0</sub>–A<sub>17</sub>). If Byte HIGH Enable (BHE) is LOW, then data from I/O pins (I/O<sub>8</sub>–I/O<sub>15</sub>) is written into the location specified on the address pins (A<sub>0</sub>–A<sub>17</sub>).

Reading from the device is accomplished by taking Chip Enable ( $\overline{\text{CE}}$ ) and Output Enable ( $\overline{\text{OE}}$ ) LOW while forcing the Write Enable ( $\overline{\text{WE}}$ ) HIGH. If Byte LOW Enable ( $\overline{\text{BLE}}$ ) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$  – I/O $_7$ . If Byte HIGH Enable ( $\overline{\text{BHE}}$ ) is LOW, then data from memory will appear on I/O $_8$  to I/O $_{15}$ . See the truth table at the back of this data sheet for a complete description of Read and Write modes.

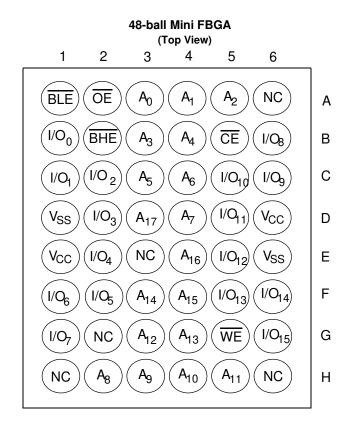
The input/output pins (I/O $_0$ -I/O $_1$ 5) are placed in <u>a</u> high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a Write operation (CE LOW, and WE LOW).

The CY7C1041CV33 is available in a standard 44-pin 400-mil-wide body width SOJ and 44-pin TSOP II package with center power and ground (revolutionary) pinout, as well as a 48-ball fine-pitch ball grid array (FBGA) package.



Notes:

 $1. \ \ For guidelines \ on \ SRAM \ system \ design, please \ refer \ to \ the \ "System \ Design \ Guidelines" \ Cypress \ application \ note, available \ on \ the \ internet \ at \ www.cypress.com.$ 




### **Selection Guide**

|                              |                           | -8  | -10 | -12 | -15 | -20 | Unit |
|------------------------------|---------------------------|-----|-----|-----|-----|-----|------|
| Maximum Access Time          | 8                         | 10  | 12  | 15  | 20  | ns  |      |
| Maximum Operating Current    | Commercial                | 100 | 90  | 85  | 80  | 75  | mA   |
|                              | Industrial                | 110 | 100 | 95  | 90  | 85  | mA   |
|                              | Automotive                | -   | -   | -   | -   | 90  | mA   |
| Maximum CMOS Standby Current | Commercial/<br>Industrial | 10  | 10  | 10  | 10  | 10  | mA   |
|                              | Automotive                | -   | -   | -   | -   | 15  | mA   |

Shaded areas contain advance information.

### **Pin Configurations**





## **Pin Definitions**

| Pin Name                             | 44-SOJ,<br>44-TSOP<br>Pin Number | 48-ball FBGA<br>Pin Number                      | I/O Type      | Description                                                                                                                                                                                              |
|--------------------------------------|----------------------------------|-------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A <sub>0</sub> -A <sub>17</sub>      | 1-5,18-27,<br>42-44              | A3,A4,A5,B3,<br>B4,C3,C4,D4,<br>H2,H3,H4,H5,G   | Input         | Address Inputs used to select one of the address locations.                                                                                                                                              |
|                                      |                                  | 3,G4,F3,F4,E4,<br>D3                            |               |                                                                                                                                                                                                          |
| I/O <sub>0</sub> - I/O <sub>15</sub> | 7-10,13-16,<br>29-32,35-38       | B1,C1,C2,D2,E<br>2,F2,F1,G1,B6,<br>C6,C5,D5,E5, | Input/Output  | <b>Bidirectional Data I/O lines.</b> Used as input or output lines depending on operation                                                                                                                |
| NC <sup>[2]</sup>                    | 28                               | F5,F6,G6<br>A6,E3,G2,H1,                        | No Connect    | No Connects. This pin is not connected to the die                                                                                                                                                        |
|                                      | 10                               | H6                                              | 140 001111000 |                                                                                                                                                                                                          |
| WE                                   | 17                               | G5                                              | Input/Control | <b>Write Enable Input, active LOW.</b> When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted.                                                                                 |
| CE                                   | 6                                | B5                                              | Input/Control | Chip Enable Input, active LOW. When LOW, selects the chip. When HIGH, deselects the chip.                                                                                                                |
| BHE, BLE                             | 39,40                            | A1,B2                                           | Input/Control | Byte Write Select Inputs, active LOW. $\overline{\rm BHE}$ controls I/O <sub>7</sub> -I/O <sub>0</sub> , $\overline{\rm BLE}$ controls I/O <sub>15</sub> -I/O <sub>8</sub> .                             |
| ŌE2                                  | 41                               | A2                                              | Input/Control | Output Enable, active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted HIGH, I/O pins are three-stated, and act as input data pins. |
| V <sub>SS</sub>                      | 12,34                            | D1,E6                                           | Ground        | <b>Ground for the device.</b> Should be connected to ground of the system.                                                                                                                               |
| V <sub>CC</sub>                      | 11,33                            | D6,E1                                           | Power Supply  | Power Supply inputs to the device.                                                                                                                                                                       |

Note:
2. NC pins are not connected on the die.



**Maximum Ratings** 

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature ......-65°C to +150°C

Ambient Temperature with

Power Applied .......55°C to +125°C

Supply Voltage on  $V_{CC}$  to Relative  $GND^{[3]}$  .... -0.5V to +4.6V

DC Voltage Applied to Outputs in High-Z State  $^{[3]}$  .....-0.5V to V<sub>CC</sub> + 0.5V

DC Input Voltage<sup>[3]</sup>.....-0.5V to V<sub>CC</sub> + 0.5V

# Current into Outputs (LOW)......20 mA

**Operating Range** 

| Range      | Ambient<br>Temperature | V <sub>cc</sub> |
|------------|------------------------|-----------------|
| Commercial | 0°C to +70°C           | $3.3V\pm0.3V$   |
| Industrial | -40°C to +85°C         |                 |
| Automotive | -40°C to +125°C        |                 |

|               |                 | 00                       |
|---------------|-----------------|--------------------------|
| DC Electrical | Characteristics | Over the Operating Range |

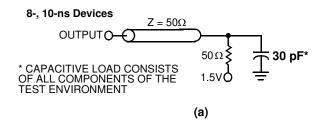
|                     |                                 |                                                                                            |               | -    | -8                       | -    | 10                       | -1   | 12                       | -15  |                          | -20  |                          |      |
|---------------------|---------------------------------|--------------------------------------------------------------------------------------------|---------------|------|--------------------------|------|--------------------------|------|--------------------------|------|--------------------------|------|--------------------------|------|
| Parameter           | Description                     | Test Condi                                                                                 | tions         | Min. | Max.                     | Unit |
| V <sub>OH</sub>     | Output HIGH Voltage             | V <sub>CC</sub> = Min., I <sub>OH</sub> =                                                  | 2.4           |      | 2.4                      |      | 2.4                      |      | 2.4                      |      | 2.4                      |      | ٧                        |      |
| V <sub>OL</sub>     | Output LOW Voltage              | V <sub>CC</sub> = Min., I <sub>OL</sub> =                                                  | 8.0 mA        |      | 0.4                      |      | 0.4                      |      | 0.4                      |      | 0.4                      |      | 0.4                      | ٧    |
| V <sub>IH</sub>     | Input HIGH Voltage              |                                                                                            |               | 2.0  | V <sub>CC</sub><br>+ 0.3 | ٧    |
| V <sub>IL</sub> [3] | Input LOW Voltage               |                                                                                            |               | -0.3 | 0.8                      | -0.3 | 0.8                      | -0.3 | 0.8                      | -0.3 | 0.8                      | -0.3 | 0.8                      | V    |
| I <sub>IX</sub>     | Input Load Current              | $GND \leq V_I \leq V_CC$                                                                   | Com'l / Ind'l | -1   | +1                       | -1   | +1                       | -1   | +1                       | -1   | +1                       | -1   | +1                       | μА   |
|                     |                                 |                                                                                            | Automotive    |      |                          |      |                          |      |                          |      |                          | -20  | +20                      | μА   |
| I <sub>OZ</sub>     |                                 | GND ≤ V <sub>OUT</sub> ≤                                                                   | Com'l / Ind'l | -1   | +1                       | -1   | +1                       | -1   | +1                       | -1   | +1                       | -1   | +1                       | μА   |
|                     | Current                         | V <sub>CC</sub> ,<br>Output Disabled                                                       | Automotive    |      |                          |      |                          |      |                          |      |                          | -20  | +20                      | μА   |
| I <sub>CC</sub>     |                                 |                                                                                            | Comm'l        |      | 100                      |      | 90                       |      | 85                       |      | 80                       |      | 75                       | mA   |
|                     | Supply Current                  | $f_{MAX} = 1/t_{RC}$                                                                       | Ind'l         |      | 110                      |      | 100                      |      | 95                       |      | 90                       |      | 85                       | mA   |
|                     |                                 |                                                                                            | Automotive    |      |                          |      |                          |      |                          |      |                          |      | 90                       | mA   |
| I <sub>SB1</sub>    | Automatic CE                    | Max. V <sub>CC</sub> , CE ≥                                                                | Com'l / Ind'l |      | 40                       |      | 40                       |      | 40                       |      | 40                       |      | 40                       | mA   |
|                     |                                 | $V_{IH}$ $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$ , $f = f_{MAX}$                        | Automotive    |      |                          |      |                          |      |                          |      |                          |      | 45                       | mA   |
| I <sub>SB2</sub>    | Automatic CE                    | Max. V <sub>CC</sub> ,                                                                     | Com'l / Ind'l |      | 10                       |      | 10                       |      | 10                       |      | 10                       |      | 10                       | mA   |
|                     | Power-down Current —CMOS Inputs | $CE \ge V_{CC} - 0.3V$ ,<br>$V_{IN} \ge V_{CC} - 0.3V$ ,<br>or $V_{IN} \le 0.3V$ , $f = 0$ | Automotive    |      |                          |      |                          |      |                          |      |                          |      | 15                       | mA   |

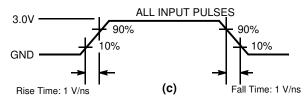
Shaded areas contain advance information.

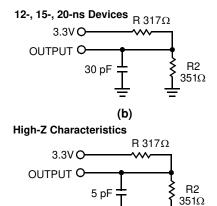
### Capacitance<sup>[4]</sup>

| Parameter        | Description       | Test Conditions                                    | Max. | Unit |
|------------------|-------------------|----------------------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance | $T_A = 25^{\circ}C$ , $f = 1$ MHz, $V_{CC} = 3.3V$ | 8    | pF   |
| C <sub>OUT</sub> | I/O Capacitance   |                                                    | 8    | pF   |

### Thermal Resistance<sup>[4]</sup>


| Parameter         | Description                              | Test Conditions                                                 | 44-pin TSOP-II<br>(Non Pb-Free) | 48-FBGA<br>(Non Pb-Free) | Unit |
|-------------------|------------------------------------------|-----------------------------------------------------------------|---------------------------------|--------------------------|------|
| $\Theta_{JA}$     | Thermal Resistance (Junction to Ambient) | Test conditions follow standard test methods and procedures for | 76.85                           | 92.78                    | °C/W |
| $\Theta_{\sf JC}$ | Thermal Resistance (Junction to Case)    | measuring thermal impedance,<br>per EIA / JESD51.               | 11.26                           | 8.88                     | °C/W |


### Notes:


- V<sub>IL</sub> (min.) = -2.0V and V<sub>IH</sub> (max) = V<sub>CC</sub> + 0.5V for pulse durations of less than 20 ns.
   Tested initially and after any design or process changes that may affect these parameters.



### AC Test Loads and Waveforms[11]







(d)

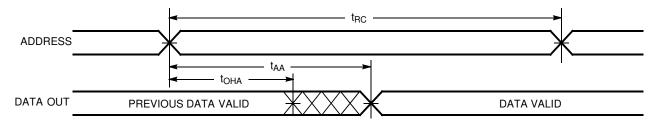
### AC Switching Characteristics<sup>[5]</sup> Over the Operating Range

|                                   |                                               |      | -8   | -    | 10   | -    | 12   | -    | 15   |      | 20   |      |
|-----------------------------------|-----------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Parameter                         | Description                                   | Min. | Max. | Unit |
| Read Cycle                        |                                               |      | •    | •    |      | •    | •    |      |      | •    |      |      |
| t <sub>power</sub> <sup>[6]</sup> | V <sub>CC</sub> (typical) to the first access | 1    |      | 1    |      | 1    |      | 1    |      | 1    |      | μS   |
| t <sub>RC</sub>                   | Read Cycle Time                               | 8    |      | 10   |      | 12   |      | 15   |      | 20   |      | ns   |
| t <sub>AA</sub>                   | Address to Data Valid                         |      | 8    |      | 10   |      | 12   |      | 15   |      | 20   | ns   |
| t <sub>OHA</sub>                  | Data Hold from Address Change                 | 3    |      | 3    |      | 3    |      | 3    |      | 3    |      | ns   |
| t <sub>ACE</sub>                  | CE LOW to Data Valid                          |      | 8    |      | 10   |      | 12   |      | 15   |      | 20   | ns   |
| t <sub>DOE</sub>                  | OE LOW to Data Valid                          |      | 4    |      | 5    |      | 6    |      | 7    |      | 8    | ns   |
| t <sub>LZOE</sub>                 | OE LOW to Low-Z                               | 0    |      | 0    |      | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>HZOE</sub>                 | OE HIGH to High-Z <sup>[7, 8]</sup>           |      | 4    |      | 5    |      | 6    |      | 7    |      | 8    | ns   |
| t <sub>LZCE</sub>                 | CE LOW to Low-Z <sup>[8]</sup>                | 3    |      | 3    |      | 3    |      | 3    |      | 3    |      | ns   |
| t <sub>HZCE</sub>                 | CE HIGH to High-Z <sup>[7, 8]</sup>           |      | 4    |      | 5    |      | 6    |      | 7    |      | 8    | ns   |
| t <sub>PU</sub>                   | CE LOW to Power-Up                            | 0    |      | 0    |      | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>PD</sub>                   | CE HIGH to Power-Down                         |      | 8    |      | 10   |      | 12   |      | 15   |      | 20   | ns   |
| t <sub>DBE</sub>                  | Byte Enable to Data Valid                     |      | 4    |      | 5    |      | 6    |      | 7    |      | 8    | ns   |
| t <sub>LZBE</sub>                 | Byte Enable to Low-Z                          | 0    |      | 0    |      | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>HZBE</sub>                 | Byte Disable to High-Z                        |      | 6    |      | 6    |      | 6    |      | 7    |      | 8    | ns   |
| Write Cycle <sup>[5</sup>         | 9, 10]                                        |      |      |      | •    | •    | •    |      | •    | •    | •    | •    |
| t <sub>WC</sub>                   | Write Cycle Time                              | 8    |      | 10   |      | 12   |      | 15   |      | 20   |      | ns   |
| t <sub>SCE</sub>                  | CE LOW to Write End                           | 6    |      | 7    |      | 8    |      | 10   |      | 10   |      | ns   |
| t <sub>AW</sub>                   | Address Set-Up to Write End                   | 6    |      | 7    |      | 8    |      | 10   |      | 10   |      | ns   |

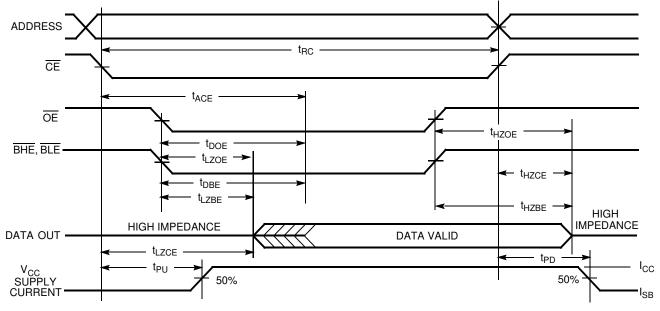
Shaded areas contain advance information.

- 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.
- 6. t<sub>POWER</sub> gives the minimum amount of time that the power supply should be at typical V<sub>CC</sub> values until the first memory access can be performed.

  7. t<sub>HZOE</sub>, t<sub>HZCE</sub>, and t<sub>HZWE</sub> are specified with a load capacitance of 5 pF as in part (d) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
- At any given temperature and voltage condition, t<sub>HZCE</sub> is less than t<sub>LZCE</sub>, t<sub>HZOE</sub> is less than t<sub>LZOE</sub>, and t<sub>HZWE</sub> is less than t<sub>LZWE</sub> for any given device.
   The internal Write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a Write, and the transition of either of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the
- 10. The minimum Write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t<sub>HZWE</sub> and t<sub>SD</sub>.




### AC Switching Characteristics<sup>[5]</sup> Over the Operating Range (continued)


|                   |                                    |      | -8   |      | 10   |      | 12   | -    | 15   | -2   | 20   |      |
|-------------------|------------------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Parameter         | Description                        | Min. | Max. | Unit |
| t <sub>HA</sub>   | Address Hold from Write End        | 0    |      | 0    |      | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>SA</sub>   | Address Set-Up to Write Start      | 0    |      | 0    |      | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>PWE</sub>  | WE Pulse Width                     | 6    |      | 7    |      | 8    |      | 10   |      | 10   |      | ns   |
| t <sub>SD</sub>   | Data Set-Up to Write End           | 4    |      | 5    |      | 6    |      | 7    |      | 8    |      | ns   |
| t <sub>HD</sub>   | Data Hold from Write End           | 0    |      | 0    |      | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>LZWE</sub> | WE HIGH to Low-Z <sup>[8]</sup>    | 3    |      | 3    |      | 3    |      | 3    |      | 3    |      | ns   |
| t <sub>HZWE</sub> | WE LOW to High-Z <sup>[7, 8]</sup> |      | 4    |      | 5    |      | 6    |      | 7    |      | 8    | ns   |
| t <sub>BW</sub>   | Byte Enable to End of Write        | 6    |      | 7    |      | 8    |      | 10   |      | 10   |      | ns   |

### **Switching Waveforms**

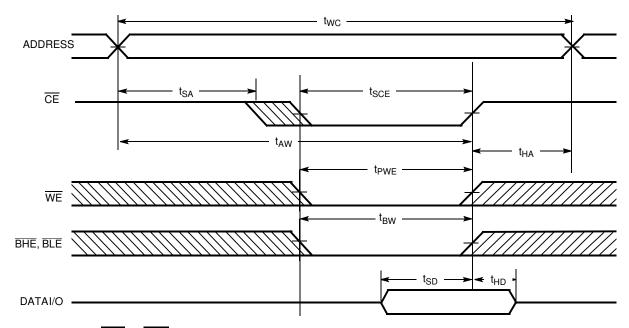
Read Cycle No. 1<sup>[12, 13]</sup>



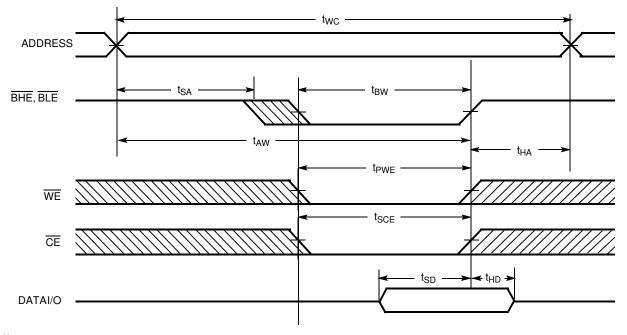
### Read Cycle No. 2 (OE Controlled)[13, 14]



#### Notes:


- 11. AC characteristics (except High-Z) for all 8-ns and 10-ns parts are tested using the load conditions shown in Figure (a). All other speeds are tested using the Thevenin load shown in Figure (b). High-Z characteristics are tested for all speeds using the test load shown in Figure (d).

  12. Device is continuously selected. OE, CE, BHE and/or BHE = V<sub>IL</sub>.
- 13. WE is HIGH for Read cycle.
- 14. Address valid prior to or coincident with  $\overline{\text{CE}}$  transition LOW.




### Switching Waveforms (continued)

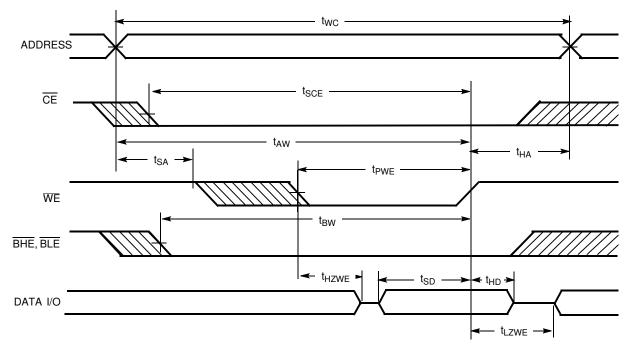
### Write Cycle No. 1 (CE Controlled)[15, 16]



## Write Cycle No. 2 (BLE or BHE Controlled)



Notes:


15. Data I/O is high-impedance if  $\overline{OE}$  or  $\overline{BHE}$  and/or  $\overline{BLE} = V_{IH}$ .

16. If  $\overline{CE}$  goes HIGH simultaneously with  $\overline{WE}$  going HIGH, the output remains in a high-impedance state.



## Switching Waveforms (continued)

## Write Cycle No. 2 (WE Controlled, OE LOW)



### **Truth Table**

| CE | OE | WE | BLE | BHE | I/O <sub>0</sub> –I/O <sub>7</sub> | I/O <sub>8</sub> –I/O <sub>15</sub> | Mode                       | Power                      |
|----|----|----|-----|-----|------------------------------------|-------------------------------------|----------------------------|----------------------------|
| Н  | Х  | Х  | Χ   | Х   | High-Z                             | High-Z                              | Power-down                 | Standby (I <sub>SB</sub> ) |
| L  | L  | Н  | L   | L   | Data Out                           | Data Out                            | Read All Bits              | Active (I <sub>CC</sub> )  |
| L  | L  | Н  | L   | Н   | Data Out                           | High-Z                              | Read Lower Bits Only       | Active (I <sub>CC</sub> )  |
| L  | L  | Н  | Н   | L   | High-Z                             | Data Out                            | Read Upper Bits Only       | Active (I <sub>CC</sub> )  |
| L  | Х  | L  | L   | L   | Data In                            | Data In                             | Write All Bits             | Active (I <sub>CC</sub> )  |
| L  | Х  | L  | L   | Н   | Data In                            | High-Z                              | Write Lower Bits Only      | Active (I <sub>CC</sub> )  |
| L  | Х  | L  | Н   | L   | High-Z                             | Data In                             | Write Upper Bits Only      | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | Χ   | Х   | High-Z                             | High-Z                              | Selected, Outputs Disabled | Active (I <sub>CC</sub> )  |

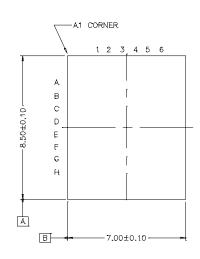


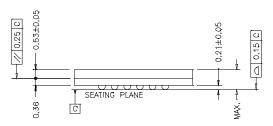
## **Ordering Information**

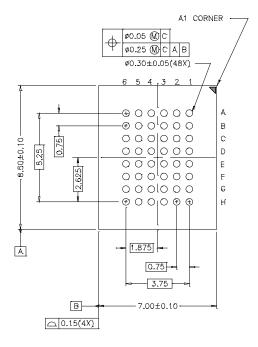
| Speed<br>(ns) | Ordering Code       | Package<br>Name | Package Type                           | Operating<br>Range |
|---------------|---------------------|-----------------|----------------------------------------|--------------------|
| 10            | CY7C1041CV33-10BAC  | BA48B           | 48-ball Fine Pitch BGA                 | Commercial         |
|               | CY7C1041CV33-10BAXC | BA48B           | 48-ball Fine Pitch BGA (Pb-Free)       |                    |
|               | CY7C1041CV33-10VC   | V34             | 44-lead (400-mil) Molded SOJ           |                    |
|               | CY7C1041CV33-10VXC  | V34             | 44-lead (400-mil) Molded SOJ (Pb-Free) |                    |
|               | CY7C1041CV33-10ZC   | Z44             | 44-pin TSOP II Z44                     |                    |
|               | CY7C1041CV33-10ZXC  | Z44             | 44-pin TSOP II Z44 (Pb-Free)           |                    |
|               | CY7C1041CV33-10BAI  | BA48B           | 48-ball Fine Pitch BGA                 | Industrial         |
|               | CY7C1041CV33-10BAXI | BA48B           | 48-ball Fine Pitch BGA (Pb-Free)       |                    |
|               | CY7C1041CV33-10VI   | V34             | 44-lead (400-mil) Molded SOJ           |                    |
|               | CY7C1041CV33-10ZI   | Z44             | 44-pin TSOP II Z44                     |                    |
|               | CY7C1041CV33-10ZXI  | Z44             | 44-pin TSOP II Z44 (Pb-Free)           |                    |
| 12            | CY7C1041CV33-12BAC  | BA48B           | 48-ball Fine Pitch BGA                 | Commercial         |
|               | CY7C1041CV33-12VC   | V34             | 44-lead (400-mil) Molded SOJ           |                    |
|               | CY7C1041CV33-12VXC  | V34             | 44-lead (400-mil) Molded SOJ (Pb-Free) |                    |
|               | CY7C1041CV33-12ZC   | Z44             | 44-pin TSOP II Z44                     |                    |
|               | CY7C1041CV33-12ZXC  | Z44             | 44-pin TSOP II Z44 (Pb-Free)           |                    |
|               | CY7C1041CV33-12BAI  | BA48B           | 48-ball Fine Pitch BGA                 | Industrial         |
|               | CY7C1041CV33-12BAXI | BA48B           | 48-ball Fine Pitch BGA (Pb-Free)       |                    |
|               | CY7C1041CV33-12VI   | V34             | 44-lead (400-mil) Molded SOJ           |                    |
|               | CY7C1041CV33-12VXI  | V34             | 44-lead (400-mil) Molded SOJ           |                    |
|               | CY7C1041CV33-12ZI   | Z44             | 44-pin TSOP II Z44                     |                    |
|               | CY7C1041CV33-12ZXI  | Z44             | 44-pin TSOP II Z44 (Pb-Free)           |                    |
| 15            | CY7C1041CV33-15BAC  | BA48B           | 48-ball Fine Pitch BGA                 | Commercial         |
|               | CY7C1041CV33-15VC   | V34             | 44-lead (400-mil) Molded SOJ           |                    |
|               | CY7C1041CV33-15VXC  | V34             | 44-lead (400-mil) Molded SOJ (Pb-Free) |                    |
|               | CY7C1041CV33-15ZC   | Z44             | 44-pin TSOP II Z44                     |                    |
|               | CY7C1041CV33-15ZXC  | Z44             | 44-pin TSOP II Z44 (Pb-Free)           |                    |
|               | CY7C1041CV33-15BAI  | BA48B           | 48-ball Fine Pitch BGA                 | Industrial         |
|               | CY7C1041CV33-15VI   | V34             | 44-lead (400-mil) Molded SOJ           |                    |
|               | CY7C1041CV33-15VXI  | V34             | 44-lead (400-mil) Molded SOJ (Pb-Free) |                    |
|               | CY7C1041CV33-15ZI   | Z44             | 44-pin TSOP II Z44                     |                    |
|               | CY7C1041CV33-15ZXI  | Z44             | 44-pin TSOP II Z44 (Pb-Free)           |                    |
| 20            | CY7C1041CV33-20BAC  | BA48B           | 48-ball Fine Pitch BGA                 | Commercial         |
|               | CY7C1041CV33-20VC   | V34             | 44-lead (400-mil) Molded SOJ           |                    |
|               | CY7C1041CV33-20VXC  | V34             | 44-lead (400-mil) Molded SOJ (Pb-Free) |                    |
|               | CY7C1041CV33-20ZC   | Z44             | 44-pin TSOP II Z44                     |                    |
|               | CY7C1041CV33-20ZXC  | Z44             | 44-pin TSOP II Z44 (Pb-Free)           |                    |
|               | CY7C1041CV33-20BAI  | BA48B           | 48-ball Fine Pitch BGA                 | Industrial         |
|               | CY7C1041CV33-20VI   | V34             | 44-lead (400-mil) Molded SOJ           |                    |
|               | CY7C1041CV33-20ZI   | Z44             | 44-pin TSOP II Z44                     |                    |
|               | CY7C1041CV33-20ZXI  | Z44             | 44-pin TSOP II Z44 (Pb-Free)           |                    |



### **Ordering Information**


| Speed (ns) | Ordering Code       | Package<br>Name | Package Type                           | Operating<br>Range |
|------------|---------------------|-----------------|----------------------------------------|--------------------|
| 20         | CY7C1041CV33-20BAE  | BA48B           | 48-ball Fine Pitch BGA                 | Automotive         |
|            | CY7C1041CV33-20VE   | V34             | 44-lead (400-mil) Molded SOJ           |                    |
|            | CY7C1041CV33-20VXE  | V34             | 44-lead (400-mil) Molded SOJ (Pb-Free) |                    |
|            | CY7C1041CV33-20ZE   | Z44             | 44-pin TSOP II Z44                     |                    |
|            | CY7C1041CV33-20ZSXE | Z44             | 44-pin TSOP II Z44 (Pb-Free)           |                    |


### **Package Diagrams**

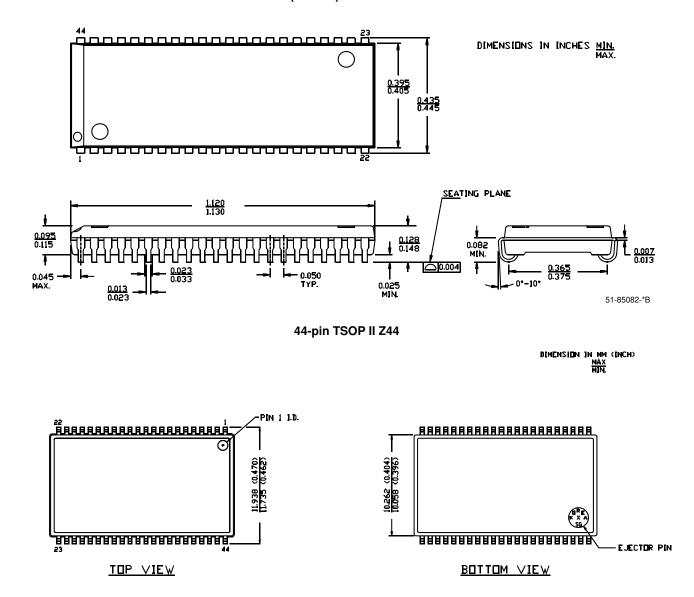

### 48-ball (7.00 mm x 8.5 mm x 1.2 mm) FBGA BA48B

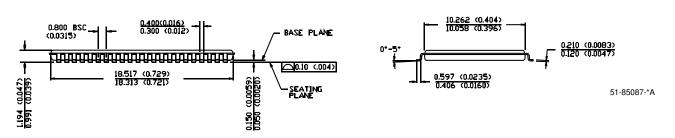
TOP VIEW

BOTTOM VIEW









51-85106-\*D



### Package Diagrams (continued)

#### 44-lead (400-mil) Molded SOJ V34





All products and company names mentioned in this document may be the trademarks of their respective holders.



# **Document History Page**

| Document Title: CY7C1041CV33 4-Mbit (256K x 16) Static RAM<br>Document Number: 38-05134 |         |            |                    |                                                                                                   |
|-----------------------------------------------------------------------------------------|---------|------------|--------------------|---------------------------------------------------------------------------------------------------|
| REV.                                                                                    | ECN NO. | Issue Date | Orig. of<br>Change | Description of Change                                                                             |
| **                                                                                      | 109513  | 12/13/01   | HGK                | New Data Sheet                                                                                    |
| *A                                                                                      | 112440  | 12/20/01   | BSS                | Updated 51-85106 from revision *A to *C                                                           |
| *B                                                                                      | 112859  | 03/25/02   | DFP                | Added CY7C1042CV33 in BGA package<br>Removed 1042 BGA option pin ACC Final Data Sheet             |
| *C                                                                                      | 116477  | 09/16/02   | CEA                | Add applications foot note to data sheet                                                          |
| *D                                                                                      | 119797  | 10/21/02   | DFP                | Added 20-ns speed bin                                                                             |
| *E                                                                                      | 262949  | See ECN    | RKF                | Added Lead (Pb)-Free parts in the Ordering info (Page #9)     Added Automotive Specs to Datasheet |
| *F                                                                                      | 361795  | See ECN    | SYT                | Added Pb-Free offerings in the Ordering Information                                               |