

SN74AHC244-Q1

SCLS526B - JULY 2003 - REVISED AUGUST 2023

SN74AHC244-Q1 Automotive Octal Buffer/Driver with 3-State Outputs

1 Features

Texas

INSTRUMENTS

- Qualified for automotive applications
- EPIC[™] (Enhanced-Performance Implanted CMOS) Process
- Operating range of 2-V to 5.5-V V_{CC}

2 Description

The SN74AHC244-Q1 contains one inverter gate. The device performs the Boolean function $Y = \overline{A}$.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾			
SN74AHC244-Q1	DBV (SOT-23, 5)	2.90 x 1.60 mm			
	DCK (SOT-SC70, 5)	2.00 x 1.25 mm			

- For all available packages, see the orderable addendum at (1) the end of the data sheet.
- The package size (length x width) is a nominal value and (2) includes pins, where applicable.

Simplified Schematic

Page

Table of Contents

1 Features 2 Description	
3 Revision History	
4 Function Table	
5 Specifications	4
5.1 Absolute Maximum Ratings	
5.2 ESD Ratings	4
5.3 Recommended Operating Conditions	4
5.4 Thermal Information	5
5.5 Electrical Characteristics	<mark>5</mark>
5.6 Switching Characteristics	5
5.7 Switching Characteristics	6
5.8 Noise Characteristics	
5.9 Operating Characteristics	<mark>6</mark>

6 Parameter Measurement Information	.7
7 Detailed Description	.8
7.1 Overview.	.8
7.2 Functional Block Diagram	
7.3 Device Functional Modes	
8 Device and Documentation Support	.9
8.1 Documentation Support	
8.2 Receiving Notification of Documentation Updates	
8.3 Support Resources	
8.4 Trademarks	
8.5 Electrostatic Discharge Caution	
8.6 Glossary	
9 Mechanical, Packaging, and Orderable Information	

3 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (April 2008) to Revision B (August 2023)

•	Added Package Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Device
	Functional Modes, Device and Documentation Support section, and Mechanical, Packaging, and Orderable
	Information section

4 Function Table

			_	
10E	1	U	20] v _{cc}
1A1 [2		19	20E
2Y4 [3		18] 1Y1
1A2 🛛	4		17	2A4
2Y3 [5		16] 1Y2
1A3 🛛	6		15	2A3
2Y2 🛛	7		14] 1Y3
1A4 [8		13	2A2
2Y1 🛛	9		12] 1Y4
GND [10		11	2A1

Figure 4-1. DW or PW Package (Top View)

Table 4-1. Pin Functions

	PIN	I/O	DESCRIPTION		
NO.	NAME	/U	DESCRIPTION		
1	1 OE	I	Output Enable 1		
2	1A1	I	1A1 Input		
3	2Y4	0	2Y4 Output		
4	1A2	I	1A2 Input		
5	2Y3	0	2Y3 Output		
6	1A3	I	1A3 Input		
7	2Y2	0	2Y2 Output		
8	1A4	I	1A4 Input		
9	2Y1	0	2Y1 Output		
10	GND		Ground pin		
11	2A1	I	2A1 Input		
12	1Y4	0	1Y4 Output		
13	2A2	I	2A2 Input		
14	1Y3	0	1Y3 Output		
15	2A3	I	2A3 Input		
16	1Y2	0	1Y2 Output		
17	2A4	I	2A4 Input		
18	1Y1	0	1Y1 Output		
19	2 OE	I	Output Enable 2		
20	VCC	—	Power Pin		

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7	V
V _I ²	Input voltage range		-0.5	7	V
V _O ²	Output voltage range		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	(V ₁ < 0)		-20	mA
I _{OK}	Output clamp current	$(V_O < 0 \text{ or } V_O > V_{CC})$		±20	mA
Ι _Ο	Continuous output current	$(V_{O} = 0 \text{ to } V_{CC})$		±25	mA
	Continuous current through V_{CC} or GN	D		±50	mA
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

5.2 ESD Ratings

				VALUE	UNIT
V (ESD)	Electrostatic discharge	Human body model (HBM), per AEC Q100-002 ¹	All pins	±1500	V

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)¹

			MIN	MAX	UNIT	
V _{CC}	Supply voltage		2	5.5	V	
		V _{CC} = 2 V	1.5			
V _{IH}	High-level input voltage	V _{CC} = 3 V	2.1		V	
		V _{CC} = 5.5 V	3.85			
		V _{CC} = 2 V		0.5		
V _{IL}	Low-level input voltage	V _{CC} = 3 V		0.9	0.9 V 1.65	
		V _{CC} = 5.5 V		1.65		
VI	Input voltage		0	5.5	V	
Vo	Output voltage		0	V _{CC}	V	
		V _{CC} = 2 V		-50	μA	
I _{OH}	High-level output current	$V_{CC} = 3.3 V \pm 0.3 V$		-4		
		$V_{CC} = 5 V \pm 0.5 V$		-8	mA	
		V _{CC} = 2 V		50	mA	
l _{ol}	Low-level output current	$V_{CC} = 3.3 V \pm 0.3 V$		4		
		$V_{CC} = 5 V \pm 0.5 V$		8	mA	
		$V_{CC} = 3.3 V \pm 0.3 V$		100	100	
∆t/∆v	Input transition rise or fall rate	$V_{CC} = 5 V \pm 0.5 V$		20	ns/V	
T _A	Operating free-air temperature	1	-40	125	°C	

All unused inputs of the device must be held at V_{CC} or GND for proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5.4 Thermal Information

		SN74AHC	244-Q1	
	THERMAL METRIC ⁽¹⁾	DW	PW	UNIT
		20 PINS	20 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	58	83	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

5.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	T _A =		MIN MAX	UNIT		
			MIN	TYP	MAX		WIAA	UNIT
		2 V	1.9	2		1.9		
	I _{OH} = -50 μA	3 V	2.9	3		2.9		
V _{OH}		4.5 V	4.4	4.5		4.4		V
	I _{OH} = -4 mA	3 V	2.58			2.48		
	I _{OH} = -8 mA	4.5 V	3.94			3.8		
		2 V			0.1		0.1	
	Ι _{ΟL} = 50 μΑ	3 V			0.1		0.1	
V _{OL}		4.5 V			0.1		0.1	V
	I _{OL} = 4 mA	3 V			0.36		0.5	
	I _{OL} = 8 mA	4.5 V			0.36		0.5	
l _l	V _I = 5.5 V or GND	0 V to 5.5 V			±0.1		±1	μA
I _{OZ}	$V_{O} = V_{CC} \text{ or GND}, \qquad V_{I} (\overline{OE}) = V_{IL} \text{ or } V_{IH}$	5.5 V			±0.25		±2.5	μA
I _{CC}	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	5.5 V			4		40	μA
Ci	$V_{I} = V_{CC}$ or GND	5 V		2	10			pF
Co	V _O = V _{CC} or GND	5 V		3.5				pF

5.6 Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	FROM (INPUT)	(INPUT) TO (OUTPUT) LOAD $T_A = 25^{\circ}C$;	MIN	MAX	UNIT	
PARAMETER		10 (001901)	CAPACITANCE	MIN TYP	MAX	IVIIIN	IVIAA	UNIT
t _{PLH}	А	Y	C ₁ = 15 pF	5.8	8.4	1	10	ns
t _{PHL}	A		0 _L = 15 pr	5.8	8.4	1	10	115
t _{PZH}	ŌĒ	Y	C _L = 15 pF	6.6	10.6	1	12.5	nc
t _{PZL}	UE	T	CL = 15 pr	6.6	10.6	1	12.5	ns
t _{PHZ}	ŌĒ	Y	C = 15 pc	5	9.7	1	11	
t _{PLZ}	OE	T	C _L = 15 pF	5	9.7	1	11	ns
t _{PLH}	٨	Y		8.3	11.9	1	13.5	
t _{PHL}	A	ř	C _L = 50 pF	8.3	11.9	1	13.5	ns
t _{PZH}	ŌĒ	Y		9.1	14.1	1	16	
t _{PZL}		ř	C _L = 50 pF	9.1	14.1	1	16	ns
t _{PHZ}	ŌĒ	Y	C = 50 pc	10.3	14	1	16	
t _{PLZ}	UE	Y	C _L = 50 pF	10.3	14	1	16	ns

5.7 Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

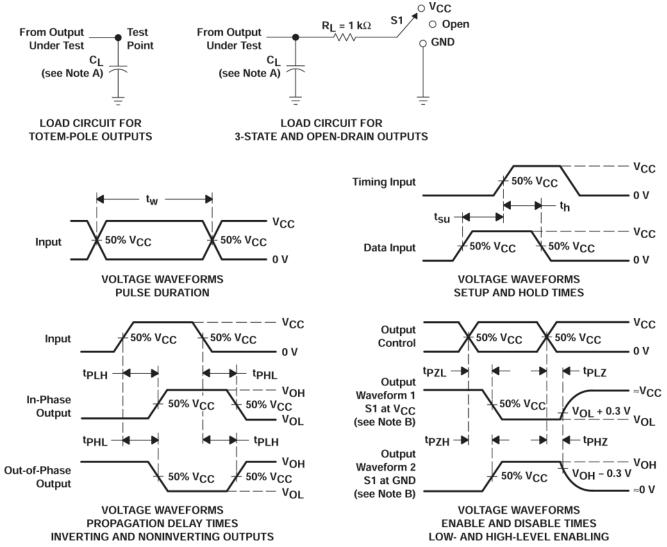
PARAMETER			LOAD	T _A = 25°	С	MIN	МАХ	UNIT	
FARAMETER	FROM (INPUT)	TO (OUTPUT)	CAPACITANCE	MIN TYP	MAX				
t _{PLH}	Α	Y	C _L = 15 pF	3.9	5.5	1	6.5	ns	
t _{PHL}	A	I	CL = 13 pr	3.9	5.5	1	6.5	115	
t _{PZH}	OE	Y	C _L = 15 pF	4.7	7.3	1	8.5		
t _{PZL}		I	$C_{L} = 15 \text{ pr}$	4.7	7.3	1	8.5	ns	
t _{PHZ}	ŌĒ	Y	C _L = 15 pF	Ę	7.2	1	8.5	20	
t _{PLZ}		T		Ę	7.2	1	8.5	ns	
t _{PLH}	Α	Y	C _L = 50 pF	5.4	7.5	1	8.5	20	
t _{PHL}		T	C _L = 50 pr	5.4	7.5	1	8.5	ns	
t _{PZH}	ŌĒ	Y	0 50 5	6.2	9.3	1	10.5	22	
t _{PZL}	UE	Ť	C _L = 50 pF	6.2	9.3	1	10.5	ns	
t _{PHZ}	ŌĒ	Y	C = 50 pF	6.7	9.2	1	10.5	20	
t _{PLZ}		Ť	C _L = 50 pF	6.7	9.2	1	10.5	ns	

5.8 Noise Characteristics

 $V_{CC} = 5 V, C_L = 50 pF, T_A = 25^{\circ}C^{(1)}$

	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.5		V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.2		V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		4.8		V
V _{IH(D)}	High-level dynamic input voltage	3.5			V
V _{IL(D)}	Low-level dynamic input voltage			1.5	V

(1) Characteristics are for surface-mount packages only.


5.9 Operating Characteristics

 $V_{CC} = 5 V, T_A = 25^{\circ}C$

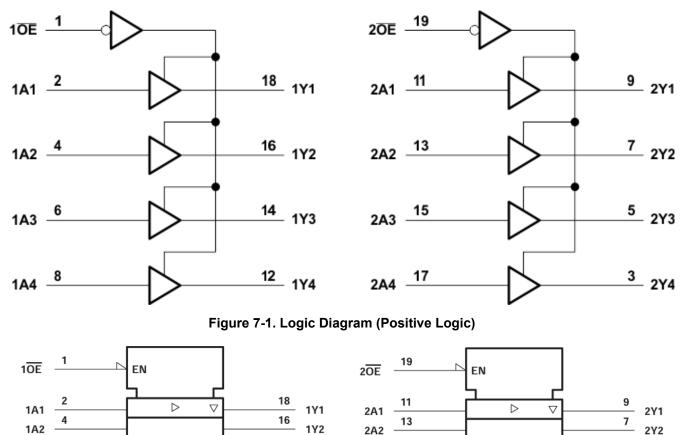
	PARAMETER	TEST CO	NDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	8.6	pF

6 Parameter Measurement Information

- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, $Z_{O} = 50 \Omega$, $t_{f} \leq 3$ ns, $t_{f} \leq 3$ ns.
- D. The outputs are measured one at a time with one input transition per measurement.

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{CC}
t _{PHZ} /t _{PZH}	GND
Open Drain	V _{CC}

7 Detailed Description


7.1 Overview

This octal buffer/driver is designed specifically to improve the performance and density of 3-state memoryaddress drivers, clock drivers, and bus-oriented receivers and transmitters.

The SN74AHC244 is organized as two 4-bit buffers/line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

For the specified high-impedance state during power up or power down, \overline{OE} must be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

7.2 Functional Block Diagram

This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

14

12

1Y3

1Y4

Figure 7-2. Logic Symbol

15

17

2A3

2A4

6

8

1A3

1A4

5

3

2Y3

2Y4

7.3 Device Functional Modes

Buffer/Driver)								
INPU	TS	Ουτρυτ γ						
ŌĒ	Α	COIPOIT						
L	Н	Н						
L	L	L						
Н	Х	Z						

Table 7-1 (Each 4-Bit

8 Device and Documentation Support

8.1 Documentation Support

8.1.1 Related Documentation

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 8-1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
SN74AHC244-Q	1 Click here	Click here	Click here	Click here	Click here	

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2023 Texas Instruments Incorporated

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
							(6)				
SN74AHC244QDWRQ1	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC244Q1	Samples
SN74AHC244QPWRG4Q1	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC244Q1	Samples
SN74AHC244QPWRQ1	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC244Q1	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

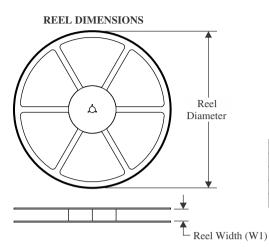
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

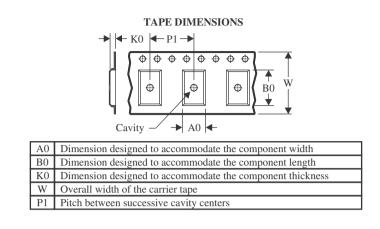
PACKAGE OPTION ADDENDUM

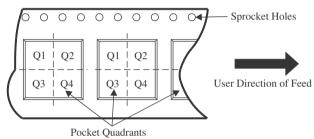
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74AHC244-Q1 :

- Catalog : SN74AHC244
- Enhanced Product : SN74AHC244-EP
- Military : SN54AHC244

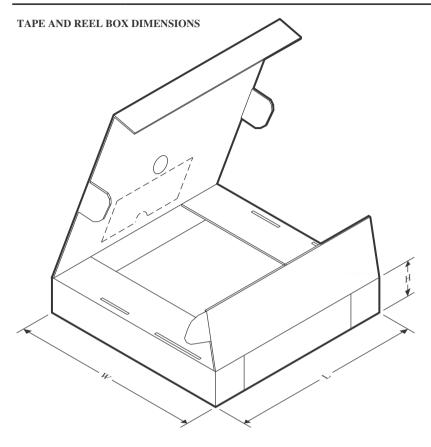

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHC244QDWRQ1	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74AHC244QPWRG4Q1	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74AHC244QPWRQ1	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

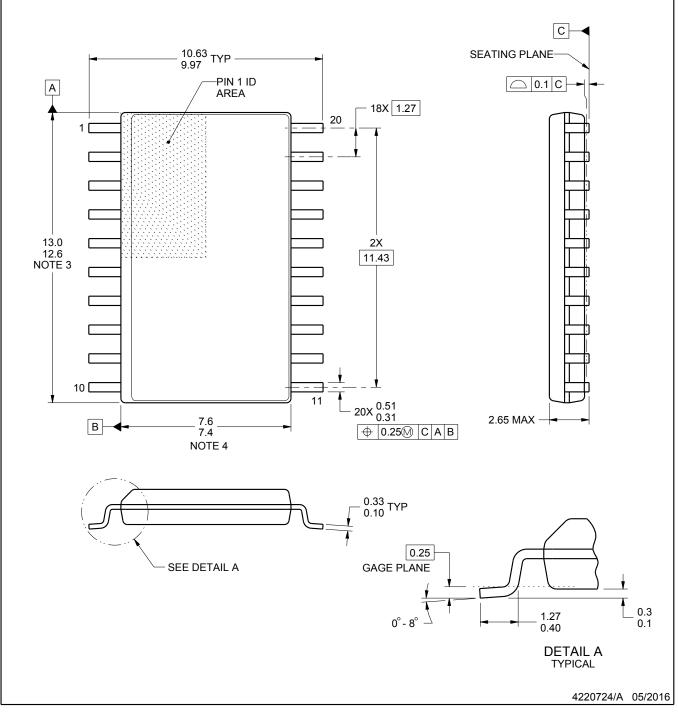
www.ti.com

PACKAGE MATERIALS INFORMATION

25-Aug-2023

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHC244QDWRQ1	SOIC	DW	20	2000	367.0	367.0	45.0
SN74AHC244QPWRG4Q1	TSSOP	PW	20	2000	356.0	356.0	35.0
SN74AHC244QPWRQ1	TSSOP	PW	20	2000	356.0	356.0	35.0


DW0020A

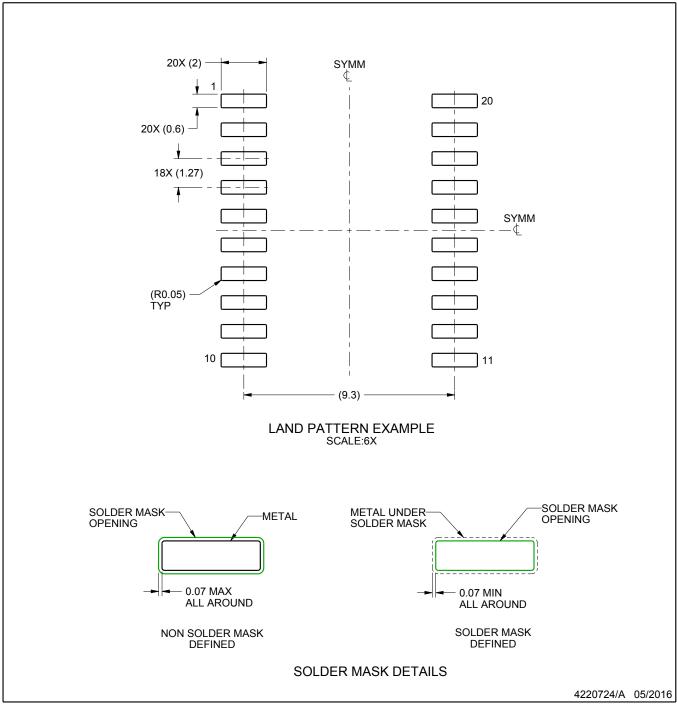
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.



DW0020A

EXAMPLE BOARD LAYOUT

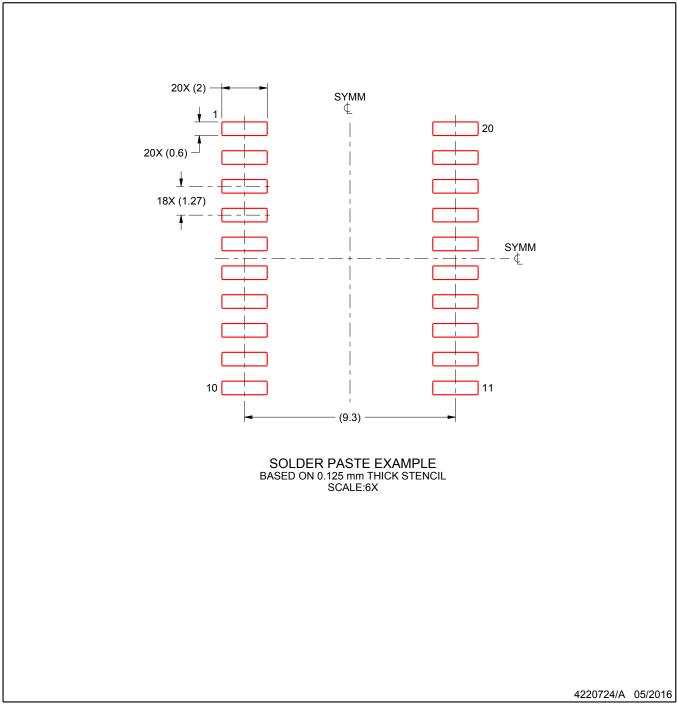
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0020A

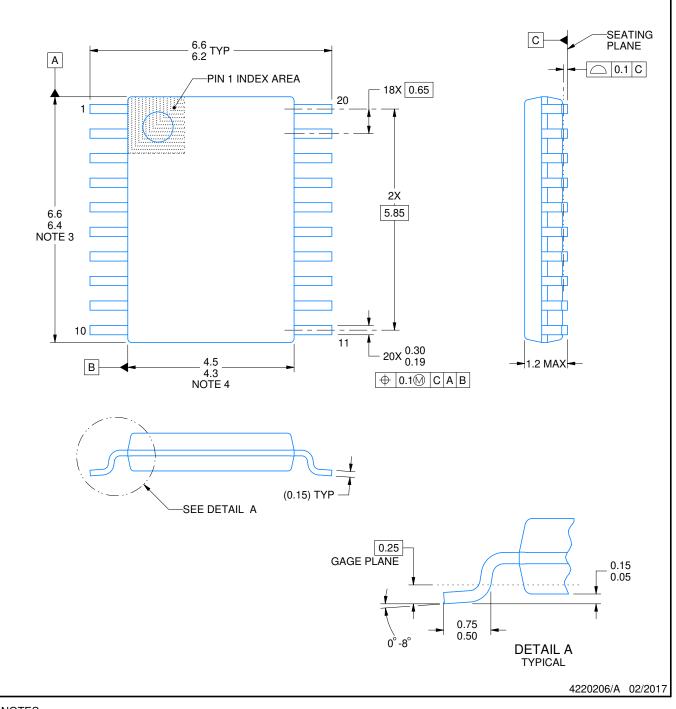
EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.


PW0020A

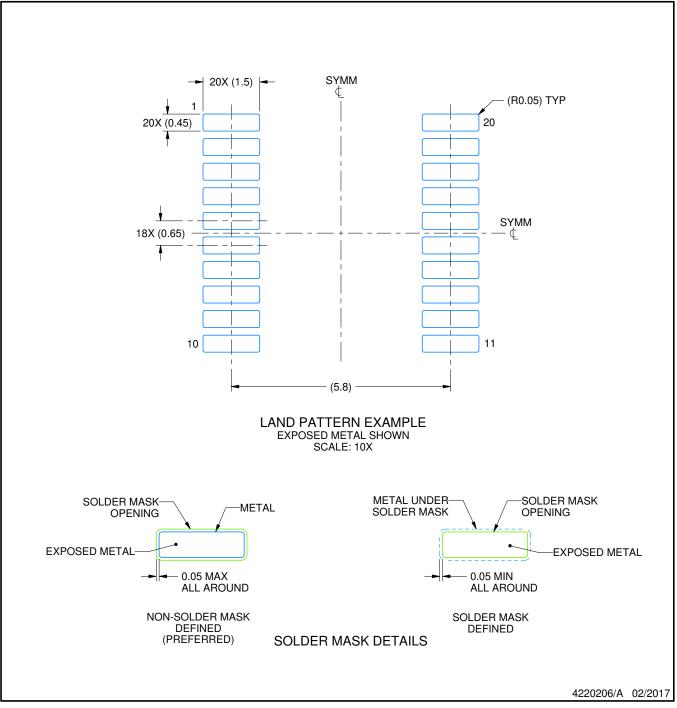
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0020A

EXAMPLE BOARD LAYOUT

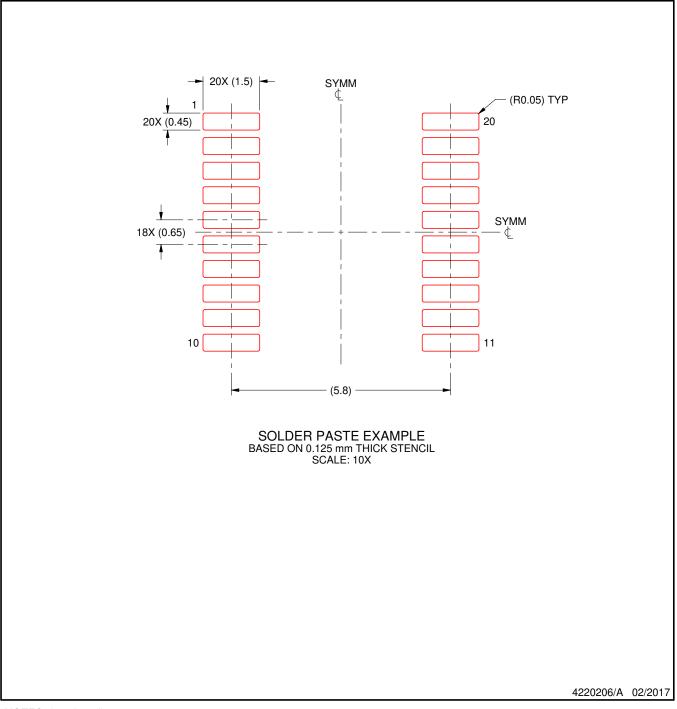
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

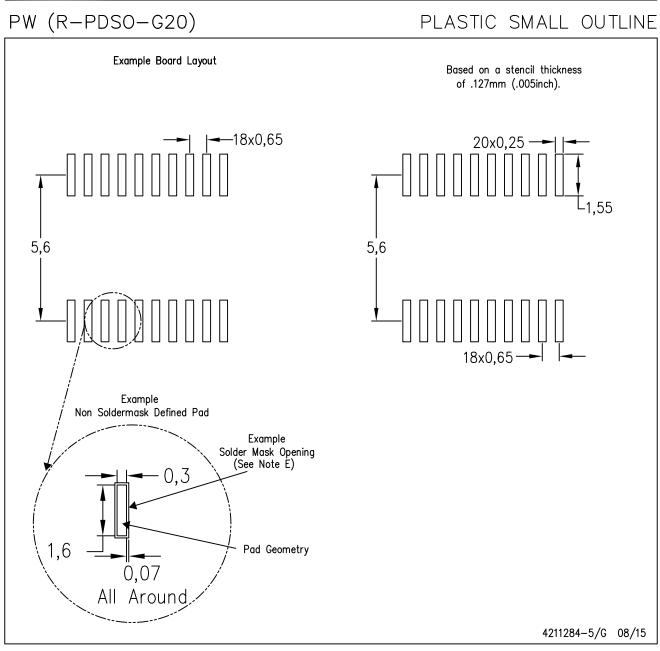


PW0020A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

LAND PATTERN DATA

NOTES: Α. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated