

PowerPC 750FL RISC Microprocessor

Datasheet

DD2.X

Version 6.0

Preliminary

April 27, 2007

© Copyright International Business Machines Corporation 2007

All Rights Reserved Printed in the United States of America April 2007

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.

IBM PowerPC

ibm.com PowerPC Architecture

IBM Logo

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

Note: This document contains information on products in the sampling and/or initial production phases of development. This information is subject to change without notice. Verify with your IBM field applications engineer that you have the latest version of this document before finalizing a design.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group 2070 Route 52, Bldg. 330 Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com®

The IBM Semiconductor solutions home page can be found at ibm.com/chips

750flds60_title.fm.6.0 April 27, 2007

Contents

List of Figures	5
List of Tables	7
1. General Information	9
1.1 Features	9
1.2 Design Level Considerations and Features	12
1.3 Processor Version Register	12
1.4 Part Number Information	13
2. Overview	14
2.1 Block Diagram	14
2.2 General Parameters	15
3. Electrical and Thermal Characteristics	16
3.1 dc Electrical Characteristics	16
3.2 Clock ac Specifications	20
3.3 Spread Spectrum Clock Generator	21
3.4 60x Bus Input ac Specifications	22
3.5 60x Bus Output ac Specifications	24
3.6 Alternate I/O Timing for 3.3 V Bus	26
3.6.1 IEEE 1149.1 ac Timing Specifications	27
4. Dimensions and Signal Assignments	29
4.1 Module Substrate Decoupling Voltage Assignments	29
4.2 Package	29
4.3 Microprocessor Ball Placement	31
4.4 Pinout Listings	32
5. System Design Information	38
5.1 PLL Considerations	38
5.1.1 Restrictions and Considerations for PLL Configuration	39
5.1.1.1 Configuration Restriction on Frequency Transitions	
5.1.2 PLL_RNG[0:1] Definitions for Dual PLL Operation	
5.1.3 PLL Configuration	
5.2 PLL Power Supply Filtering	
5.3 Decoupling Recommendations	
5.4 Output Buffer dc Impedance	
5.4.1 Input-Output Use	
5.5 Level Protection	
5.6 64- or 32-Bit Data Bus Mode	
5.7 I/O Voltage Mode Selection	
5.8 Thermal Management	
5.8.1 Heat Sink Selection Example	57

PowerPC 750FL RISC Microprocessor

Preliminary

5.8.2 Internal Package Conduction	
5.8.3 Minimum Heat Sink Requirements	
5.8.4 Heat Sink Mounting	
5.8.5 Thermal Assist Unit	61
5.8.6 Adhesives and Thermal Interface Materials	62
5.8.7 Thermal Interface and Adhesive Vendors	63
5.8.8 Heat Sink Vendors	64
Revision Log	65

List of Figures

Figure 1-1.	Part Number Legend	13
Figure 2-1.	PowerPC 750FL RISC Microprocessor Block Diagram	14
Figure 3-1.	SYSCLK Input Timing Diagram	20
Figure 3-2.	Linear Sweep Modulation Profile	21
Figure 3-3.	Input Timing Diagram	22
Figure 3-4.	Mode Select Input Timing Diagram	23
Figure 3-5.	Output Valid Timing Definition	25
Figure 3-6.	Output Timing Diagram for PowerPC 750FL RISC Microprocessor	26
Figure 3-7.	JTAG Clock Input Timing Diagram	27
Figure 3-8.	TRST Timing Diagram	28
Figure 3-9.	Boundary-Scan Timing Diagram	28
Figure 3-10.	Test Access Port Timing Diagram	28
Figure 4-1.	Module Substrate Decoupling Voltage Assignments	29
Figure 4-2.	Mechanical Dimensions and Bottom Surface Nomenclature of the Reduced Lead CBGA Package	30
Figure 4-3.	PowerPC 750FL Microprocessor Ball Placement	31
Figure 5-1.	Single PLL Power Supply Filter Circuit with A1VDD Pin and A2VDD Pin Tied to GND	43
Figure 5-2.	PLL Power Supply Filter Circuit with Two AVDD Pins and One Ferrite	44
Figure 5-3.	Dual PLL Power Supply Filter Circuits	45
Figure 5-4.	750FL Microprocessor Pin Locations: OV _{DD} , V _{DD} , GND, and Signal Pins	47
Figure 5-5.	Orientation and Layout of the 750FL Microprocessor Decoupling Capacitors	48
Figure 5-6.	Driver Impedance Measurement	49
Figure 5-7.	IBM RISCWatch JTAG to HRESET, TRST, and SRESET Signal Connector	55
Figure 5-8.	Thermalloy #2328B Pin-Fin Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity	58
Figure 5-9.	C4 Package with Heat Sink Mounted to a Printed Circuit Board	59
Figure 5-10.	Exploded Cross-Sectional View of Package with Several Heat Sink Options	61
Figure 5-11	Thermal Performance of Select Thermal Interface Materials	62

750flds60LOF.fm.6.0 April 27, 2007

List of Tables

Table 1-1.	750FL Microprocessor PVR	12
Table 2-1.	750FL Microprocessor General Parameters	15
Table 3-1.	Absolute Maximum Ratings	16
Table 3-2.	Recommended Operating Conditions	17
Table 3-3.	Package Thermal Characteristics	17
Table 3-4.	dc Electrical Specifications	18
Table 3-5.	Power Consumption (Low Power)	19
Table 3-6.	Power Consumption (Standard Power)	19
Table 3-7.	Clock ac Timing Specifications	20
Table 3-8.	60x Bus Input Timing Specifications	22
Table 3-9.	60x Bus Output ac Timing Specifications	24
Table 3-10.	JTAG ac Timing Specifications (Independent of SYSCLK)	27
Table 4-1.	Pinout Listing for the CBGA Package	32
Table 4-2.	Signal Locations	35
Table 4-3.	Voltage and Ground Assignments	37
Table 5-1.	PLL_RNG[0:1] Definitions for Dual PLL Operation	40
Table 5-2.	750FL Microprocessor PLL Configuration	40
Table 5-3.	Sample PLL Power Supply Filtering Circuits	42
Table 5-4.	Recommended Decoupling Capacitor Specifications	46
Table 5-5.	Driver Impedance Characteristics	50
Table 5-6.	Input/Output Use	51
Table 5-7.	Summary of Mode Select	56
Table 5-8.	Maximum Heatsink Weight Limit for the CBGA	61
Table 5-9.	750FL Microprocessor Thermal Interface and Adhesive Materials Vendors	63
Table 5-10	A Partial Listing of 750FL Microprocessor Heat Sink Vendors	64

List of Tables 750flds60LOT.fm.6.0 Page 8 of 65 April 27, 2007

1. General Information

The IBM® PowerPC® 750FL RISC microprocessor is a 32-bit implementation of the IBM PowerPC family of reduced instruction set computer (RISC) microprocessors. This document contains pertinent physical and electrical characteristics of the IBM PowerPC 750FL. The PowerPC 750FL die, functionality, timing, ac and dc electrical specifications, mechanical specifications, and errata are identical to those of the PowerPC 750FX DD2.3. The only differences from the PowerPC 750FX are in the part number, application conditions, speed grade, power dissipation, and consumer grade reliability. The PowerPC 750FL is available only in a restriction of hazardous substances (RoHS) compatible, reduced-lead package.

1.1 Features

This section summarizes the features of the 750FL microprocessor implementation of the PowerPC Architecture [™]. Major features of the 750FL microprocessor include the following features:

- · Branch processing unit
 - Four instructions fetched per clock
 - One branch processed per cycle (plus resolving two speculations)
 - Up to one speculative stream in execution and one additional speculative stream in fetch
 - 512-entry branch history table (BHT) for dynamic prediction
 - 64-entry, 4-way set associative branch target instruction cache (BTIC) for eliminating branch delay slots
- Decode
 - Register file access
 - Forwarding control
 - Partial instruction decode
- · Load/store unit
 - One cycle load or store cache access (byte, half-word, word, double-word)
 - Effective address generation
 - Hits under miss (one outstanding miss)
 - Single-cycle misaligned access within double-word boundary
 - Alignment, zero padding, sign extend for integer register file
 - Floating-point internal format conversion (alignment, normalization)
 - Sequencing for load/store multiples and string operations
 - Store gathering
 - Cache and translation lookaside buffer (TLB) instructions
 - Big- and little-endian byte addressing supported
 - Misaligned little-endian support in hardware
- Dispatch unit
 - Full hardware detection of dependencies (resolved in the execution units)
 - Dispatch two instructions to six independent units (system, branch, load/store, fixed-point unit (FXU) 1, FXU2, or floating-point)
 - Four-stage pipeline: fetch, dispatch, execute, and complete
 - Serialization control (predispatch, postdispatch, execution, serialization)
- · Fixed-point units
 - FXU1: multiply, divide, shift, rotate, arithmetic, logical
 - FXU2: shift, rotate, arithmetic, logical
 - Single-cycle arithmetic, shift, rotate, logical
 - Multiply and divide support (multicycle)

- Early-out multiply
- Thirty-two 32-bit general purpose registers
- Floating-point unit
 - Support for IEEE-754 standard single- and double-precision floating-point arithmetic
 - Optimized for single-precision multiply and add
 - Thirty-two, 64-bit floating point registers
 - Enhanced reciprocal estimates
 - Three-cycle latency, 1-cycle throughput, single-precision multiply-add
 - Three-cycle latency, 1-cycle throughput, double-precision add
 - Four-cycle latency, 2-cycle throughput, double-precision multiply-add
 - Hardware support for divide
 - Hardware support for denormalized numbers
 - Time deterministic non-IEEE mode
- · System unit
 - Executes CR logical instructions and miscellaneous system instructions
 - Special register transfer instructions
- Level 1 (L1) Cache structure
 - 32 KB, 32-byte line, 8-way set associative instruction cache
 - 32 KB, 32-byte line, 8-way set associative data cache
 - Single-cycle cache access
 - Pseudo-LRU replacement
 - Copy-back or write-through data cache (on a page per page basis)
 - Parity on L1 tags and arrays
 - Three-state modified, exclusive, invalid (MEI) memory coherency
 - Hardware support for data coherency
 - Nonblocking instruction cache (one outstanding miss)
 - Nonblocking data cache (two outstanding misses)
 - No snooping of instruction cache
- Memory management unit
 - 64 entry, 2-way set associative instruction TLB (total 128)
 - 64 entry, 2-way set associative data TLB (total 128)
 - Hardware reload for TLBs
 - Eight instruction block address translators (BATs) and 8 data BATs
 - Virtual storage support for up to 4 exabytes (2⁵²) virtual storage
 - Real memory support for up to 4 GB (2³²) of physical memory
 - Support for big- and little-endian addressing
- Dual PLLs
 - Allows seamless frequency switching
- · Level 2 (L2) cache
 - Internal L2 cache controller and 4096 entry tags: 512 KB data SRAMs
 - Two-way set-associative, supports locking by way
 - Copy-back or write-through data cache on a page basis, or for all L2
 - 64-byte sectored line size
 - L2 frequency at core speed
 - ECC protection on SRAM array
 - Parity on L2 tags
 - Supports up to two outstanding misses (one data and one instruction, or two data)

 General Information
 750flds60.fm.6.0

 Page 10 of 65
 April 27, 2007

- Power
 - Low power consumption with low voltage application at lower frequency
 - Dynamic power management
 - Three static power save modes (doze, nap, and sleep)
 - Thermal Assist Unit (TAU)
- · Bus interface
 - 32-bit address bus
 - 64-bit data bus (also supports 32-bit mode)
 - Enhanced 60x bus: pipelines consecutive reads to a depth of 2
 - Core-to-bus frequency multipliers of 3.5x, 4x, 4.5x, 5x, 5.5x, 6x, 6.5x, 7x, 7.5x, 8x, 8.5x, 9x, 9.5x, 10x, 11x, 12x, 13x, 14x, 15x, 16x, 17x, 18x, 19x, and 20x supported
 - Supports 1.8 V, 2.5 V, or 3.3 V I/O modes
- · Reliability and serviceability
 - Parity checking on 60x interface
 - ECC checking on L2 cache
 - Parity on the L1 arrays
 - Parity on the L1 and L2 tags
- Testability
 - LSSD scan design
 - Powerful diagnostic and test interface through common on-chip processor (COP) and IEEE 1149.1
 Joint Test Action Group (JTAG) interface

750flds60.fm.6.0 General Information
April 27, 2007 Page 11 of 65

1.2 Design Level Considerations and Features

The 750FL microprocessor supports several unique features including those in the following list. The IBM application note *Differences between the PowerPC 750FX, 750, 750CX, and 750CXe Microprocessors* provides a more detailed explanation of these features.

- Incorporates an on-chip, 512 KB, two-way, set-associative L2 cache
- Provides a 64- or 32-bit data bus mode, selectable through the TLBISYNC pin
- Supports 1.8 V, 2.5 V, or 3.3 V I/O modes
- Includes all 60x bus pins on earlier PowerPC 750 designs and additional signals
- Enhanced 60x bus supports pipelined consecutive read transactions and higher frequency operation
- Dual PLLs for additional power savings capabilities
- · Four additional IBAT/DBAT registers
- New ceramic ball grid array (CBGA) package with additional pins and depopulated footprint

1.3 Processor Version Register

The 750FL microprocessor has the following Processor Version Register (PVR) values for the respective design revision levels. The initial release of the 750FL microprocessor is DD2.3.

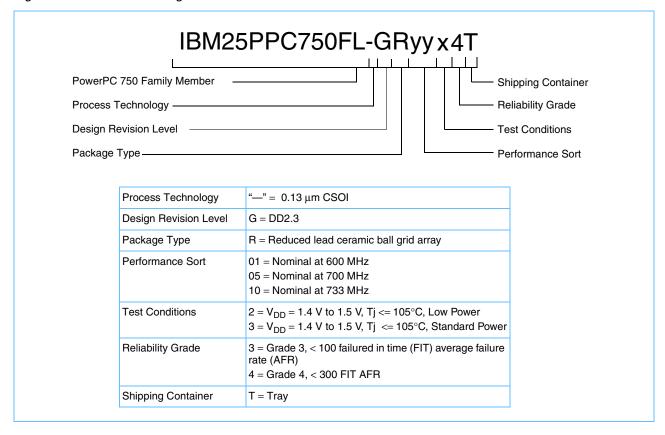
The 750FL PVR is x"7000". This is identical to the PVR value of the 750FX.

Table 1-1. 750FL Microprocessor PVR

750FL Microprocessor Design Revision Level		750FL Microprocessor PVR
	DD2.3	x'700a 02b3'

Notes:

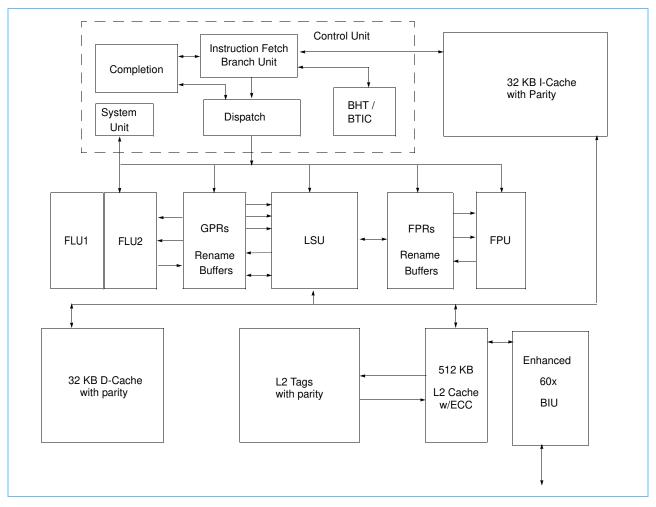
- 1. Nibbles shown as 'b' are to be ignored, and are for factory use only. Nibbles shown as 'a' can be '0' or '1'.
- $2. \ \ \text{If L2_TSTCLK is pulled low, the PVR might read x``0008~02b_'$. L2TSTCLK must be pulled up for normal operation.}$


 General Information
 750flds60.fm.6.0

 Page 12 of 65
 April 27, 2007

1.4 Part Number Information

Figure 1-1. Part Number Legend


2. Overview

The PowerPC 750FL RISC Microprocessor, also called the 750FL microprocessor, is targeted for high performance, low power systems using a 60x bus. The 750FL microprocessor also includes an internal 512 KB L2 cache with on-board error correction code (ECC) circuitry.

2.1 Block Diagram

Figure 2-1 shows a block diagram of the PowerPC 750FL RISC Microprocessor.

Figure 2-1. PowerPC 750FL RISC Microprocessor Block Diagram

2.2 General Parameters

Table 2-1 provides a summary of the general parameters of the 750FL microprocessor.

Table 2-1. 750FL Microprocessor General Parameters

Item	Description	Notes
Technology	0.13 μm CSOI technology, six-layer metallization plus one level of local interconnect	
Die Size	34.3 sq. mm	
Transistor count	38 million (including L2 cache)	
Logic design	Fully static	
Package	292-pin CBGA, reduced lead 21×21 mm (1.0 mm pitch,) 0.8 mm ball size	
Core power supply	1.45 V±50 mV	1
I/O power supply	3.3 V \pm 165 mV (BVSEL = 1, L1_TSTCLK = 0) or 2.5 V \pm 125 mV (BVSEL = 1, L1_TSTCLK = 1) or 1.8 V \pm 100 mV (BVSEL = 0, L1_TSTCLK = 1)	2

- 1. In some cases, when using 1.8 V or 2.5 V I/O mode, it is possible to reduce power dissipation by lowering the core power supply voltage. See the datasheet supplement for details.
- 2. BVSEL = 0, L1_TSTCLK = 0 is not a valid setting. DD2.0 supports only a limited use of 3.3 V I/O mode. See the *IBM PowerPC 750FX and 750FL RISC Microprocessor Errata List DD2.X* for more information.

3. Electrical and Thermal Characteristics

This section provides ac and dc electrical specifications and thermal characteristics for the 750FL microprocessor.

3.1 dc Electrical Characteristics

The tables in this section describe the dc electrical characteristics for the 750FL microprocessor.

Table 3-1. Absolute Maximum Ratings 1

Characteristic	Symbol	1.8 V Mode	2.5 V Mode	3.3 V Mode	Unit	Notes
Core supply voltage	V_{DD}	-0.3 – 1.6	-0.3 – 1.6	-0.3 – 1.6	V	3, 4
Phase-locked loop (PLL) supply voltage	A1V _{DD} , A2V _{DD}	-0.3 – 1.6	-0.3 – 1.6	-0.3 – 1.6	V	3, 4, 5
60x bus supply voltage	OV_{DD}	-0.3 – 2.0	-0.3 – 2.75	-0.3 – 3.7	V	3, 4
Input voltage	V _{IN}	-0.3 – 2.0	-0.3 – 2.75	-0.3 – 3.7	V	2
Storage temperature range	T _{STG}	-55 – 150	-55 – 150	-55 – 150	°C	

- 1. Functional and tested operating conditions are given in *Table 3-2 Recommended Operating Conditions* on page 17. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed can affect device reliability or cause permanent damage to the device.
- 2. **Caution:** Transient V_{IN} overshoots of up to $OV_{DD} + 0.8V$, with a maximum of 4.0 V for 3.3 V operation, and undershoots down to GND 0.8 V, are allowed for up to 5 ns.
- 3. Caution: OV_{DD} must not exceed V_{DD} or AV_{DD} by more than 2.1 V continuously. OV_{DD} can exceed V_{DD} or AV_{DD} by up to 2.3 V for up to 20 ms during power-on or power-off. OV_{DD} must not exceed V_{D} or AV_{DD} by more than 2.3 V for any amount of time.
- 4. Caution: V_{DD}/AV_{DD} must not exceed OV_{DD} by more than 1.0 V continuously. V_{DD} or AV_{DD} can exceed OV_{DD} by up to 1.6 V for up to 20 ms during power on or power off. V_{DD}/AV_{DD} must not exceed OV_{DD} by more than 1.6 V for any amount of time.
- 5. Caution: AV_{DD} must not exceed V_{DD} by more than 0.5 V at any time.

Note: All electrical specifications (ac, dc, timing) are guaranteed *only* when the device is operated within the recommended operating conditions (see *Table 3-2*). Operation at other application conditions can also be possible; contact IBM PowerPC Application engineering for details.

Table 3-2. Recommended Operating Conditions

Characteristic	Symbol	Value	Unit	Notes
Core supply voltage (full-on mode)	V_{DD}	1.3 – 1.5	V	1, 2
PLL supply voltage	AV_DD	1.3 – 1.5	V	2
60x bus supply voltage (1.8 V)	OV _{DD}	1.7 – 1.9	V	2
60x bus supply voltage (2.5 V)	OV_DD	2.375 – 2.625	V	2
60x bus supply voltage (3.3 V)	OV_DD	3.135 – 3.465	V	
Input voltage	V _{IN}	GND – OV _{DD}	V	2
Die junction temperature	TJ	-40 – 105	°C	

Notes:

- 1. In some cases, when using 1.8 V or 2.5 V I/O mode, it is possible to reduce power dissipation by lowering the core power supply.
- 2. These are tested operating conditions.

Table 3-3. Package Thermal Characteristics

Characteristic ¹	Symbol ²	Value	Unit
CBGA package thermal resistance, junction-to-case thermal resistance (typical)	θ _{JC}	0.06	°C/W
CBGA package thermal resistance, junction-to-lead thermal resistance (typical)	θ_{JB}	7.6	°C/W

- 1. A heat sink is required. See Section 5.8 Thermal Management on page 56 for more information.
- 2. θ_{JC} is the internal resistance from the junction to the back of the die. For more information about thermal management, see *Section 5.8 Thermal Management*.

Table 3-4. dc Electrical Specifications ³

Characteristic	Symbol	Voltage		Unit	Notes
Gharacteristic	Symbol	Minimum	Maximum	Offic	Notes
	V _{IH (1.8 V)}	1.20		V	
Input high voltage (all inputs except SYSCLK)	V _{IH(2.5 V)}	1.70		V	
	V _{IH(3.3 V)}	2.1		V	
	V _{IL(1.8 V)}		0.60	V	
Input low voltage (all inputs except SYSCLK)	V _{IL(2.5 V)}		0.70	V	
	V _{IL(3.3 V)}		0.80	V	
	CV _{IH(1.8 V)}	1.20		V	
SYSCLK input high voltage	CV _{IH(2.5 V)}	1.90		V	
	CV _{IH(3.3 V)}	2.1		V	
SYSCLK input low voltage	CV _{IL(1.8 V)}		0.40	V	
Input leakage current, V_{IN} = applies to all OV_{DD} levels	I _{IN}		20	μΑ	2
Hi-Z (off state) leakage current, V_{IN} = applies to all OV_{DD} levels	I _{TSI}		20	μΑ	2
	V _{OH(1.8 V)}	1.30		V	
Output high voltage, I _{OH} = -4 mA	V _{OH(2.5 V)}	2.00		V	
	V _{OH(3.3 V)}	2.40		V	
Output low voltage, I _{OL} = 4 mA	V _{OL(1.8 V, 2.5 V, 3.3 V)}		0.4	V	
Capacitance, V _{IN} = 0 V, f = 1 MHz	C _{IN}		5	pF	1

- 1. Capacitance values are guaranteed by design and characterization, and are not tested.
- 2. Additional input current can be attributed to the level protection keeper lock circuitry. For details, see *Section 5.5 Level Protection* on page 55.
- 3. See *Table 3-2 Recommended Operating Conditions* on page 17 for the recommended operating conditions.

Table 3-5. Power Consumption (Low Power) 4

Mode	V	T,	Representative Processor Frequency ³			Unit	Notes	
Wode	V _{DD}	¹ j	600 MHz	700 MHz	733 MHz	Offic	Notes	
Full-On Mode								
Maximum	1.45 V	105°C	5.0	5.5	5.7	W	1, 2	
Typical	1.45 V	85°C	4.6	5.0	5.1	W	1, 3	
Nap Mode								
Maximum	1.45 V	65°C	0.65	0.7	0.7	W	1	
Sleep Mode								
Typical	1.45 V	50°C	0.4	0.4	0.4	W	1	

Notes:

- These values apply for all valid 60x buses. The values do not include I/O supply power (OV_{DD}) or PLL/DLL supply power (AV_{DD}). OV_{DD} power is system dependent, but is typically < 2% of V_{DD} power. AV_{DD} current is less than 25 mA for each of AV_{DD1} and AV_{DD2}.
- 2. Maximum power is specified for the fastest (worst process) parts running RC5 at the indicated core voltage, junction temperature, and core frequency.
- 3. Typical power is specified for the median process parts running RC5 at the indicated core voltage, junction temperature, and core frequency. The value is then adjusted for 13% less switching (ac component for power dissipation (P_D) to account for the differences between RC5 and more typical application code).
- 4. See Table 3-2 Recommended Operating Conditions on page 17 for the recommended operating conditions.

Table 3-6. Power Consumption (Standard Power) 4

Mode	V	_	Representative Processor Frequency ³			Unit	Notes	
ivioue	V_{DD}	Tj	600 MHz	700 MHz	733 MHz	Unit	Notes	
Full-On Mode								
Maximum	1.45 V	105°C	7.9	8.2	8.3	W	1, 2	
Typical	1.45 V	85°C	4.6	5.0	5.1	W	1, 3	
Nap Mode								
Typical	1.45 V	50°C	1.5	1.6	1.6	W	1	
Sleep Mode								
Typical	1.45 V	50°C	1.4	1.4	1.4	W	1	

- These values apply for all valid 60x buses. The values do not include I/O supply power (OV_{DD}) or PLL/DLL supply power (AV_{DD}). OV_{DD} power is system dependent, but is typically < 2% of V_{DD} power. AV_{DD} current is less than 25 mA for each of AV_{DD1} and AV_{DD2}.
- 2. Maximum power is specified for the fastest (worst process) parts running RC5 at the indicated core voltage, junction temperature, and core frequency.
- 3. Typical power is specified for the median process parts running RC5 at the indicated core voltage, junction temperature, and core frequency. The value is then adjusted for 13% less switching (ac component for P_D to account for the differences between RC5 and more typical application code).
- 4. See Table 3-2 Recommended Operating Conditions on page 17 for the recommended the operating conditions.

3.2 Clock ac Specifications

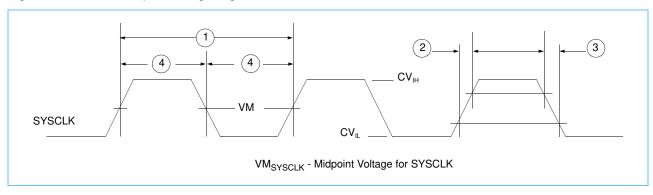

Table 3-7 provides the clock ac timing specifications as defined in Figure 3-1.

Table 3-7. Clock ac Timing Specifications 1, 6, 7

Number	Characteristic	Va	lue	Unit	Notes	
(Timing Reference)	Onaracteristic	Minimum Maximum		Offic	Notes	
	Processor frequency	400	733	MHz		
	SYSCLK frequency	20	200	MHz	1, 6	
1	SYSCLK cycle time	5.0	50	ns		
2, 3	SYSCLK rise and fall slew rate	1.0		V/ns	3	
4	SYSCLK duty cycle measured at 0.8 V	25	75	%	3	
VM _{SYSCLK}	Measurement Reference Voltage for SYSCLK (all I/O voltages)	0.0	65	V		
	SYSCLK cycle-to-cycle jitter	_	±150	ps	4, 3	
	Internal PLL relock time	-	100	μs	5	

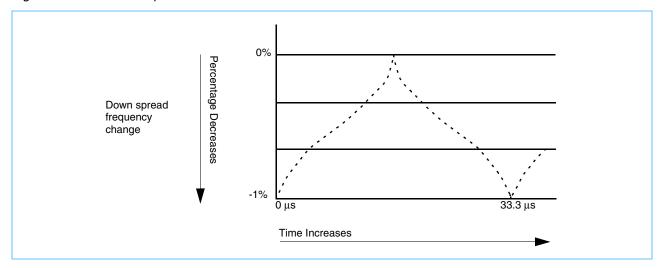
- Caution: The SYSCLK frequency and the PLL_CFG[0:4] settings must be chosen such that the resulting SYSCLK (bus) frequency, processor (core) frequency, and PLL frequency do not exceed their respective maximum or minimum operating frequencies. Refer to the PLL_CFG[0:4] signal description in *Table 5-2 750FL Microprocessor PLL Configuration* on page 40 for valid PLL_CFG[0:4] settings.
- 2. The SYSCLK slew rate applies between 0.4 V and 1.0 V.
- 3. Timing is guaranteed by design and characterization, and is not tested.
- 4. See Section 3.3 Spread Spectrum Clock Generator on page 21 for long term jitter.
- 5. Relock timing is guaranteed by design and characterization, and is not tested. PLL relock time is the maximum amount of time required for PLL lock after a stable V_{DD} and SYSCLK are reached during the power-on reset sequence. This specification also applies when the PLL has been disabled and subsequently reenabled during sleep mode. Also note that HRESET must be held asserted for a minimum of 255 bus clocks after the PLL relock time during the power-on reset sequence.
- 6. This is a statement of the capability of the 750FL I/O circuitry. Not all systems can run at the maximum SYSCLK frequency. Contact IBM PowerPC Application Engineering for more information on high-speed bus design.
- 7. See Table 3-2 Recommended Operating Conditions on page 17 for recommended operating conditions

Figure 3-1. SYSCLK Input Timing Diagram

3.3 Spread Spectrum Clock Generator

When designing with the spread spectrum clock generator (SSCG), there are a number of design issues that must be taken into account.

SSCG creates a controlled amount of long-term jitter. In order for a receiving PLL in the 750FL microprocessor to operate in this environment, it must be able to accurately track the SSCG clock jitter.


The accuracy to which the 750FL PLL can track the SSCG clock is referred to as tracking skew. When performing system timing analysis, the tracking skew must be added to or subtracted from the I/O timing specifications because the tracking skew appears as a static phase error between the internal PLL and the SSCG clock.

To minimize the impact on I/O timings the following SSCG configuration is recommended:

- Down-spread mode, less than or equal to 1% of the maximum frequency
- A modulation frequency of 30 kHz
- Linear sweep modulation or "Hershey Kiss" (as in a Lexmark¹ profile) modulation profile as shown in *Figure 3-2*.

In this configuration, the tracking skew is less than 100 ps.

Figure 3-2. Linear Sweep Modulation Profile

^{1.} See patent 5,631,920.

3.4 60x Bus Input ac Specifications

Table 3-8. 60x Bus Input Timing Specifications 1, 5, 7

Number	Characteristic	1.8 V	Mode	2.5 V	Mode	3.3 V	Mode	Unit	Notes
Number	Gliatacteristic	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum		Notes
10a	All inputs valid to SYSCLK (input setup)	1.0		1.5		1.8		ns	
10b	INT_, SMI_, MCP, TBEN, DRTRY, and TLBISYNC (input setup)	1.5		1.5		1.8			
10c	Mode select input setup to HRESET (TLBISYNC, DRTRY)	8		8		8		t _{SYSCLK}	2, 3, 4, 5
11a	SYSCLK to inputs invalid (input hold)	0.65		0.65		0.55		ns	6
11b	INT_, SMI_, MCP, TBEN, DRTRY, and TLBISYNC (input hold)	1.5		2.5		2.5		ns	
11c	HRESET to mode select input hold (TLBISYNC, DRTRY)	0		0		0		ns	2, 4, 5
VM	VM Measurement Reference Voltage for Inputs			OV	_{DD} /2				

- 1. Input specifications are measured from the midpoint voltage (VM) of the signal in question to the VM of the rising edge of the input SYSCLK. Input and output timings are measured at the pin (see *Figure 3-3*).
- 2. The setup and hold time is with respect to the rising edge of HRESET (see Figure 3-4 Mode Select Input Timing Diagram on page 23).
- 3. t_{SYSCLK}, is the period of the external clock (SYSCLK) in ns. The numbers given in the table must be multiplied by the period of SYSCLK in ns to compute the actual time duration (in ns) of the parameter in question.
- 4. This specification is for configuration mode select only. Also note that the HRESET must be held asserted for a *minimum of 255* bus clocks after the PLL relock time during the power-on reset sequence.
- 5. All values are guaranteed by design, and are not tested.
- 6. See Alternate I/O Timing for 3.3 V Bus on page 26.
- 7. See Table 3-2 Recommended Operating Conditions on page 17 for operating conditions.

Figure 3-3 provides the input timing diagram for the 750FL microprocessor.

Figure 3-3. Input Timing Diagram

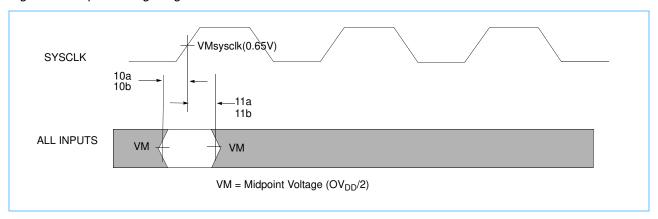
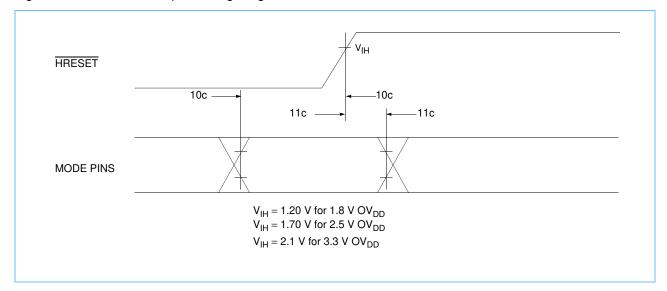



Figure 3-4 provides the mode select input timing diagram for the 750FL microprocessor.

Figure 3-4. Mode Select Input Timing Diagram

3.5 60x Bus Output ac Specifications

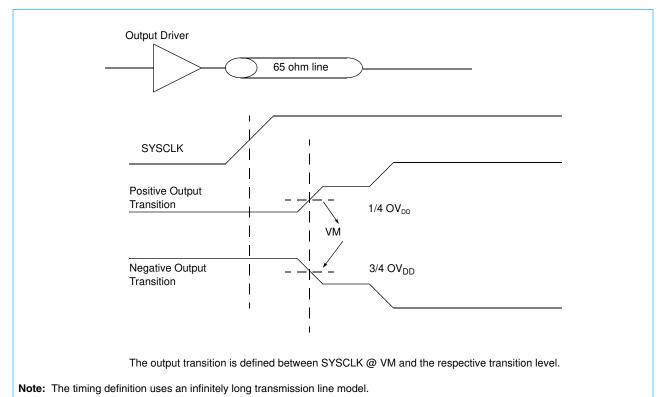

Table 3-9 provides the 60x bus output ac timing specifications for the 750FL microprocessor as defined and defined in *Figure 3-6 Output Timing Diagram for PowerPC 750FL RISC Microprocessor* on page 26.

Table 3-9. 60x Bus Output ac Timing Specifications 1, 5, 8

Reference	Characteristic	1.8 V M	ode	2.5 V M	lode	3.3 V M	ode	Unit	Notes
Number	Characteristic	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Unit	Notes
12	SYSCLK to output driven (Output Enable Time)	0.3		0.3		0.3		ns	
13	SYSCLK to output valid		2.3		2.5		2.5	ns	2, 6
14	SYSCLK to output invalid (Output Hold)	0.5		0.55		0.55	_	ns	2, 7
15	SYSCLK to output high impedance (all signals except ARTRY, ABB and DBB)		2.5		2.5		2.5	ns	
16	SYSCLK to ABB and DBB high impedance after precharge		1.0		1.0		1.0	t _{SYSCLK}	3, 4
17	SYSCLK to ARTRY high impedance before precharge		3.0		3.0		3.0	ns	
18	SYSCLK to ARTRY pre- charge enable	0.2 × t _{SYSCLK} + 1.0		0.2 × t _{SYSCLK} + 1.0		0.2 × t _{SYSCLK} + 1.0		ns	2, 3, 4
19	Maximum delay to ARTRY precharge		1.0		1.0		1.0	t _{SYSCLK}	3, 4
20	SYSCLK to ARTRY high impedance after precharge		2.0		2.0		2.0	t _{SYSCLK}	3, 4

- 1. All output specifications are measured from the VM of the rising edge of SYSCLK to the output signal level defined in *Figure 3-5 Output Valid Timing Definition* on page 25. Both input and output timings are measured at the pin. Timings are determined by design.
- 2. This minimum parameter assumes CL = 0 pF.
- 3. t_{SYSCLK} is the period of the external bus clock (SYSCLK) in ns. The numbers given in the table must be multiplied by the period of SYSCLK to compute the actual time duration (in ns) of the parameter in question.
- 4. Nominal precharge width for $\overline{\text{ARTRY}}$ is 1.0 t_{SYSCLK} .
- 5. Guaranteed by design and characterization and not tested.
- 6. Output valid timing increases as the V_{DD} in reduced. These values assume a minimum V_{DD} of 1.35 V.
- 7. See Section 3.6 Alternate I/O Timing for 3.3 V Bus on page 26.
- 8. See Table 3-2 Recommended Operating Conditions on page 17 for operating conditions.

Figure 3-5. Output Valid Timing Definition

750flds60.fm.6.0 April 27, 2007

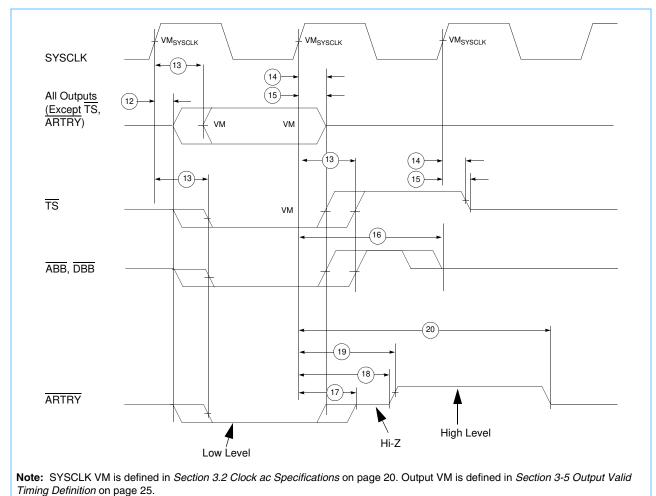


Figure 3-6. Output Timing Diagram for PowerPC 750FL RISC Microprocessor

3.6 Alternate I/O Timing for 3.3 V Bus

An alternate I/O timing specification can be used for DD2.3 when the following conditions exist:

- $OV_{DD} = 3.3 V \pm 5\%$
- $V_{DD} = 1.45 V + /-50 mV$
- $T_i = -40^{\circ}C 105^{\circ}C$

All other recommended operating conditions are described in *Table 3-2 Recommended Operating Conditions* on page 17.

The following alternate I/O timing specifications can be used under the previous conditions:

- 1. Consider $V_M = 1/2$ (OV_{DD}) for SYSCLK, input timing, and output timings.
- 2. Input hold (T11a) becomes 250 ns minimum for 3.3 V. Output hold (T14) becomes 650 ns minimum for 3.3 V.
- 3. All other timing specifications are unchanged.

3.6.1 IEEE 1149.1 ac Timing Specifications

The five Joint Test Action Group (JTAG) signals are test data in (TDI), test data out (TDO), test mode select (TMS), test clock (TCK), and test reset (TRST). Unless otherwise noted, JTAG specifications are referenced to GND and OV_{DD} . The JTAG I/Os are powered by OV_{DD} .

Table 3-10. JTAG ac Timing Specifications (Independent of SYSCLK) 6

Reference Number	Characteristic	Minimum.	Maximum	Unit	Notes
	TCK frequency of operation	0	25	MHz	
1	TCK cycle time	40		ns	
2	TCK clock pulse width measured at 1.1 V	15		ns	
3	TCK rise and fall times	0	2	ns	4
4	Specification obsolete, intentionally omitted				
5	TRST assert time	25		ns	1
6	Boundary-scan input data setup time	0		ns	2
7	Boundary-scan input data hold time	13		ns	2
8	TCK to output data valid		8	ns	3, 5
9	TCK to output high impedance	3	19	ns	3, 4
10	TMS, TDI data setup time	0		ns	
11	TMS, TDI data hold time	15		ns	
12	TCK to TDO data valid	2.0	12	ns	5
13	TCK to TDO high impedance	3	9	ns	4
14	TCK to output data invalid (output hold)	0	-	ns	

- 1. TRST is an asynchronous level sensitive signal. Guaranteed by design.
- 2. The non-JTAG signal input timing is measured with respect to TCK.
- 3. The non-JTAG signal output timing is measured with respect to TCK.
- 4. Guaranteed by characterization and not tested.
- 5. The minimum specification is guaranteed by characterization and not tested.
- 6. See Table 3-2 Recommended Operating Conditions on page 17 for operating conditions.

Figure 3-7. JTAG Clock Input Timing Diagram

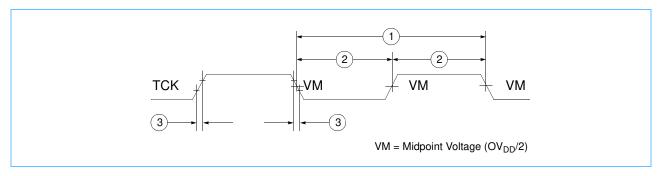


Figure 3-8. TRST Timing Diagram

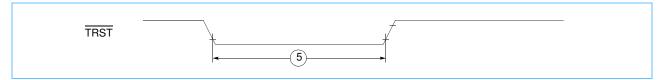


Figure 3-9. Boundary-Scan Timing Diagram

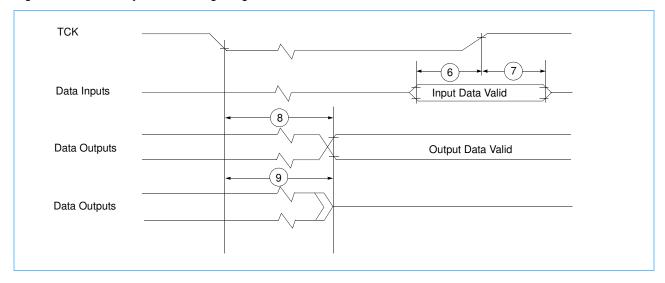
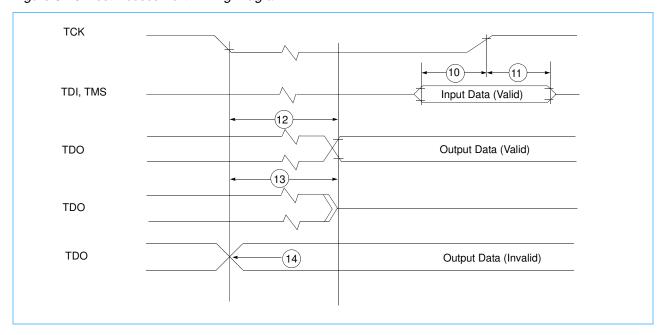
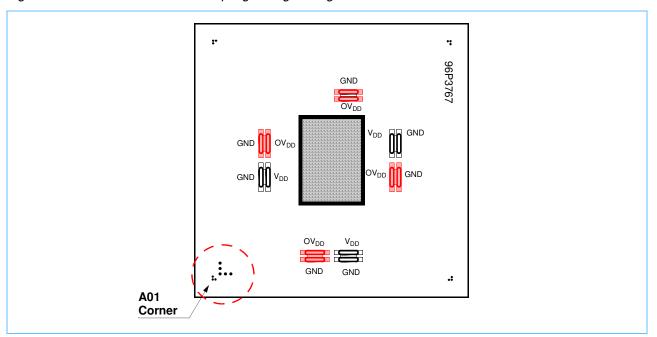



Figure 3-10. Test Access Port Timing Diagram


4. Dimensions and Signal Assignments

IBM offers a CBGA that supports 292 balls for the 750FL microprocessor package.

4.1 Module Substrate Decoupling Voltage Assignments

The on-board substrate voltage-to-ground assignments for the capacitor locations are shown in Figure 4-1.

Figure 4-1. Module Substrate Decoupling Voltage Assignments

4.2 Package

The module mass is approximately 2.44 grams; the ball pitch is 1 mm; the ball diameter target is approximately 0.635 mm; and the JEDEC moisture sensitivity level (MSL) is 2. For pad, line, via, and dogbone recommendations, see Printed Wiring Board Tech for 1.0 mm Pitch Modules.

Note: Use the A01 corner designation for correct placement. Use the five plated dots that form a right angle (l_) to locate the A01 corner as shown in Figure 4-2 on page 30.

Figure 4-2. Mechanical Dimensions and Bottom Surface Nomenclature of the Reduced Lead CBGA Package B1 Notes: Dimensioning and tolerancing per ASME Y14.5M, 1994. Dimensions in millimeters. Millimeters 96P3767 DIM Minimum Maximum 21 ± 0.2 A2 Α1 7.122 A2 1.5 <u>A1</u> В 21 ± 0.2 5.412 B1 С 1.5 Maximum D 2.5 Maximum 2 302 2.828 F F1 1.902 2.228 G 0.822 0.908 G1 (7x) (0.51 Max) Н 1.56 1.90 Н1 1.08 1.32 H2 0.40 0.60 2 0.7 ± 0.1 A01 Corner YWVUTRPNMLKJHGFEDCBA 20 19 18 17 F1 00000 00000 16 00000 15 \bigcirc 14 00000 ŎOOC ŎOOČ 13 12 11 10 Ŏ \bigcirc 9 000C 8 00000 0 0 6 С 00 5 00000 000 0 00 0 00 00 00 0 000000000 00 (19X) 1 3 2 **⊕**000000000 000000000 H1 G1 (bottom side view) (19X) 1 H2 A01 Corner 292XØ 2 Н G Ø0.25 C A B Ф

Not To Scale

Ø 0.1 C

Note: All caps on the SCM are lower in height than the processor die.

4.3 Microprocessor Ball Placement

Figure 4-3. PowerPC 750FL Microprocessor Ball Placement

DL1	DP4	DL4	DLo	DL,															
		D	DL8	DL7	DL9	DL14	DP6	DL18	DL17	DL21	DP7	DL24	DL25	DL29	DL31	TRST	TMS	GBL	BLANK
DLO	GND	DL2	DL6	DL5	DL11	DL10	DL12	DL16	DL15	DL19	DL20	DL22	DL27	DL28	TCK	DL30	TDI	GND	BLANI
A29	A30		OVDD	GND		OVDD	GND		VDD	VDD		GND	OVDD		GND	OVDD		DRTRY	BR
A28	A27	OVDD	•	DL3		DP5	DL13		GND	GND		DL23	DL26		CI		OVDD	BG	RSRV
A22	A26	GND	A25	A31		GND	OVDD		OVDD	OVDD		OVDD	GND		CLK_O UT	WT	GND	TDO	DBG
DBW	O A23				VDD									VDD				TEA	ABB
A20	A19	OVDD	A24	GND		OVDD			GND	GND			OVDD		GND	DBB	OVDD	ARTRY	SRESE
AAC	K AP3	GND	A21	VDD		GND	GND	VDD	VDD	VDD	VDD	GND	GND		VDD	QREQ	GND	TBEN	QACI
A18	A17				VDD		GND	VDD			VDD	GND		VDD				BVSEL	INT
DBD	S A16	VDD	GND	OVDD	GND				GND	GND				GND	OVDD	GND	VDD	SMI	CKST
TBS	TSIZ2	VDD	GND	OVDD	GND				VDD	VDD				GND	OVDD	GND	VDD	TLBISYNC	HRESE
TA	TSIZ1				VDD		GND	GND			GND	GND		VDD				MCP	CHECKS
AP2	TT4	GND	AP1	VDD		GND	GND	VDD	VDD	VDD	VDD	GND	GND		VDD	LLSD_ MODE	GND	L2_TSTCLK	L1_TSTC
TSIZ) TT2	OVDD	TT0	GND		OVDD			GND	GND			OVDD		GND	PLL_RNG1	OVDD	PLL_CFG4	AGNI
TT3	TS				VDD									VDD				PLL_RNG0	A1VD
A14	A15	GND	AP0	A7		GND	OVDD		OVDD	OVDD		OVDD	GND		DH7	PLL_CFG3	GND	SYSCLK	A2VD
A12	TT1	OVDD		A9		DH30			GND	GND			DH13		DH1			PLL_CFG1	PLL_CF
A11	A10	ov.nn	OVDD			OVDD			VDD	VDD			OVDD		GND	OVDD	ov.nn	DH0	PLL_CF
		A5	A4	A1				DH23			DH20						DH5		DH3
																•			DH2
A6	A8 GND	A3	A																

Note: This view is looking down from above the 750FL microprocessor placed and soldered on the system board.

4.4 Pinout Listings

Table 4-1 contains the pinout listing for the 750FL microprocessor CBGA package.

Table 4-1. Pinout Listing for the CBGA Package (Sheet 1 of 3)

Signal Name	Pin Number	Active	Input/Output	Notes
A[0:31]	E20, E19, D20, C20, D19, C19, A20, E16, B20, E17, B18, A18, A17, A19, A16, B16, B10, B9, A9, B7, A7, D8, A5, B6, D7, D5, B5, B4, A4, A3, B3, E5.	High	Input/Output	
A1VDD	Y15			
A2VDD	Y16			
AACK	A8	Low	Input	
ABB	Y6	Low	Input/Output	
AGND	Y14			
AP[0:3]	D16, D13, A13, B8	High	Input/Output	6
ARTRY	W7	Low	Input/Output	
BG	W4	Low	Input	
BLANK	Y1, Y2			3
BR	Y3	Low	Output	
BVSEL	W9		Input	4
CHECKSTOP (CKSTP_OUT)	Y12	Low	Output	
CI	T4	Low	Output	
CKSTP_IN	Y10	Low	Input	
CLK_OUT	T5	High	Output	
DBB	U7	Low	Input/Output	
DBDIS	A10	Low	Input	
DBG	Y5	Low	Input	
DBWO	A6	Low	Input	
DH[0:31]	W18, T17, Y20, Y19, W20, V19, U19, T16, T19, U20, V20, R19, N17, P17, R20, P20, N20, P19, M20, L20, M19, L19, K20, J19, K19, G20, H20, H17, H19, F19, G17, F20	High	Input/Output	
DL[0:31]	A2, A1, C2, E4, C1, E2, D2, E1, D1, F1, G2, F2, H2, H4, G1, K2, J2, K1, J1, L2, M2, L1, N2, N4, N1, P1, P4, P2, R2, R1, U2, T1	High	Input/Output	
DP[0:7]	T20, N19, J20, G19, B1, G4, H1, M1	High	Input/Output	6
DRTRY	W3	Low	Input	

- These are test signals for factory use only and must be pulled up to OV_{DD} for normal system operation.
 OV_{DD} supplies power to the input/output drivers and V_{DD} supplies power to the processor core.
- 3. These pins are reserved.
- 4. BVSEL and L1_TSTCLK select the input/output voltage mode on the 60x bus (see Section 5.7 I/O Voltage Mode Selection on page 56).
- 5. TCK must be tied high or low for normal system operation.
- 6. Address and data parity must be left floating if unused in the design.

Table 4-1. Pinout Listing for the CBGA Package (Sheet 2 of 3)

Signal Name	Pin Number	Active	Input/Output	Notes
GBL	W1	Low	Input/Output	
GND	B2, B19, C5, C8, C13, C16, D10, D11, E3, E7, E14, E18, F10, F11, G5, G8, G13, G16, H3, H8, H9, H12, H13, H18, J12, K4, K7, K10, K14, K17, L4, L7, L10, L14, L17, M12, N3, N8, N9, N12, N13, N18, P5, P8. P13, P16, R10, R11, T3, T7, T14, T18, U10, U11, V5, V8, V13,V16, W2, W19,			
HRESET	Y11	Low	Input	
ĪNT	Y9	Low	Input	
L1_TSTCLK	Y13	High	Input	4
L2_TSTCLK	W13	High.	Input	1
LSSD_MODE	U13	Low	Input	1
MCP	W12	Low	Input	
OV _{DD}	C4, C7, C14, C17, D3, D18, E10, E11, G3, G7, G14, G18, H5, H16, K5, K16, L5, L16, N5, N16, P3, P7, P14, P18, T10, T11, U3, U18, V4, V7, V14, V17			2
PLL_CFG[0:4]	Y18, W17, Y17, U16, W14	High	Input	
PLL_RNG[0:1]	W15, U14	High	Input	
QACK	Y8	Low	Input	
QREQ	U8	Low	Output	
RSRV	Y4	Low	Output	
SMI	W10	Low	Input	
SRESET	Y7	Low	Input	
SYSCLK	W16	High	Input	
TA	A12	Low	Input	
TBEN	W8	High	Input	
TBST	A11	Low	Input/Output	
TCK	T2	High	Input	5
TDI	V2	High	Input	
TDO	W5	High	Output	
TEA	W6	Low	Input	
TLBISYNC	W11	Low	Input	
TMS	V1	High	Input	
TRST	U1	Low	Input	

- These are test signals for factory use only and must be pulled up to OV_{DD} for normal system operation.
 OV_{DD} supplies power to the input/output drivers and V_{DD} supplies power to the processor core.
- 3. These pins are reserved.
- 4. BVSEL and L1_TSTCLK select the input/output voltage mode on the 60x bus (see Section 5.7 I/O Voltage Mode Selection on
- 5. TCK must be tied high or low for normal system operation.
- 6. Address and data parity must be left floating if unused in the design.

PowerPC 750FL RISC Microprocessor

Preliminary

Table 4-1. Pinout Listing for the CBGA Package (Sheet 3 of 3)

Signal Name	Pin Number	Active	Input/Output	Notes
TS	B15	Low	Input/Output	
TSIZ[0:2]	A14, B12, B11	High	Output	
TT[0:4]	D14, B17, B14, A15, B13	High	Input/Output	
V_{DD}	C10, C11, E8, E13, F6, F9, F12, F15, J8, J9, J13, K3, K8, K11, K13, K18, L3, L8, L11, L13, L18, M8, M9, M13, R6, R9, R12, R15, T8, T13, V10, V11			2
WT	U5	Low	Output	

- 1. These are test signals for factory use only and must be pulled up to ${\sf OV}_{\sf DD}$ for normal system operation.
- 2. OV_{DD} supplies power to the input/output drivers and V_{DD} supplies power to the processor core.
- 3. These pins are reserved.
- 4. BVSEL and L1_TSTCLK select the input/output voltage mode on the 60x bus (see Section 5.7 I/O Voltage Mode Selection on page 56).
- 5. TCK must be tied high or low for normal system operation.
- 6. Address and data parity must be left floating if unused in the design.

Table 4-2. Signal Locations (Sheet 1 of 2)

Signal	Ball Location	Signal	Ball Location	Signal	Ball Location	Signal	Ball Location
A0	E20	DH0	W18	DL0	A2	AACK	A8
4 1	E19	DH1	T17	DL1	A1	ABB	Y6
A 2	D20	DH2	Y20	DL2	C2	AGND	Y14
A 3	C20	DH3	Y19	DL3	E4	ARTRY	W7
A 4	D19	DH4	W20	DL4	C1	BG	W4
A 5	C19	DH5	V19	DL5	E2	BR	Y3
46	A20	DH6	U19	DL6	D2	BVSEL	W9
47	E16	DH7	T16	DL7	E1	CHECKSTOP (CKSTP_OUT)	Y12
A 8	B20	DH8	T19	DL8	D1	CI	T4
49	E17	DH9	U20	DL9	F1	CLK_OUT	T5
A10	B18	DH10	V20	DL10	G2	CKSTP (CKSTP_IN)	Y10
A11	A18	DH11	R19	DL11	F2	DBB	U7
A12	A17	DH12	N17	DL12	H2	DBDIS	A10
A13	A19	DH13	P17	DL13	H4	DBG	Y5
4 14	A16	DH14	R20	DL14	G1	DBWO	A6
A 15	B16	DH15	P20	DL15	K2	DRTRY	W3
A16	B10	DH16	N20	DL16	J2	GBL	W1
A 17	В9	DH17	P19	DL17	K1	HRESET	Y11
A18	A9	DH18	M20	DL18	J1	INT	Y9
A 19	B7	DH19	L20	DL19	L2	L1_TSTCLK	Y13
A20	A7	DH20	M19	DL20	M2	L2_TSTCLK	W13
A21	D8	DH21	L19	DL21	L1	LSSD_MODE	U13
A 22	A5	DH22	K20	DL22	N2	MCP	W12
A23	B6	DH23	J19	DL23	N4	PLL_CFG0	Y18
A24	D7	DH24	K19	DL24	N1	PLL_CFG1	W17
A 25	D5	DH25	G20	DL25	P1	PLL_CFG2	Y17
A 26	B5	DH26	H20	DL26	P4	PLL_CFG3	U16
A27	B4	DH27	H17	DL27	P2	PLL_CFG4	W14
A28	A4	DH28	H19	DL28	R2	PLL_RNG0	W15
A 29	A3	DH29	F19	DL29	R1	PLL_RNG1	U14
4 30	B3	DH30	G17	DL30	U2	QACK	Y8
A31	E5	DH31	F20	DL31	T1	QREQ	U8
			!		!	RSRV	Y4
						SMI	W10
						SRESET	Y7
						H .	1

PowerPC 750FL RISC Microprocessor

Table 4-2. Signal Locations (Sheet 2 of 2)

	Ū	`	,				
Signal	Ball Location	Signal	Ball Location	Signal	Ball Location	Signal	Ball Location
		AP0	D16	DP0	T20	TA	A12
		AP1	D13	DP1	N19	TBEN	W8
		AP2	A13	DP2	J20	TBST	A11
		AP3	B8	DP3	G19	TCK	T2
				DP4	B1	TDI	V2
				DP5	G4	TDO	W5
				DP6	H1	TEA	W6
				DP7	M1	TLBISYNC	W11
						TMS	V1
						TRST	U1
						TS	B15
						TSIZ0	A14
						TSIZ1	B12
						TSIZ2	B11
						TT0	D14
						TT1	B17
						TT2	B14
						TT3	A15
						TT4	B13
						₩Ŧ	U5

Table 4-3. Voltage and Ground Assignments

Table 4-3. Vollage and Ground Assignments								
A1 V _{DD}	A2 V _{DD}	O V _{DD}	O V _{DD}	V_{DD}	V_{DD}	GND	GND	
Y15	Y16	C4	C7	C10	C11	B2	B19	
		C14	C17	E8	E13	C5	C8	
		D3	D18	F6	F9	C13	C16	
		E10	E11	F12	F15	D10	D11	
		G3	G7	J8	J9	E3	E7	
		G14	G18	J13	К3	E14	E18	
		H5	H16	K8	K11	F10	F11	
		K5	K16	K13	K18	G5	G8	
		L5	L16	L3	L8	G13	G16	
		N5	N16	L11	L13	НЗ	H8	
		P3	P7	L18	M8	Н9	H12	
		P14	P18	M9	M13	H13	H18	
		T10	T11	R6	R9	J12	K4	
		U3	U18	R12	R15	K7	K10	
		V4	V7	Т8	T13	K14	K17	
		V14	V17	V10	V11	L4	L7	
						L10	L14	
						L17	M12	
						N3	N8	

N9

N13

P5 P13

R10 T3

T14

U10

V5

V13 W2 N12 N18

P8

P16 R11

T7

T18

U11

V8 V16

W19

5. System Design Information

This section provides electrical and thermal design recommendations for the successful application of the 750FL microprocessor. For more information, see the *IBM PowerPC 750L/CXe/FX/GX Microprocessor Frequently Asked Questions*, the *IBM PowerPC 750FX and 750FL RISC Microprocessor Errata List DD2.X*, any applicable PCNs, and the other PowerPC documentation and application notes in the PowerPC Technical Library at http://www.ibm.com/chips/techlib/

5.1 PLL Considerations

The 750FL design includes two phase-locked loops (PLLs), PLL0 and PLL1, allowing the processor clock frequency to dynamically change between the PLL frequencies through software control. Use the bits in the HID1 register to specify the following settings:

- 1. The frequency range of each PLL
- 2. The clock multiplier for each PLL
- 3. External or internal control of PLL0
- 4. Which PLL is selected as the source of the processor clock.

For HID1 bit definitions, see the IBM PowerPC 750FX and 750FL RISC Microprocessor User's Manual.

At power-on reset, the HID1 register contains zeros for all the non-read-only bits (bits 7-31). This configuration corresponds to the selection of PLL0 as the source of the processor clocks and selects the external configuration and range pins to control PLL0. The external configuration and range pin values are accessible to software using HID1 read-only bits 0-6. PLL1 is always controlled by its internal configuration and range bits. The HID1 setting associated with hard reset corresponds to a PLL1 configuration of clock off, and selection of the medium frequency range.

HRESET must be asserted during power up long enough for the PLLs to lock and for the internal hardware to be reset. When this timing is satisfied, HRESET can be negated. The processor then proceeds to execute instructions, clocked by PLL0 as configured through the external pins. The processor clock frequency can be modified from this initial setting in one of two ways. First, as with earlier designs, HRESET can be asserted, and the external configuration pins can be set to a new value. The machine state is reset in this process, and, as always, HRESET must be held asserted while the PLL relocks, and the internal state is reset. Second, the introduction of another PLL provides an alternative means of changing the processor clock frequency, which does not involve the loss of machine state nor a delay for PLL relock.

The following sequence can be used to change processor clock frequency:

Note: Assume PLL0 is currently the source for the processor clock.

- 1. Configure PLL1 to produce the required clock frequency by setting HID1[PR1] and HID1[PC1] to the appropriate values.
- 2. Wait for PLL1 to lock. The lock time is the same for both PLLs and is provided in the hardware specification.
- 3. Set HID1[PS] to 1 to initiate the transition from PLL0 to PLL1 as the source of the processor clocks. From the time the HID1 register is updated to select the new PLL, the transition to the new clock frequency is completed within three bus cycles. After the transition, the HID(PSS) bit indicates which PLL is in use.

After both PLLs are running and locked, the processor frequency can be toggled with very low latency. For example, when it is time to change back to the PLL0 frequency, there is no need to wait for PLL lock. HID1[PS] can be reset to 0, causing the processor clock source to make the transition from PLL1 back to PLL0. If PLL0 is not needed for some time, it can be configured to be off while not in use. This is done by resetting the HID1[PC0] field to 0, and setting HID1[PI0] to 1. Turning the nonselected PLL off results in a modest power savings, but introduces added latency when changing frequency. If PLL0 is configured to be off, the procedure for switching to PLL0 as the selected PLL involves changing the configuration and range bits, waiting for lock, and then selecting PLL0, as described in the previous paragraph.

5.1.1 Restrictions and Considerations for PLL Configuration

Avoid the following when reconfiguring the PLLs:

- 1. The configuration and range bits in HID1 must only be modified for the nonselected PLL because it requires time to lock before it can be used as the source for the processor clock.
- 2. The HID1[PI0] bit can only be modified when PLL0 is not selected.
- 3. Whenever one of the PLLs is reconfigured, it must not be selected as the active PLL until enough time has elapsed for the PLL to lock.
- 4. At all times, the frequency of the processor clock, as determined by the various configuration settings, must be within the specification range for the current operating conditions.
- 5. Never select a PLL that is in the off configuration.

5.1.1.1 Configuration Restriction on Frequency Transitions

It is considered a programming error to switch from one PLL to the other when both are configured in a *half-cycle* multiplier mode. For example, with PLL0 configured in 9:2 mode (cfg = '01001') and PLL1 configured in 13:2 mode (cfg = '01101'), changing the select bit (HID1[PS]) is not allowed. In cases where such a pairing of configurations is required, an intermediate full-cycle configuration must be used between the two half-cycle modes. For example, with PLL0 at 9:2, configure and select PLL1 to 6:1 mode, then reconfigure PLL0 to 13:2 mode, and select it when it locks.

5.1.2 PLL_RNG[0:1] Definitions for Dual PLL Operation

The dual PLLs on the 750FL microprocessor are configured by the PLL_CFG[0:4] and PLL_RNG[0:1] signals. For a given SYSCLK (bus) frequency, the PLL configuration signals set the internal processor and VCO frequency of operation. The 750FL microprocessor PLL range configuration, for dual PLL operation, is shown in *Table 5-1*.

Table 5-1. PLL_RNG[0:1] Definitions for Dual PLL Operation

PLL_RNG[0:1]	PLL Frequency Range
00	600 MHz and above
10	Below 600 MHz
01	Reserved
11	Reserved

5.1.3 PLL Configuration

PLL_CFG (*Table 5-2*) must be set so that both SYSCLK and the core frequency are within the clock ac timing specifications shown in *Table 3-7 Clock ac Timing Specifications* on page 20. In addition, the core frequency must not exceed the limit specified in the part number, and the system must meet the required specifications.

Table 5-2. 750FL Microprocessor PLL Configuration (Sheet 1 of 2)

PLL_C	FG [0:4]	Processor to Bus Frequency Ratio (PBFR)	
Binary	Decimal	Processor to bus Frequency Hatto (PBFH)	
00000	0	OFF	
00001	1	OFF	
00010	2	PLL Bypass ²	
00011	3	PLL Bypass ²	
00100	4	2×1	
00101	5	2.5× ¹	
00110	6	3×	
00111	7	3.5×	
01000	8	4×	
01001	9	4.5×	
01010	10	5×	
01011	11	5.5×	
01100	12	6×	
01101	13	6.5×	
01110	14	7×	

Notes:

- 1. The $2\times-2.5\times$ processor to bus ratios are not supported.
- 2. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, the PLL is disabled, and the bus mode is set for 1:1 mode operation. This mode is intended for manufacturing use only.
 - The ac timing specifications given in the document do not apply in PLL-bypass mode.
- 3. In clock-off mode, no clocking occurs inside the 750FL microprocessor regardless of the SYSCLK input.

System Design Information 750flds60.fm.6.0
Page 40 of 65
April 27, 2007

Table 5-2. 750FL Microprocessor PLL Configuration (Sheet 2 of 2)

PLL_C	FG [0:4]	Processor to Bus Frequency Ratio (PBFR)		
Binary	Decimal	Processor to bus Frequency Hatto (PBFH)		
01111	15	7.5×		
10000	16	8×		
10001	17	8.5×		
10010	18	9×		
10011	19	9.5×		
10100	20	10×		
10101	21	11x		
10110	22	12×		
10111	23	13×		
11000	24	14×		
11001	25	15×		
11010	26	16×		
11011	27	17×		
11100	28	18×		
11101	29	19×		
11110	30	20×		
11111	31	Off ³		

- 1. The $2\times-2.5\times$ processor to bus ratios are not supported.
- 2. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, the PLL is disabled, and the bus mode is set for 1:1 mode operation. This mode is intended for manufacturing use only.
- The ac timing specifications given in the document do not apply in PLL-bypass mode.

 3. In clock-off mode, no clocking occurs inside the 750FL microprocessor regardless of the SYSCLK input.

5.2 PLL Power Supply Filtering

The 750FL microprocessor has two separate AV_{DD} signals (A1V_{DD} and A2V_{DD}) that provide power to the clock generation phase-locked loops.

Most designs are expected to use a single PLL configuration mode throughout the application. These type of designs must use the default configuration, $A1V_{DD}$ (PLL0), and tie the $A2V_{DD}$ (PLL1) signal to ground (AGND) through a 100 Ω resistor. This is shown Figure 5-1 Single PLL Power Supply Filter Circuit with A1VDD Pin and A2VDD Pin Tied to GND on page 43.

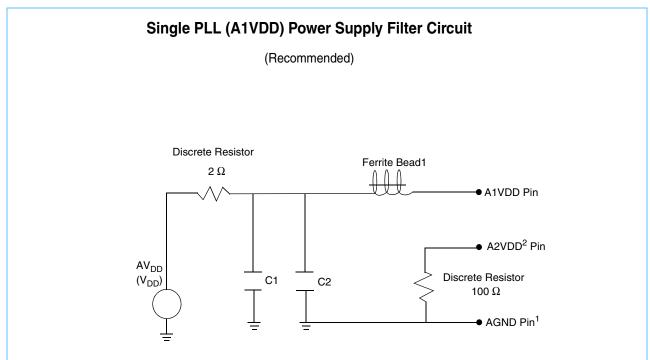
For designs planning to optimize power savings through dynamic switching between these dual PLL circuits, it is recommended, though not required, that each AV_{DD} have a separate voltage input and filter circuit.

To ensure the stability of the internal clock, the power supplied to the AV_{DD} input signals must be filtered using a circuit similar to the one shown in *Figure 5-1* on page 43. The circuit must be placed as close as possible to the AV_{DD} pin to ensure that it filters out as much noise as possible.

For descriptions of the sample PLL power supply filtering circuits, see Table 5-3.

Table 5-3. Sample PLL Power Supply Filtering Circuits

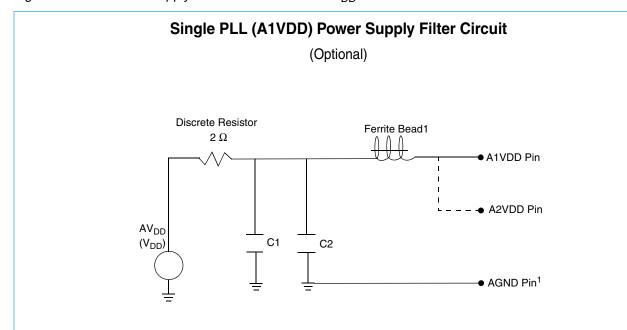
Samples of PLL Power Supply Filtering Circuits									
Circuit Description	Number of Filtering Circuits	Ferrite Beads	Circuit Figure	Recommended Circuit Design	Notes				
Single PLL circuit configuration that uses the ${\rm A1V_{DD}}$ and ties the ${\rm A2V_{DD}}$ pin to GND	1	1	Figure 5-1 on page 43	Yes					
Single PLL circuit configuration that uses both the A1V _{DD} and the A2V _{DD} pins and a single ferrite bead	1	1	Figure 5-2 on page 44	Optional	1, 2				
Dual PLL configuration that uses a separate circuit for the A1V _{DD} pin and for the A2V _{DD} the pin	2	2	Figure 5-3 on page 45	Yes	2, 3				


Notes:

- 1. Optional configurations are supported, though not recommended.
- 2. This circuit design can be used with the dual PLL feature enabled, though optimum power savings might not be realized. For additional information, see *Figure 5-3 Dual PLL Power Supply Filter Circuits* on page 45.
- 3. This circuit design can be used with the dual PLL feature enabled to optimize power savings.

System Design Information 750flds60.fm.6.0
Page 42 of 65
April 27, 2007

Figure 5-1. Single PLL Power Supply Filter Circuit with A1V $_{
m DD}$ Pin and A2V $_{
m DD}$ Pin Tied to GND


Legend:

Item	Description/Value				
Resistor	2 Ω				
C1	0.1 μF, Ceramic				
C2	10.0 μF, Ceramic				
Ferrite Bead	30 Ω (typical) - Murata BLM21P300S or similar				

- Connect to ground without a filter.
 Ground A2VDD through a resistor only if the single PLL0 is being used.

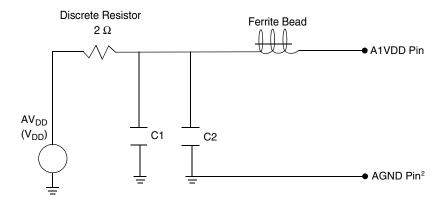
Figure 5-2. PLL Power Supply Filter Circuit with Two AV_{DD} Pins and One Ferrite

Legend:

Item	Description/Value				
Resistor	2 Ω				
C1	0.1 μF Ceramic				
C2	10.0 μF Ceramic				
Ferrite Bead	30 Ω (typical) - Murata BLM21P300S or similar				

Note:

1. Connect to ground without a filter.


System Design Information 750flds60.fm.6.0
Page 44 of 65 April 27, 2007

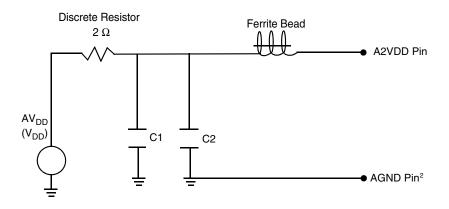


Figure 5-3. Dual PLL Power Supply Filter Circuits

Dual PLL (AVDD) Power Supply Filter Circuits¹

(Recommended configuration if dual PLL feature is enabled.)

Item	Description/Value				
Resistor	2 Ω				
C1	0.1 μF Ceramic				
C2	10.0 μF Ceramic				
Ferrite Bead	30Ω (typical) - Murata BLM21P300S or similar				

- 1. The dual PLL power supply circuits shown in this figure are recommended for a design that uses the dual PLL feature.
- 2. Connect to ground without a filter.

5.3 Decoupling Recommendations

Capacitor decoupling is required for the 750FL microprocessor. Decoupling capacitors act to reduce high frequency chip switching noise and provide localized bulk charge storage to reduce major power-surge effects.

High frequency decoupling capacitors must be located as close as possible to the processor with low lead inductance to the ground and voltage planes.

Decoupling capacitors are recommended on the back of the card, directly opposite the module. The recommended placement and number of decoupling capacitors, 34 V_{DD} - GND capacitors and 44 OV_{DD} - GND capacitors, are described in *Figure 5-5 Orientation and Layout of the 750FL Microprocessor Decoupling Capacitors* on page 48. The recommended decoupling capacitor specifications are provided in *Table 5-4*. The placement and use described here are guidelines for decoupling capacitors and must be applied for system designs.

Table 5-4. Recommended Decoupling Capacitor Specifications

Item	Description
Decoupling capacitor specifications:	Type X5R or Y5V 10 V minimum 0402 size 1.0 mm × 0.5 mm±0.1 mm on both dimensions (40 × 20 mils, nominally)
	100 nF
Recommended minimum number of decoupling capacitors on the back of the card:	34 V _{DD} -GND caps 44 OV _{DD} -GND caps

The decoupling capacitor electrodes are located directly opposite from their corresponding BGA pins where possible. Also, each electrode for each decoupling capacitor needs to be connected to one or more BGA pins (balls) with a short electrical path. Thus, through-vias, adjacent to the decoupling capacitors, are recommended.

The card designer can expand on the decoupling capacitor recommendations by using the following techniques:

- Adding additional decoupling capacitors.
 If using additional decoupling capacitors, verify that these additional capacitors do not reduce the number of card vias or cause the vias to lose proximity to each capacitor electrode.
- Adding additional through vias or blind vias.
 Card technologies are available that reduce the inductance between the decoupling capacitor and the BGA pin (ball). Replacing single vias with multiple vias is very effective. Place GND vias close to V_{DD} or OV_{DD} vias to reduce loop inductance.

For more information on power layout and bypassing, see the IBM application note, *PowerPC 750FX Layout and Bypassing*.

Figure 5-4. 750FL Microprocessor Pin Locations: OV_{DD}, V_{DD}, GND, and Signal Pins

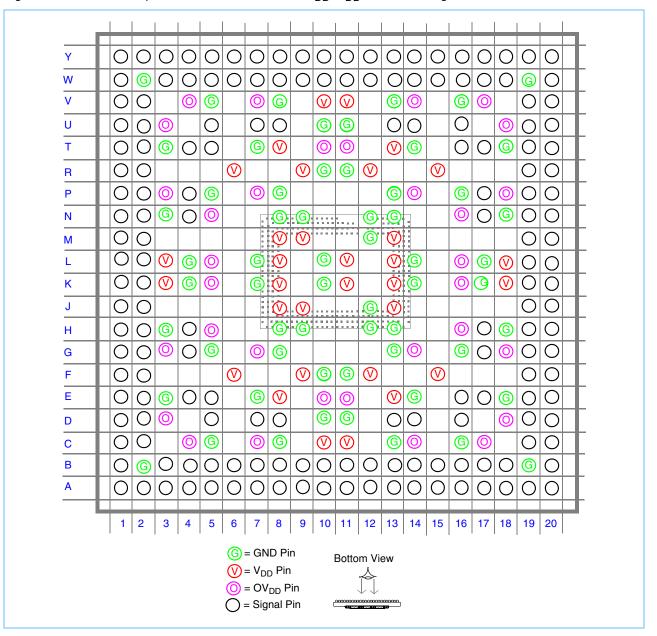
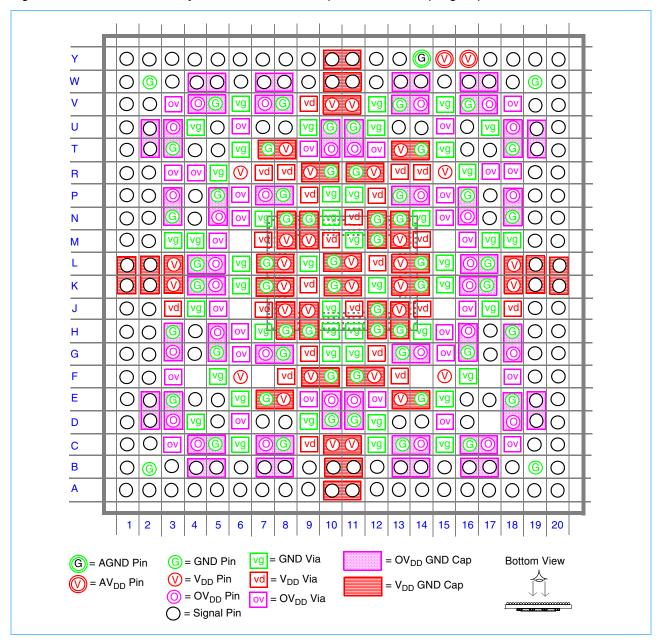



Figure 5-5. Orientation and Layout of the 750FL Microprocessor Decoupling Capacitors

5.4 Output Buffer dc Impedance

The 750FL 60x drivers were characterized over various process, voltage, and temperature conditions. To measure Z_0 , an external resistor is connected to the chip pad, either to OV_{DD} or GND. Then the value of such resistor is varied until the pad voltage is $OV_{DD}/2$ (see *Figure 5-6*).

The output impedance is actually the average of two resistances: the resistance of the pull-up and the resistance of pull-down devices. When Data is held low, SW1 is closed (SW2 is open), and R_N is trimmed until Pad = $OV_{DD}/2$. R_N then becomes the resistance of the pull-down devices. When Data is held high, SW2 is closed (SW1 is open), and R_P is trimmed until Pad = $OV_{DD}/2$. R_P then becomes the resistance of the pull-up devices. With a properly designed driver R_P and R_N are close to each other in value, then $Z_0 = (R_P + R_N)/2$.

Figure 5-6. Driver Impedance Measurement

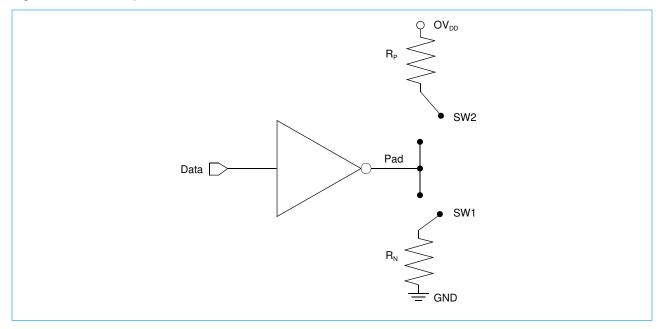


Table 5-5 summarizes the driver impedance characteristics a designer uses to design a typical process.

Table 5-5. Driver Impedance Characteristics

Process	60x Impedance (Ω)	OV _{DD} (V)	Temperature (°C)
Worst	50	1.70	105
Typical	44	1.80	65
Best	36	1.90	0
Worst	50	238	105
Typical	44	2.50	65
Best	36	2.63	0
Worst	65	3.14	105
Typical	50	3.30	65
Best	35	3.46	0

5.4.1 Input-Output Use

Table 5-6 Input/Output Use provides details on the input-output usage of the PowerPC 750FL RISC Microprocessor signals. The *Usage Group* column refers to the general functional category of the signal.

In the PowerPC 750FL RISC Microprocessor, certain input-output signals have pullups and pulldowns, which might or might not be enabled. In *Table 5-6 Input/Output Use* on page 51, the *Input/Output with Internal Resistors* column defines which signals have pullups or pulldowns and their active or inactive state. The *Level Protect* column defines which signals have the designated function added to their input/output cell. For more information about level protection, see *Section 5.5 Level Protection* on page 55.

Caution: This section is based on preliminary information and is subject to change.

Pull L2_TSTCLK and LSSD_MODE high for normal operation.

Pins shown as no connect (NC) must not be connected.

Connect all GND pins to ground. Connect all V_{DD} and OV_{DD} pins to the appropriate supply.

System Design Information Page 50 of 65

PowerPC 750FL RISC Microprocessor

- 1. Depends on the system design. The electrical characteristics of the 750FL microprocessor do not add additional constraints to the system design. Therefore, whatever is done with the net depends on the system requirements.
- 2. HRESET, SRESET, and TRST are signals used for ESP and RISCWatch to enable the correct operation of the debuggers. Logical AND gates must be placed between these signals and 750FL microprocessor. (See Figure 5-7 IBM RISCWatch JTAG to HRESET, TRST, and SRESET Signal Connector on page 55.)
- 3. The 750FL microprocessor provides protection from metastability on inputs through the use of a "keeper" circuit on specific inputs. See Section 5.5 Level Protection on page 55 for a more detailed description.
- 4. If a system design requires a signal level to be maintained while not being actively driven, an external resistor or device must be used (keepers assure no metastability of inputs but do not guarantee a level).
- 5. The 750FL microprocessor does not require external pullups on address and data lines. Control lines must be treated individually.

750FL Micropro- cessor Signal Name	Active Level	Input/ Output	Usage Group	Input/Output with Internal Pullup Resistors	Level Protect	Required External Resistor	Comments	Notes
DH[0:31]	High	Input/Output	Data Bus		Keeper			1, 3, 4
DL[0:31]	High	Input/Output	Data Bus		Keeper			1, 3, 4
DP[0:7]	High	Input/Output						
DRTRY	Low	Input			Keeper			3, 4
GBL	Low	Input/Output	Transfer Attributes		Keeper			1, 3, 4
GND			Power Supply					
HRESET	Low	Input	Interrupt/Resets		Keeper		Active driver	2, 3, 4, 5
ĪNT	Low	Input	Interrupt/Resets		Keeper		Active driver or pullup	3, 4, 5
L1_TSTCLK	High	Input	LSSD	Not enabled		5k Ω	Pullup/pulldown, as required	5
L2_TSTCLK	High	Input	LSSD	Not enabled		5k Ω	Pullup required to OV _{DD}	5
LSSD_MODE	Low	Input	LSSD	Not enabled		5k Ω	Pullup required to OV _{DD}	5
MCP	Low	Input	Interrupt/Resets		Keeper		Active driver or pullup	3, 4, 5
OV _{DD}			Power Supply					
PLL_CFG[0:4]	High	Input	Clock Control		Keeper	As required	Pullup/pulldown, as required	3, 4, 5
PLL_RNG[0:1]	High	Input			Keeper	As required	Pullup/pulldown, as required	3, 4, 5
QACK	Low	Input	Control		Keeper		Must be actively driven	3, 4, 5
QREQ	Low	Output	Status/Control		Keeper		Chip actively drives	3, 4, 5
RSRV	Low	Output			Keeper		No connect	3, 4, 5
SMI	Low	Input			Keeper			3, 4
SRESET	Low	Input	Interrupt/Resets		Keeper		Active driver or pullup	2, 3, 4, 5

- 1. Depends on the system design. The electrical characteristics of the 750FL microprocessor do not add additional constraints to the system design. Therefore, whatever is done with the net depends on the system requirements.
- 2. HRESET, SRESET, and TRST are signals used for ESP and RISCWatch to enable the correct operation of the debuggers. Logical AND gates must be placed between these signals and 750FL microprocessor. (See Figure 5-7 IBM RISCWatch JTAG to HRESET, TRST, and SRESET Signal Connector on page 55.)
- 3. The 750FL microprocessor provides protection from metastability on inputs through the use of a "keeper" circuit on specific inputs. See Section 5.5 Level Protection on page 55 for a more detailed description.
- 4. If a system design requires a signal level to be maintained while not being actively driven, an external resistor or device must be used (keepers assure no metastability of inputs but do not guarantee a level).
- 5. The 750FL microprocessor does not require external pullups on address and data lines. Control lines must be treated individually.

PowerPC 750FL RISC Microprocessor

750FL Micropro- cessor Signal Name	Active Level	Input/ Output	Usage Group	Input/Output with Internal Pullup Resistors	Level Protect	Required External Resistor	Comments	Notes
SYSCLK	High	Input	Clock Control		Keeper	No resistor by design	Active driver	3, 4, 5
TA	Low	Input	Data Termination		Keeper		Active driver	3, 4, 5
TBEN	High	Input						
TBST	Low	Input/Output	Transfer Attributes		Keeper			1, 3, 4
тск	High	Input	JTAG	Not enabled		External pulldown	5k Ω to GND	5
TDI	High	Input	JTAG	Enabled high	Internal enabled		50 μA at 2.5 V 25 μA at 1.8 V (the pullup current for the internal resistor)	5
TDO	High	Output	JTAG		Keeper			3, 4
TEA	Low	Input	Data Termination		Keeper		Active driver or pullup	3, 4, 5
TLBISYNC	Low	Input	Control		Keeper		Must be actively driven	3, 4
TMS	High	Input	JTAG	Enabled high	Internal enabled		$50~\mu\text{A}$ at $2.5~\text{V}$ $25~\mu\text{A}$ at $1.8~\text{V}$ (the pullup current for the internal resistor)	5
TRST	Low	Input	JTAG	Enabled high	Internal enabled		$50~\mu\text{A}$ at 2.5 V $25~\mu\text{A}$ at 1.8 V (the pullup current for the internal resistor)	2, 5
TS	Low	Input/Output	Address Start		Keeper	5k Ω	Pullup required to OV _{DD}	3, 4, 5
TSIZ[0:2]	High	Output	Transfer Attributes		Keeper			1, 3, 4

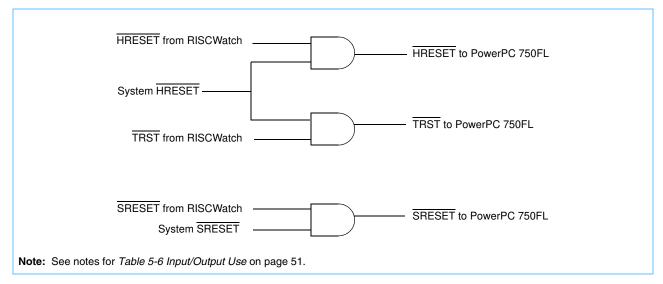

- 1. Depends on the system design. The electrical characteristics of the 750FL microprocessor do not add additional constraints to the system design. Therefore, whatever is done with the net depends on the system requirements.
- 2. HRESET, SRESET, and TRST are signals used for ESP and RISCWatch to enable the correct operation of the debuggers. Logical AND gates must be placed between these signals and 750FL microprocessor. (See Figure 5-7 IBM RISCWatch JTAG to HRESET, TRST, and SRESET Signal Connector on page 55.)
- 3. The 750FL microprocessor provides protection from metastability on inputs through the use of a "keeper" circuit on specific inputs. See Section 5.5 Level Protection on page 55 for a more detailed description.
- 4. If a system design requires a signal level to be maintained while not being actively driven, an external resistor or device must be used (keepers assure no metastability of inputs but do not guarantee a level).
- 5. The 750FL microprocessor does not require external pullups on address and data lines. Control lines must be treated individually.

Table 5-6. Input/Output Use (Sheet 4 of 4)

750FL Micropro- cessor Signal Name	Active Level	Input/ Output	Usage Group	Input/Output with Internal Pullup Resistors	Level Protect	Required External Resistor	Comments	Notes
TT[0:4]	High	Input/Output	Transfer Attributes		Keeper			1, 3, 4
V_{DD}			Power Supply					
WT	Low	Output	Transfer Attributes		Keeper			1, 3, 4

- 1. Depends on the system design. The electrical characteristics of the 750FL microprocessor do not add additional constraints to the system design. Therefore, whatever is done with the net depends on the system requirements.
- 2. HRESET, SRESET, and TRST are signals used for ESP and RISCWatch to enable the correct operation of the debuggers. Logical AND gates must be placed between these signals and 750FL microprocessor. (See *Figure 5-7 IBM RISCWatch JTAG to HRESET, TRST, and SRESET Signal Connector* on page 55.)
- 3. The 750FL microprocessor provides protection from metastability on inputs through the use of a "keeper" circuit on specific inputs. See Section 5.5 Level Protection on page 55 for a more detailed description.
- 4. If a system design requires a signal level to be maintained while not being actively driven, an external resistor or device must be used (keepers assure no metastability of inputs but do not guarantee a level).
- 5. The 750FL microprocessor does not require external pullups on address and data lines. Control lines must be treated individually.

Figure 5-7. IBM RISCWatch JTAG to HRESET, TRST, and SRESET Signal Connector

5.5 Level Protection

A level protection feature is included in the 750FL microprocessor. The level protection feature is available in the 1.8 V, 2.5 V, and 3.3 V bus modes. This feature prevents ambiguous floating reference voltages by pulling the respective signal line to the last valid or nearest valid state.

For example, if the I/O voltage level is closer to OV_{DD}, the circuit pulls the I/O level to OV_{DD}. If the I/O level is closer to GND, the I/O level is pulled low. This self-latching circuitry keeps the floating inputs defined and prevents metastability. In Table 5-6 Input/Output Use on page 51, these signals are defined as keeper in the Level Protect column.

Keepers are not intended to force a net to a particular state. The keeper supplies a small (100 μA maximum) amount of current, which is intended to help keep a net at the current logic state.

The level protect circuitry provides no additional leakage current to the signal I/O; however, some amount of current must be applied to the keeper node to overcome the level protection latch. This current is process dependent, but in no case is the current required over 100 µA.

This feature allows the system designer to limit the number of resistors in the design, optimize placement, and reduce costs.

Note: Having a level protection (keeper) on the associated signal I/O does not replace a pull-up or pull-down resistor that is needed by the 750FL microprocessor or a separate device located on the 60x bus. The designer must supply any such resistors.

5.6 64- or 32-Bit Data Bus Mode

This mode selection varies for different design revision (DD) levels. For the 750FL DD2.X, mode setting is determined by the state of the mode signal, TLBISYNC, at the transition of HRESET from low to high. If TLBISYNC is high when HRESET makes the transition from active to inactive, 64-bit mode is selected. If TLBISYNC is low when HRESET makes the transition from active to inactive, 32-bit mode is selected.

Special Note: (Reduced-pinout mode) To make the transition from a previous processor with reduced-pinout mode, drive TLBISYNC appropriately, leave the DP(0:7) and AP(0:3) pins floating, and disable parity checking. The 750FL microprocessor does not have APE and DPE pins.

5.7 I/O Voltage Mode Selection

Selection between 1.8 V, 2.5 V, or 3.3 V I/O modes is accomplished by using the BVSEL and L1_TSTCLK pins:

- If BVSEL = 1 and L1_TSTCLK = 0, then the 3.3 V mode is enabled.
- If BVSEL = 1 and L1_TSTCLK = 1, then the 2.5 V mode is enabled.
- If BVSEL = 0 and L1_TSTCLK = 1, then the 1.8 V mode is enabled.

Note: Setting both BVSEL and L1_TSTCLK low is not a valid bus mode configuration.

Table 5-7. Summary of Mode Select

Mode	750FL	
	Sample TLBISYNC to select High = 64-bit mode Low = 32-bit mode	
	3.3 V±165 mV (BVSEL = 1, L1_TSTCLK = 0) or 2.5 V±125 mV (BVSEL = 1, L1_TSTCLK = 1) or 1.8 V±100 mV (BVSEL = 0, L1_TSTCLK = 1)	

5.8 Thermal Management

This section provides thermal management information for the CBGA package for air-cooled applications. Correct thermal control design depends primarily upon the system-level design; that is, the heat sink selection, air flow rate, and the thermal interface material. To reduce the die junction temperature, heat sinks can be attached to the package by several methods: adhesive, spring clips to holes in the printed circuit board or package, mounting clip, or a screw assembly. See *Figure 5-10 Exploded Cross-Sectional View of Package with Several Heat Sink Options* on page 61 for more information.

In general, a heat sink is required for all 750FL applications.

A design example is included in this section.

5.8.1 Heat Sink Selection Example

For preliminary heat sink sizing, the die junction temperature can be expressed as follows:

$$T_{J} = T_A + T_B + (\theta_{JC} + \theta_{INT} + \theta_{SA}) \times P_D$$

Where:

T_J is the die junction temperature

T_A is the inlet cabinet ambient temperature

T_R is the air temperature rise within the system cabinet

 θ_{JC} is the junction-to-case thermal resistance

 $\theta_{\mbox{\tiny INT}}$ is the thermal resistance of the thermal interface material

 $\theta_{\mbox{\tiny SA}}$ is the heat sink-to-ambient thermal resistance

P_D is the power dissipated by the device

Typical die junction temperatures (T_J) must be maintained less than the value specified in *Table 3-3 Package Thermal Characteristics* on page 17. The temperature of the air cooling the component greatly depends upon the ambient inlet air temperature and the air temperature rise within the computer cabinet. An electronic cabinet inlet air temperature (T_A) can range $30-40^{\circ}$ C. The air temperature rise within a cabinet (T_R) can be in the range of $5-10^{\circ}$ C. The thermal resistance of the interface material (θ_{INT}) is typically approximately 1° C/W. Assuming a T_A of 30° C, a T_R of 5° C, a CBGA package $\theta_{JC} = 0.03$, and a power dissipation (P_D) of 5.0 Watts, the following expression for T_L is obtained.

Die junction temperature: $T_J = 30^{\circ}C + 5^{\circ}C + (0.03^{\circ}C/W + 1.0^{\circ}C/W + \theta_{SA}) \times 5 W$

For a Thermalloy heat sink #2328B, the heat sink-to-ambient thermal resistance (θ_{SA}) versus air flow velocity is shown in *Figure 5-8* on page 58.

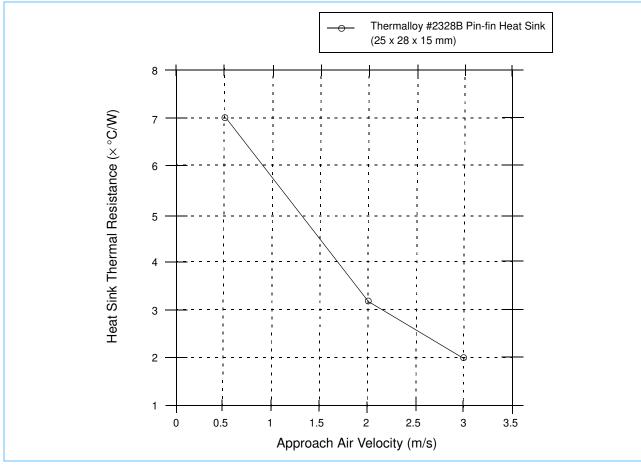


Figure 5-8. Thermalloy #2328B Pin-Fin Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity

For air velocity of 0.5 m/s, and an effective θ_{SA} of 7°C/W, the junction temperature is given by

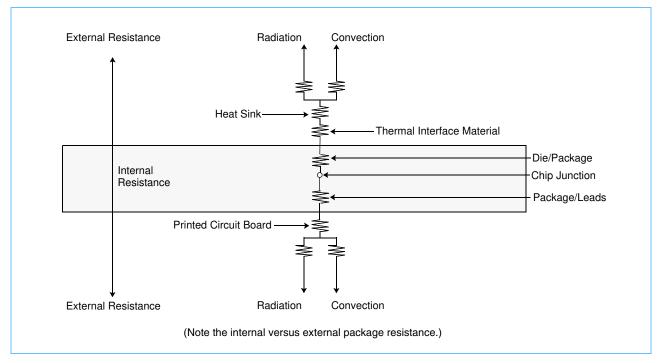
$$T_J = 30^{\circ}C + 5^{\circ}C + (2.2^{\circ}C/W + 1.0^{\circ}C/W + 7^{\circ}C/W) \times 4.5 W$$

This results in a junction temperature of approximately 81°C which is well within the maximum operating temperature of the component.

Other heat sinks offered by Chip Coolers, IERC, Thermalloy, Aavid, and Wakefield Engineering offer different heat sink-to-ambient thermal resistances, and might or might not require air flow.

Though the junction-to-ambient and the heat sink-to-ambient thermal resistances are a common figure of merit used for comparing the thermal performance of various microelectronic packaging technologies, exercise caution when using only this metric in determining thermal management because no single parameter can adequately describe three-dimensional heat flow. The final chip junction operating temperature is not only a function of the component-level thermal resistance, but the system-level design and its operating conditions. In addition to the component's power dissipation, a number of factors affect the final operating die junction temperature. These factors can include air flow, board population (local heat flux of adjacent components), heat sink efficiency, heat sink attachment method, next-level interconnect technology, system air temperature rise, and so forth.

System Design Information 750flds60.fm.6.0
Page 58 of 65 April 27, 2007


5.8.2 Internal Package Conduction

For the exposed-die packaging technology, shown in *Table 3-3 Package Thermal Characteristics* on page 17, the following intrinsic conduction thermal resistance paths exist:

- Die junction-to-case thermal resistance (primary thermal path)
- Die junction-to-lead thermal resistance (not typically a significant thermal path)
- Die junction-to-ambient thermal resistance (largely dependent on customer-supplied heatsink)

Figure 5-9 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed circuit board.

Figure 5-9. C4 Package with Heat Sink Mounted to a Printed Circuit Board

Heat generated on the active side of the chip is conducted through the silicon, then through the heat sink attach material (or thermal interface material), and finally to the heat sink; where it is removed by forced-air convection. Because the silicon thermal resistance is quite small, for a first-order analysis, the temperature drop in the silicon can be neglected. Thus, the heat sink attach material and the heat sink conduction/convective thermal resistances are the dominant terms.

The heat flow path from the die, through the chip-to-substrate balls, through the substrate, through the substrate-to-board balls, and through the board to ambient is typically too high of a resistance to offer much cooling. In addition, various factors make the heat flow through this path very difficult to accurately determine. Designers must not depend on cooling the 750FL microprocessor using this means unless thermal modeling has been confidently completed.

5.8.3 Minimum Heat Sink Requirements

The worst-case power dissipation (P_D) for the 750FL microprocessor is shown in *Table 3-5 Power Consumption (Low Power)* on page 19. A conservative thermal management design provides sufficient cooling to maintain the junction temperature (T_J) of the 750FL microprocessor below 105°C at maximum P_D and worst-case ambient temperature and airflow conditions.

Many factors affect the 750FL power dissipation, including V_{DD} , T_{J} , core frequency, process factors, and the code that is running on the processor. In general, P_{D} increases with increases in T_{J} , V_{DD} , Fcore, process variables, and the number of instructions executed per second.

For various reasons, analysis of the 750FL microprocessor power dissipation in an application might result in a value less than the maximum value shown in the datasheet. Assuming a lower PD results in a thermal management system with less cooling capacity than is required for the maximum datasheet PD. In this case, the actual maximum 750FL microprocessor PD for the particular application should be determined. Contact your IBM PowerPC FAE for more information.

In addition to the system factors that must be considered in a cooling system analysis, three things must be noted. First, 750FL PD rises as T_J increases. Therefore, it is most useful to measure PD while the 750FL junction temperature is at maximum. Though not specified or guaranteed, this rise in PD with T_J is typically less than 1W per 10°C. Thus regardless of other factors, the minimum cooling solution must have a maximum temperature rise of no more than 10°C/W.

This minimum cooling solution is not generally achievable without a heat sink. A heat sink or heat spreader of some sort must always be used in 750FL applications.

Second, because of process variations, there can be a significant variation in the PD of individual 750FL devices. In addition, IBM occasionally supplies "downbinned" parts. These are faster parts that are shipped in lieu of the speed that was ordered. For example, some parts that are marked as 600 MHz might actually run as fast as 700 MHz. These 700 MHz parts dissipate more power at 600 MHz than the 600 MHz parts. Thus, power dissipation analysis must be conducted using the fastest parts available.

Finally, regardless of methodology, IBM only supports system designs that successfully maintain the maximum junction temperature within datasheet limits. IBM also supports designs that rely on the maximum PD values given in this datasheet, and supply a cooling solution sufficient to dissipate that amount of power while keeping the maximum junction temperature below the maximum T_{.j}.

5.8.4 Heat Sink Mounting

Figure 5-10. Exploded Cross-Sectional View of Package with Several Heat Sink Options

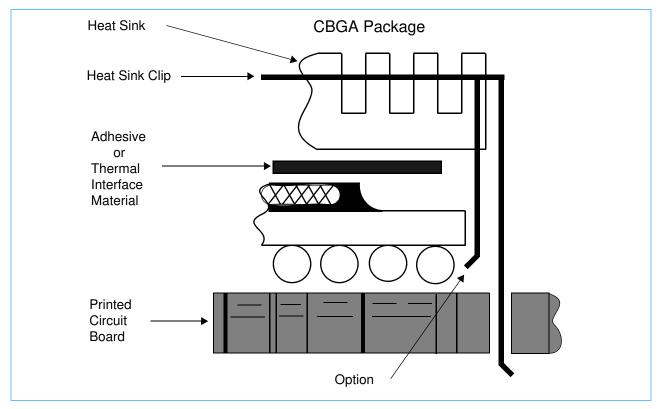


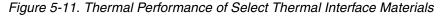
Table 5-8. Maximum Heatsink Weight Limit for the CBGA

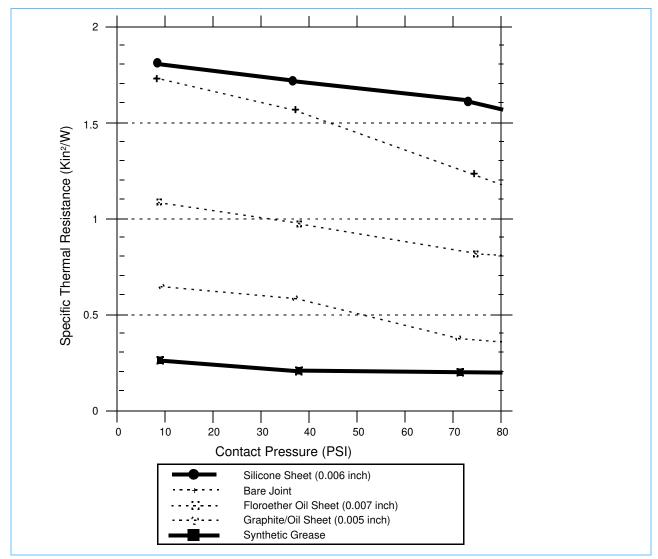
Force	Maximum
Maximum dynamic compressive force allowed on the BGA balls	42.9 N
Maximum dynamic tensile force allowed on the BGA balls	9.05 N
Maximum dynamic compressive force allowed on the chip	14.8 N
Maximum mass of module + heatsink when heatsink is not bolted to card	50 g

5.8.5 Thermal Assist Unit

The thermal sensor in the thermal assist unit (TAU) has not been characterized to determine the basic uncalibrated accuracy. The relationship between the actual junction temperature and the temperature indicated by THRM1 and THRM2 is not well known.

IBM recommends that the TAU in these devices be calibrated before use. Calibration methods are discussed in the IBM Application Note, Calibrating the Thermal Assist Unit in the IBM25PPC750L Processors. Although this note was written for the 750L microprocessor, the calibration methods discussed in this document also apply to the 750FL microprocessor.


In rare cases, the basic error of the TAU can be so large that a useful calibration cannot be achieved.



5.8.6 Adhesives and Thermal Interface Materials

A thermal interface material is recommended at the package die-to-heat sink interface to minimize the thermal contact resistance. For those applications where the heat sink is attached by a spring clip mechanism, *Figure 5-11* shows the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease, as a function of contact pressure. As shown, the performance of these thermal interface materials improves with increasing contact pressure. The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare joint results in a thermal resistance approximately seven times greater than the thermal grease joint.

In this example, the heat sink is attached to the package by means of a spring clip to holes in the printed circuit board (see *Figure 5-10 Exploded Cross-Sectional View of Package with Several Heat Sink Options* on page 61). The synthetic grease offers the best thermal performance, considering the low interface pressure. The selection of any thermal interface material depends on many factors – thermal performance requirements, manufacturability, service temperature, dielectric properties, cost, and so forth.

System Design Information 750flds60.fm.6.0
Page 62 of 65 April 27, 2007

5.8.7 Thermal Interface and Adhesive Vendors

The board designer can choose between several types of thermal interfaces. Heat sink adhesive materials must be selected based upon high conductivity and adequate mechanical strength to meet equipment shock/vibration requirements. A partial list of vendors that advertise thermal interface materials for PowerPC devices is shown in *Table 5-9*.

Table 5-9. 750FL Microprocessor Thermal Interface and Adhesive Materials Vendors

Company Names and Addresses for Thermal Interfaces and Adhesive Materials Vendors

Dow-Corning Corporation Dow-Corning Electronic Materials P.O. Box 0997 Midland, MI 48686-0997 (989) 496-4000

http://www.dowcorning.com/content/etronics

Chomerics, Inc.
77 Dragon Court
Woburn, MA 01888-4850
(781) 935-4850
http://www.chomerics.com

Laird Technologies 4797 Detroit Avenue Cleveland, OH 44102-2216 (216) 939-2300 / (888) 246-9050

http://www.lairdtech.com

Henkel Corp - Industrial 1001 Trout Brook Crossing Rocky Hill, CT 06067 (860) 571-5100 / (800) 562-8483

http://www.loctite.com/int_henkel/loctite_us/index.cfm

Al Technology 70 Washington Road Princeton, NJ 08550-1097 (609) 799-9388 http://www.aitechnology.com

5.8.8 Heat Sink Vendors

The board designer can choose between several types of heat sinks to place on the 750FL microprocessor. A partial list of vendors that advertise heat sinks for Power PC devices is shown in *Table 5-10*.

Table 5-10. A Partial Listing of 750FL Microprocessor Heat Sink Vendors

Company Names and Addresses for Heat Sink Vendors

Cool Polymers, Inc. 333 Strawberry Field Rd. Warwick, RI 02886 (800) 227-0254

http://www.coolpolymers.com

International Electronic Research Corporation (IERC)

413 North Moss Street Burbank, CA 91502 (818) 842-7277

http://www.ierc.net

Aavid Thermalloy 80 Commercial Street Concord, NH 03301

(603) 224-9888

http://www.aavid.com

http://www.aavidthermalloy.com

Wakefield Thermal Solutions Inc.

33 Bridge Street Pellham, NH 03076 (603) 635-2800

http://www.wakefield.com

System Design Information 750flds60.fm.6.0
Page 64 of 65
April 27, 2007

Revision Log

Date	Description			
April 27, 2007	 Version 6.0 Changed the moisture sensitivity level from 3 to 2 in Section 4.2 Package on page 29. Updated the document template. 			
June 22, 2006	Version SA14-2768-05 • Changed <i>Table 3-7 Clock ac Timing Specifications</i> on page 20.			
May 19, 2006	Version SA14-2768-05 • Changed the first paragraph of Section 4.2 on page 29.			
May 15, 2006	 Version SA14-2768-04 Changed Figure 4-1 Module Substrate Decoupling Voltage Assignments on page 29. Changed the note in Section 4.2 on page 29. Changed Figure 4-2 Mechanical Dimensions and Bottom Surface Nomenclature of the Reduced Lead CBGA Package on page 30. 			
May 2, 2006	Version SA14-2768-03 • Changed <i>Table 3-5 Power Consumption (Low Power)</i> on page 19. • Added <i>Table 3-6 Power Consumption (Standard Power)</i> on page 19.			
April 25, 2006	Version SA14-2768-02 • Changed Figure 1-1 Part Number Legend on page 13.			
May 10, 2005	Version SA14-2768-01 • Changed a paragraph in Section 1 General Information on page 9.			
April 4, 2005	Version SA14-2768-00 • Published Preliminary release.			