
ANALOG DEVICES

CMOS 80 MHz Monolithic 256 \times 24(18) Color Palette RAVI-DACs

ADV478/ADV471

GENERAL DESCRIPTION

The ADV478 (ADV®) and ADV471 are pin compatible and software compatible RAM-DACs designed specifically for Personal System/2 compatible color graphics.

The AD V478 has a 256×24 color lookup table with triple 8-bit video D/A converters. It may be configured for either 6 bits or 8 bits per color operation. The AD V471 has a 256×18 color lookup table with triple 6-bit video D/A converters.

Options on both parts include a programmable pedestal (0 or 7.5 IRE) and use of an external voltage or current reference.

ADV is a registered trademark of Analog Devices, Inc.

* Personal System/2 is a trademark of International Business Machines Corp.

Fifteen overlay registers provide for overlaying cursors, grids, menus, EGA emulation, etc. Also supported is a pixel read mask register and sync generation on all three channels.

The ADV478 and ADV471 generate RS-343A compatible video signals into a doubly terminated 75 Ω load, and RS-170 compatible video signals into a singly terminated 75 Ω load, without requiring external buffering. Differential and integral linearity errors are guaranteed to be a maximum of ±1 LSB for the ADV478 and ±1/4 LSB for the ADV471 over the full temperature range.

REV. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

$\begin{array}{l} \textbf{ADV478} \ \textbf{ADV471} - \textbf{SPECIFICATIONS} \end{array} \\ \textbf{(V_{AA}^{1} = +5 \text{ V}, \text{ SETUP} = 8/\overline{\textbf{6}} = V_{AA}, V_{REF} = +1.235 \text{ V}. \text{ } \text{R}_{SET} = 147 \Omega. \\ \textbf{All specifications } T_{MIN} \text{ to } T_{MAX}^{2} \text{ unless otherwise noted.} \end{array}$

Parameter	All Versions	Units	Test Conditions/Comments
STATIC PERFORMANCE			
Resolution (Each DAC) ³	8 (6)	Bits	
Accuracy (Each DAC) ³			
Integral Nonlinearity	±1 (1/4)	LSB max	
Differential Nonlinearity	±1 (1/4)	LSB max	Guaranteed Monotonic
Gray Scale Error	±5	% Gray Scale max	
Coding	Binary		
DIGITAL INPUTS			
Input High Voltage, V _{INH}	2	V min	
Input Low Voltage, V _{INL}	0.8	V max	
Input Current, I _{IN}	±1	µA max	$V_{IN} = 0.4 \text{ V or } 2.4 \text{ V}$
Input Capacitance, C _{IN}	7	pF max	
DIGITAL OUTPUTS			
Ou tput H igh Voltage, V _{OH}	2.4	V min	$I_{SOURCE} = 400 \ \mu A$
Output Low Voltage, V _{OL}	0.4	V max	$I_{SOURCE} = 400 \ \mu A$ $I_{SINK} = 3.2 \ m A$
Floating-State Leakage Current	50	μA max	$1_{\text{SINK}} = 5.2 \text{ m/A}$
Floating-State Output Capacitance	_ 7	pF max	
- roating-state output capacitance		primax	
ANALOG OUTPUTS			
Gray Scale Current Range		mA max	
Output Current		+ $>$ $-$	T 1 1 10 05 1
White Level Relative to Plank	17,69	mA min 7	Typically 19.05 mA
		mA]mak	
White Level Relative to Black		/m A/ mi/n	Typically 17-62 mA
	18.50	m A max	
Black Level Relative to Blank	0.95	prA min	Typically 1.44 mA
$(SETUP = V_{AA})$	1.90	mA max	
Black Level Relative to Blank	0	μA min	frypically 5 μA
(SETUP = GND)	50	$\mu A \max$	
Blank Level	6.29	mA min	Typically 7.62 mA
Sym a Laval	8.96 0	mA max	
Sync Level	50	μA min	Typically 5 μA
LSB Size ³	69.1 (279.68)	$\mu A max$	$8/\overline{6}$ = Logical 1 for ADV478
	. ,	μA typ % max	
DAC to DAC Matching	5 -1	% max V min	T ypically 2%
Output Compliance, V _{OC}		V min V max	
Autnut Impedance P	+1.5		
Output Impedance, R _{OUT}	30	kΩ typ pF max	$\mathbf{I} = 0 \mathrm{m} \mathrm{A}$
Output Capacitance, C _{OUT}	30	pr max	$I_{OUT} = 0 \text{ mA}$
OLTAGE REFERENCE			
Voltage Reference Range, V _{REF}	1.14/1.26	V min/V max	
Input Current, I _{VREF}	10	μA typ	Tested in Voltage Reference
			Configuration with $V_{REF} = 1.235 V$
POWER SUPPLY			
Supply Voltage, V _{AA}	4.75/5.25	V min/V max	80 MHz and 66 MHz Parts
	4.50/5.50	V min/V max	50 MHz and 35 MHz Parts
Supply Current, I _{AA}	220	mA max	T ypically 180 mA
Power Supply Rejection Ratio	0.5	%/% max	$f = 1 \text{ kHz}, \text{COMP} = 0.1 \mu\text{F}$
Power Dissipation	1100	mW max	Typically 900 mW, $V_{AA} = 5 V$
OYNAMIC PERFORMANCE			
	-30	dB typ	
Clock and Data Feedthrough ^{*, 3}			
Clock and Data Feedthrough ^{4, 5} Glitch Impulse ^{4, 5}	75	pV secs typ	

NOTES

 $^1\pm5\%$ for 80 MHz and 66 MHz parts; $\pm10\%$ for 50 MHz and 35 MHz parts.

²T emperature Range (T_{MIN} to T_{MAX}); 0°C to +70°C.

³Numbers in parentheses indicate ADV471 parameter value.

 4 Clock and data feedthrough is a function of the amount of overshoot and undershoot on the digital inputs. For this test, the digital inputs have a 1 k Ω resistor to

ground and are driven by 74HC logic. Glitch impulse includes clock and data feedthrough, -3 dB test bandwidth = 2 × clock rate.

 5 TTL input values are 0 to 3 volts, with input rise/fall times \leq 3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and outputs. Analog output load \leq 10 pF, D0–D7 output load \leq 50 pF. See timing notes in Figure 2.

⁶DAC to DAC crosstalk is measured by holding one DAC high while the other two are making low to high and high to low transitions.

Specifications subject to change without notice.

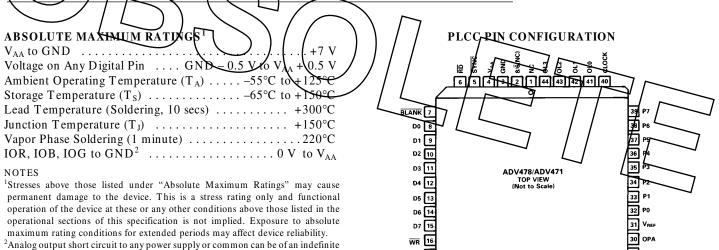
TIMING CHARACTERISTICS¹ ($V_{AA}^2 = +5 \text{ V}$, SETUP = $8/\overline{\mathbf{6}} = V_{AA}$, $V_{REF} = 1.235 \text{ V}$. $R_{SET} = 147 \Omega$. All Specifications T_{MIN} to T_{MAX}^3 .)

Parameter	KP80 Version	KP66 Version	KP50 Version	KP35 Version	Units	Conditions/Comments
f _{MAX}	80	66	50	35	MHz	Clock Rate
t_1	10	10	10	10	ns min	RS0–RS2 Setup Time
t_2	10	10	10	10	ns min	RS0–RS2 Hold Time
t ₃	5	5	5	5	ns min	RD Asserted to Data Bus Driven
t_4	40	40	40	40	ns max	RD Asserted to Data Valid
t ₅	20	20	20	20	ns max	RD Negated to Data Bus 3-State
t ₆	10	10	10	10	ns min	Write Data Setup Time
t ₇	10	10	10	10	ns min	Write Data Hold Time
t ₈	50	50	50	50	ns min	\overline{RD} , \overline{WR} Pulse Width Low
t9	$6 \times t_{12}$	$6 \times t_{12}$	$6 \times t_{12}$	$6 \times t_{12}$	ns min	$\overline{\text{RD}}, \overline{\text{WR}}$ Pulse Width High
t ₁₀	3	3	3	3	ns min	Pixel and Control Setup Time
	3	3	3	3	ns min	Pixel and Control Hold Time
	12.\$	15.3	20	28	ns min	Clock Cycle Time
t ₁₃		5	6	7	ns min	Clock Pulse Width High Time
t ₁₄		$\sqrt{5}$	6	9	ns min	Clock Pulse Width Low Time
	$ _{3b} / \sim \langle$	$30 \left(\begin{array}{c} \end{array} \right)$	30	30	ns max	Analog Output Delay
	$ \vec{s} \rightarrow \gamma$	3	3/	3	ns typ	Analog Output Rise/Fall Time
t_{17}^{4}	$L_3 \sim 1$	15.3	20	28 / 7	ns typ	Analog Output Settling Time
t ₁₈		$\int \left(\right) $			nymax	Analog Output Skew
t _{PD}	$4 \times t_{12}$	4 t_{12}	$ 4 \times \mathbf{t}_{12} $	$\left f_{4} \right _{t_{10}}$	ns min-	Pipeling Delay
Specifications su	ibject to change withou AGRAMS	it notice				
	RS0, RS1, F					
	RD,	WR			t ₉	
	READ (D0 –	D7)		·		· · · · · · · · · · · · · · · · · · ·
	WRITE (D0 –	D7) <u>[[[]]]</u>		t ₆		
		Fi	gure 1. MPU Re	ead/Write Timing	<i>;</i> , 1	
	с			\neg	<u>م</u>	\frown
			<i></i>			
	P0 – P7, OL0 - SYNC, B	LANK LILLY			-	
	IOR, IOG	, IOB				
	NOTES 1. OUTP THE 5	UT DELAY (t ₁₅) MEA 0% POINT OF FULL	SURED FROM THE 5	0% POINT OF THE R	ISING EDGE	OF CLOCK TO

- OUTPUT REMAINING WILL SCALE TRANSITION.
 SETTLING TIME (t₁₇) MEASURED FROM THE 50% POINT OF FULL SCALE TRANSITION TO THE OUTPUT REMAINING WITHIN ± 1LSB (ADV478) OR ± 1/4LSB (ADV471).
 OUTPUT RISE/FALL TIME (t₁₆) MEASURED BETWEEN THE 10% AND 90% POINTS OF FULL SCALE TRANSITION.

Figure 2. Video Input/Output Timing

RECOMMENDED OPERATING CONDITIONS


Parameter	Sym bol	Min	Тур	Max	Units
Power Supply	V _{AA}				
80 MHz, 66 MHz Parts		4.75	5.00	5.25	Volts
50 MHz, 35 MHz Parts		4.5	5.00	5.5	Volts
Ambient Operating Temperature	TA	0		+70	°C
Output Load	R _L		37.5		Ω
Voltage Reference Configuration					
Reference Voltage	V _{REF}	1.14	1.235	1.26	Volts
Current Reference Configuration					
Reference Current	I _{REF}	-3		-10	mA

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily $\frac{1}{2}$ accupulate on the hyman body and test equipment and can discharge without detection. Although the ADV478/ADV47 features proprietary ESD protection circuitry, permanent damage may occur of devices subjected to nigh energy electrostatic discharges. Therefore, proper ESD precautions/are/recommended to avoid performance degradation or loss of functionality.

COMP

duration.

WR 16		30 OPA
RS0 17		29 COM
7		Г
<u> </u>	18 19 20 21 22 23 24 25 26 27	28
	RS1 RS2 VAA VAA CAA GND GND OG IOR	RE
	S MBERS IN PARENTHESIS INDICATE PIN NAMES I =NO CONNECT	FOR THE ADV471.

ORDERING GUIDE

Model	Tem perature Range	Color Palette RAM	Speed	Package Option*
AD V471KP80 AD V471KP66 AD V471KP50 AD V471KP50 AD V471KP35	0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C	$256 \times 18 \\ 256 \times 18 \\ 256 \times 18 \\ 256 \times 18 \\ 256 \times 18 \\$	80 MHz 66 MHz 50 MHz 35 MHz	P-44A P-44A P-44A P-44A
AD V478KP80 AD V478KP66 AD V478KP50 AD V478KP35	0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C	$256 \times 24 256 \times 24 256 \times 24 256 \times 24 256 \times 24$	80 MHz 66 MHz 50 MHz 35 MHz	P-44A P-44A P-44A P-44A

*P = Plastic Leaded Chip Carrier (PLCC).

	Function							
BLANK	Composite blank control input (TTL compatible). A logic zero drives the analog outputs to the blanking level as illustrated in Tables IV and V. It is latched on the rising edge of CLOCK. When BLANK is a logical zero, the pixel and overlay inputs are ignored							
SETUP	Setup control input. Used to specify either a 0 IRE (SETUP = GND) or 7.5 IRE (SETUP = V_{AA}) blanking pedestal.							
SYNC	Composite syn on the analog of	outputs (see	Figures 3 and 4). $\overline{\mathbf{S}}$	SYNC does no	t override any otl	t switches off a 40 IRE current source her control or data input, as shown i terval. It is latched on the rising edge		
CLOCK	/mputs. It is typ	pically the pi				P7, OL0–OL3, <u>SYNC</u> , and <u>BLANK</u> ded that CLOCK be driven by a ded		
Р0-Р7	color palette R	AM is to be		lor information		which one of the 256 entries in the ed on the rising edge of CLOCK. P(
OLO-OL3	Overlay select tion, as illustra	inputs (TTL ited in Table	, compatible). The III, When accessin	se inputs speci ng the overlay	palette, the PO-P	is to be used to provide color inform 7 inputs are ignored. They are 1 d-be, connected to GND.		
IOR, IOG, IOB	Red, green, an	d due curre	nt outputs. These l	h j gh mpedanc		and capable of directly driving a		
I _{REF}	Full-scale adju	st control. N	axial vable (Figure lote that the IRE re		Figures 8 and 4	are maintained, regardless of the		
			ltage reference (Fig	gure 5), a resist	tor (R _{SET}) connec	red between this pin and GND		
	controls the m current on eac			signal. The rel	lationship betwee	n R _{SET} and the full scale output		
	current on each	h output is:	the full-scale video $R_{SET} (\Omega) =$	$= K \times 1,000 \times$	$V_{REF}(V)/I_{OUT}(m)$	n R _{SET} and the full scale output		
	current on each K is defined in When using an	h output is: the table be en external cu	the full-scale video $R_{SET}(\Omega) =$ elow, along with con-	= $K \times 1,000 \times$ rresponding R _s	$V_{REF}(V)/I_{OUT}(m)$	n R _{SET} and the full scale output		
	current on each K is defined in	h output is: the table be en external cu	the full-scale video $R_{SET}(\Omega) =$ clow, along with con- rrent reference (Fig	= $K \times 1,000 \times$ rresponding R _s	$V_{REF} (V)/I_{OUT} (m.)$ SET values for dou ationship betwee	In R_{SET} and the full scale output A) ubly terminated 75 Ω loads.		
	current on each K is defined in When using an	h output is: the table be en external cu	the full-scale video $R_{SET}(\Omega) =$ clow, along with con- rrent reference (Fig	= $K \times 1,000 \times$ rresponding R _s gure 6), the rel	$V_{REF} (V)/I_{OUT} (m.)$ SET values for dou ationship betwee	In R_{SET} and the full scale output A) ubly terminated 75 Ω loads.		
	current on each K is defined in When using an	h output is: the table be n external cu h output is: Mode	the full-scale video $R_{SET} (\Omega) =$ clow, along with con- rrent reference (Fig. Pedestal	$= K \times 1,000 \times$ rresponding R _s gure 6), the rel $T_{REF} (mA) = I_{OU}$ K	$V_{REF} (V)/I_{OUT} (m.)$ SET values for dou ationship betwee $UT (mA)/K$ $R_{SET} (\Omega)$	In R_{SET} and the full scale output A) ubly terminated 75 Ω loads.		
	current on each K is defined in When using an	h output is: the table be n external cu h output is: Mode 6-Bit	the full-scale video $R_{SET} (\Omega) =$ clow, along with con- rrent reference (Fig. Pedestal 7.5 IRE	$= K \times 1,000 \times$ rresponding R _s gure 6), the rel $I_{REF} (mA) = I_{OU}$ K 3.170	$V_{REF} (V)/I_{OUT} (m.)$ SET values for dou ationship betwee $UT (mA)/K$ $R_{SET} (\Omega)$ 147	In R_{SET} and the full scale output A) ubly terminated 75 Ω loads.		
	current on each K is defined in When using an	h output is: the table be n external cu h output is: Mode	the full-scale video $R_{SET} (\Omega) =$ clow, along with con- rrent reference (Fig. Pedestal	$= K \times 1,000 \times$ rresponding R _s gure 6), the rel $T_{REF} (mA) = I_{OU}$ K	$V_{REF} (V)/I_{OUT} (m.)$ SET values for dou ationship betwee $UT (mA)/K$ $R_{SET} (\Omega)$	In R_{SET} and the full scale output A) ubly terminated 75 Ω loads.		
	current on each K is defined in When using an	h output is: the table be n external cu h output is: Mode 6-Bit 8-Bit	the full-scale video $R_{SET} (\Omega) =$ blow, along with con- rrent reference (Fig. Pedestal 7.5 IRE 7.5 IRE 7.5 IRE	$= K \times 1,000 \times$ rresponding R _s gure 6), the rel $I_{REF} (mA) = I_{OU}$ K 3.170 3.195	$V_{REF} (V)/I_{OUT} (m.)$ set values for dou ationship betwee $UT (mA)/K$ $R_{SET} (\Omega)$ 147 147	In R_{SET} and the full scale output A) ubly terminated 75 Ω loads.		
СОМР	Compensation external current	h output is: the table be n external cu h output is: Mode 6-Bit 8-Bit 6-Bit 8-Bit 9-Bit 8-Bit 9-Bit 8-Bit	the full-scale video $R_{SET} (\Omega) =$ $R_{SET} (\Omega) =$ clow, along with contribution of the second state o	$= K \times 1,000 \times$ rresponding R _s gure 6), the rel $R_{REF} (mA) = I_{OU}$ K 3.170 3.195 3.000 3.025 rence is used (I	$V_{REF} (V)/I_{OUT} (m.)$ SET values for dou ationship betwee $UT (mA)/K$ $R_{SET} (\Omega)$ 147 147 147 147 147 147 147 15 (0)	In R_{SET} and the full scale output A) ubly terminated 75 Ω loads. In I_{REF} and the full-scale output - - n should be connected to OPA. If an		
COMP V _{REF}	 current on each K is defined in When using an current on each Compensation external current used to bypass Voltage referent (typical) referent 	h output is: the table be n external cu h output is: Mode 6-Bit 8-Bit 6-Bit 8-Bit bit reference is this pin to V nce input. If ence. If an ex acitor. A 0.1	the full-scale video $R_{SET} (\Omega) =$ $R_{SET} (\Omega) =$ flow, along with con- rrent reference (Fig- Pedestal 7.5 IRE 7.5 IRE 7.5 IRE 0 IRE 0 IRE 0 IRE ternal voltage refer is used, this pin show V_{AA} . an external voltage	$= K \times 1,000 \times$ rresponding Rs gure 6), the rel $REF (mA) = I_{00}$ K 3.170 3.195 3.000 3.025 rence is used (found be connected by the connected of the conn	$V_{REF} (V)/I_{OUT} (m.)$ SET values for dou ationship betwee $UT (mA)/K$ $R_{SET} (\Omega)$ 147 147 147 147 Figure 5), this pir- sed (Figure 5), it Figure 6), this pir-	h R _{SET} and the full scale output A) ably terminated 75 Ω loads. In I _{REF} and the full-scale output - - n should be connected to OPA. If ar µF ceramic capacitor must always		
	current on each K is defined in When using an current on each Compensation external currer used to bypass Voltage referer (typical) refere the bypass cap Figures 5 and Reference amp	h output is: the table been external cu h output is: Mode 6-Bit 8-Bit 8-Bit 9-Bit 8-Bit 9-Bit 8-Bit 9-Din. If an externation of the second section of the second second second second second second se	the full-scale video $R_{SET} (\Omega) =$ $R_{SET} (\Omega) =$ flow, along with con- rrent reference (Fig- Pedestal 7.5 IRE 7.5 IRE 7.5 IRE 0 IRE 0 IRE 0 IRE 0 IRE s used, this pin shown V_{AA} . an external voltage tternal current reference μ F ceramic capaci	$= K \times 1,000 \times$ rresponding Rs gure 6), the rel $R_{EF} (mA) = I_{OU}$ K 3.170 3.195 3.000 3.025 rence is used (1) ould be connection reference is used (1) tor must alway mage reference is	$V_{REF} (V)/I_{OUT} (m.)$ SET values for dou ationship betwee $UT (mA)/K$ $R_{SET} (\Omega)$ 147 147 147 147 147 147 147 sed (Figure 5), this pinted to I _{REF} . A 0.11 Sed (Figure 5), this pinted to decompose and the set of the s	h R _{SET} and the full scale output A) ably terminated 75 Ω loads. In I _{REF} and the full-scale output - n should be connected to OPA. If ar µF ceramic capacitor must always b must supply this input with a 1.2 V n should be left floating, except for ouple this input to V _{AA} as shown in), this pin must be connected to		
V _{REF}	Compensation external current used to bypass Voltage referer (typical) referee the bypass cap Figures 5 and Reference amp COMP. When	h output is: the table been external cu h output is: Mode 6-Bit 8-Bit 6-Bit 8-Bit 6-Bit 8-Bit 9-Bit 8-Bit 1 pin. If an exp this pin to V acce input. If ence. If an exp acitor. A 0.1 6. bifier output using an ex	the full-scale video $R_{SET} (\Omega) =$ $R_{SET} (\Omega) =$ flow, along with corrent reference (Fig. Pedestal 7.5 IRE 7.5 IRE 7.5 IRE 0 IRE 0 IRE 0 IRE 0 IRE ternal voltage reference is used, this pin show V_{AA} . an external voltage ternal current reference μ F ceramic capaci . If an external voltage	$= K \times 1,000 \times$ rresponding R _s gure 6), the rel $R_{REF} (mA) = I_{OU}$ K 3.170 3.195 3.000 3.025 rence is used (I) ould be connect reference is used (I) tor must alway rage reference is ence (Figure 6)	$V_{REF} (V)/I_{OUT} (m.)$ SET values for dou ationship betwee $UT (mA)/K$ $R_{SET} (\Omega)$ 147 147 147 147 147 147 147 147 sted to I _{REF} . A 0.11 sted to I _{REF} . A 0.11 sted to I _{REF} . A 0.11 sted to decount of the pinet of the pine	In R_{SET} and the full scale output A) ably terminated 75 Ω loads. In I_{REF} and the full-scale output 		
V _{REF}	Compensation external current used to bypass Voltage referent (typical) referent the bypass cap Figures 5 and Reference amp COMP. When Analog power.	h output is: the table be n external cu h output is: Mode 6-Bit 8-Bit 6-Bit 8-Bit 6-Bit 8-Bit 1 pin. If an ex this pin to Vance input. If ence. If an ex acitor. A 0.1 6. blifier output using an ex All V _{AA} pins	the full-scale video $R_{SET} (\Omega) =$ $R_{SET} (\Omega) =$ flow, along with corrent reference (Fig. Pedestal 7.5 IRE 7.5 IRE 7.5 IRE 0 IRE 0 IRE 0 IRE ternal voltage references is used, this pin show V_{AA} . an external voltage ternal current reference μ F ceramic capaci . If an external voltage ternal current references Γ	$= K \times 1,000 \times$ rresponding R _s gure 6), the rel $R_{REF} (mA) = I_{OU}$ K 3.170 3.195 3.000 3.025 rence is used (1) ould be connect reference is used (1) tor must alway cage reference is ence (Figure 6) d to the Analo	$V_{REF} (V)/I_{OUT} (m.)$ SET values for dou ationship betwee UT (mA)/K $R_{SET} (\Omega)$ 147 147 147 147 147 147 147 Sed (Figure 5), this pir- ted to I _{REF} . A 0.1 Sed (Figure 5), its pir- sed (Figure 5), its pir- sed (Figure 5), its pir- sed (Figure 5), this pir- sed (Figure 5), its p	In R_{SET} and the full scale output A) ably terminated 75 Ω loads. In I_{REF} and the full-scale output 		

PIN FUNCTION DESCRIPTION

PIN FUNCTION DESCRIPTION (Continued)

Pin Mnemonic	Function						
RD	Read control input (TTL compatible). To read data from the device, \overline{RD} must be a logical zero. RS0–RS2 are latched on the falling edge of \overline{RD} during MPU read operations.						
RS0, RS1, RS2	Register select inputs (TTL compatible). RS0–RS2 specify the type of read or write operation being performed as illustrated in Tables I and II.						
D0-D7	Data bus (TTL compatible). Data is transferred into and out of the device over this 8-bit bidirectional data bus. D0 is the least significant bit.						
8/6	8-bit/6-bit select input (TTL compatible). This control input specifies whether the MPU is reading and writing 8- bits (logical one) or 6-bits (logical zero) of color information each cycle. For 8-bit operation, D7 is the most sig- nificant data bit during color read/write cycles. For 6-bit operation, D5 is the most significant data bit during color read/write cycles (D6 and D7 are ignored during color write cycles and are logical zero during color read cycles). This control input is implemented only on the ADV478.						
of the waveform. porch. At 0 IRE ture tube, resultin Color Video (RG This usually refer mary colors of re within the usual s would be require Composite SYN The portion of th the scanning proc Composite Vide The video signal SYNC signal. Gray Scale The discrete leve	The most basic method of sweeping a CRT one line at a time to generate and display images. Usually referred to as the front porch or back units, it is the level which with shut off the pictor in the blackest possible picture. (B) The most basic method of sweeping a CRT one line at a time to generate and display images. Reference Black Level The maximum negative polarity amplitude of the video signal. Reference White Level The maximum positive polarity amplitude of the video signal. Reference White Level The maximum positive polarity amplitude of the video signal. Reference White Level The maximum positive polarity amplitude of the video signal. Setups The difference between the reference black level and the blank ing level. SYNC Level The peak level of the composite SYNC signal. Video Signal with or without setup, plus the composite levels between reference white and reference black. Also referred to as the picture signal, this is the portion which may be visually observed.						
reference white le	evels. An 8-bit DAC contains 256 different lev- DAC contains 64.						

CIRCUIT DESCRIPTION MPU Interface

As illustrated in the functional block diagram, the ADV478 and ADV471 support a standard MPU bus interface, allowing the MPU direct access to the color palette RAM and overlay color registers.

The RS0–RS2 select inputs specify whether the MPU is accessing the address register, color palette RAM, overlay registers or read mask register, as shown in Table I. The 8-bit address register is used to address the color palette RAM and overlay registers, eliminating the requirement for external address multiplexers.

To write color data, the MPU writes to the address register (selecting RAM or overlay write mode) with the address of the color palette RAM location or overlay register to be modified. The MPD performs three successive write cycles (8 or 6 bits each of red, green and blue), using RS0–RS2 to select either the color palette RAM or overlay registers. During the blue write cycle, the three bytes of color information are concatenated into a 24-bit word (18 bit word for the ADV471) and written to the location specified by the address register. The ad dress register then increments to the next location which the MPU may modify by simply writing another sequence of red, green and blue data.

Table I. Control Input Truth Table

RS2	RS1	RS0	Addressed by MPU
0	0	0	Address Register (RAM Write Mode)
0	1	1	Address Register (RAM Read Mode)
0	0	1	Color Palette RAM
0	1	0	Pixel Read Mask Register
1	0	0	Address Register (Overlay Write Mode)
1	1	1	Address Register (Overlay Read Mode)
1	0	1	Overlay Registers
1	1	0	Reserved

To read color data, the MPU loads the address register (selecting RAM or overlay read mode) with the address of the color palette RAM location or overlay register to be read. The MPU performs three successive read cycles (8 or 6 bits each of red, green and blue), using RS0–RS2 to select either the color palette RAM or overlay registers. Following the blue read cycle, the address register increments to the next location which the MPU may read by simply reading another sequence of red, green and blue data.

When accessing the color palette RAM, the address register resets to 00H following a blue read or write cycle to RAM location FFH. When accessing the overlay color registers, the address register increments following a blue read or write cycle. However, while accessing the overlay color registers, the four most significant bits of the address register (ADDR4-7) are ignored.

The MPU interface operates asynchronously to the pixel clock. Data transfers between the color palette RAM/overlay registers and the color registers (R, G and B in the block diagram) are synchronized by internal logic and occur in the period between MPU accesses. As only one pixel clock cycle is required to complete the transfer, the color palette RAM and overlay registers may be accessed at any time with no noticeable disturbance on the display screep.

To keep track of the red, green and flue read/write eycles, the address register has two additional bits (ADDRa, ADDRb) that count module three, as shown in Table/II. They are reset to zero when the MPU writes to the address register and are not reset to zero when the MPU reads the address register. The MPU does not have access to these bits. The other eight bits of the address register, incremented following a blue read or write cycle (ADDR0–7), are accessible to the MPU and are used to address color palette RAM locations and overlay registers, as shown in Table II. ADDR0 is the LSB when the MPU is accessing the RAM or overlay registers. The MPU may read the address register at any time without modifying its contents or the existing read/write mode.

Figure 1 illustrates the MPU read/write timing.

	Value	RS2	RS1	RS0	Addressed By MPU
ADDRa,b (Counts Modulo 3)	00				Red Value
	01				Green Value
	10				Blue Value
ADDR0-7 (Counts Binary)	00H-FFH	0	0	1	Color Palette RAM
· · · · · · · · · · · · · · · · · · ·	XXXX 0000	1	0	1	Reserved
	XXXX 0001	1	0	1	Overlay Color 1
	XXXX 0010	1	0	1	Overlay Color 2
	•	•	•	•	•
	•	•	•	•	•
	XXXX 1111	1	0	1	Overlay Color 15

Table II. Address Register (ADDR) Operation

ADV478 Data Bus Interface

On the ADV478, the $8/\overline{6}$ control input is used to specify whether the MPU is reading and writing 8 bits ($8/\overline{6}$ = logical one) or 6 bits ($8/\overline{6}$ = logical zero) of color information each cycle.

For 8-bit operation, Do is the LSB and D7 is the MSB of color data.

For 6-bit operation (and also when using the ADV471), color data is contained on the lower six bits of the data bus, with D0 being the LSB and D5 the MSB of color data. When writing color data, D6 and D7 are ignored. During color read cycles, D6 and D7 will be a logical zero.

ADV471 Data Bus Interface

Color data is contained on the lower six bits of the data bus, with D0 being the LSB and D5 the MSB of color data. When writing color data, D6 and D7 are ignored. During color read cycles, D6 and D7 will be a logical zero.

1,000

26.67

Frame Buffer Interface

The P0–P7 and OL0–OL3 inputs are used to address the color palette RAM and overlay registers, as shown in Table III.

Table III. Pixel and Overlay Control Truth Table (P	ixel Read
Mask Register = FFH)	

OL0-OL3	P0-P7	Addressed by Frame Buffer
0H	00H	Color Palette RAM Location 00H
0H	01H	Color Palette RAM Location 01H
•	•	•
•	•	•
0H	FFH	Color Palette RAM Location FFH
1H	XXH	Overlay Color 1
2H	XXH	Overlay Color 2
•	•	•
•	•	•
FH	XXH	Overlay Color 15

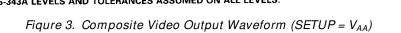
 9.05
 0.340

 9.05
 0.340

 7.5
 IRE

 0.286
 0.286

 40
 IRE


 0.00
 0.000

 NOTES

 1. CONNECTED WITH A 75Ω DOUBLY TERMINATED LOAD, SETUP=V_{AA}.

 2. EXTERNAL VOLTAGE OR CURRENT REFERENCE ADJUSTED FOR 26.67mA FULL-SCALE OUTPUT.

 3. RS-343A LEVELS AND TOLERANCES ASSUMED ON ALL LEVELS.

Description	$I_{OUT} (mA)^1$	SYNC	BLANK	DAC Input Data
WHITE LEVEL	26.67	1	1	FFH
DATA	data + 9.05	1	1	data
DATA-SYNC	data + 1.44	0	1	data
BLACK LEVEL	9.05	1	1	00H
BLACK-SYNC	1.44	0	1	00H
BLANK LEVEL	7.62	1	0	xxH
SYNC LEVEL	0	0	0	xxH

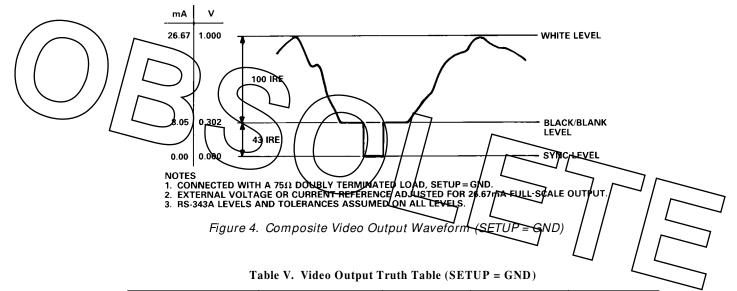
Table IV. Video Output Truth Table (SETUP= V_{AA})

NOTES

¹T ypical with full-scale IOG = 26.67 mA, SETUP = V_{AA} .

External voltage or current reference adjusted for 26.67 mA full-scale output.

The contents of the pixel read mask register, which may be accessed by the MPU at any time, are bit-wise logically ANDed with the P0–P7 inputs. Bit D0 of the pixel read mask register corresponds to pixel input P0. The addressed location provides 24 bits (18 bits for the ADV471) of color information to the three D/A converters.


For additional information on Pixel Mask Register, see application note "Animation Using the Pixel Read Mask Register of the ADV47X Series of Video RAM-DACs" (Publication Number E1316-15-10/89).

The $\overline{\text{SYNC}}$ and $\overline{\text{BLANK}}$ inputs, also latched on the rising edge of CLOCK to maintain synchronization with the color data, add

appropriately weighted currents to the analog outputs, producing the specific output levels required for video applications, as illustrated in Figures 3 and 4. Tables IV and V detail how the SYNC and BLANK inputs modify the output levels.

The SETUP input is used to specify whether a 0 IRE (SETUP = GND) or 7.5 IRE (SETUP = V_{AA}) blanking pedestal is to be used.

The analog outputs of the ADV478 and ADV471 are capable of directly driving a 37.5 Ω load, such as a doubly terminated 75 Ω coaxial cable.

Description	$I_{OUT} (mA)^l$	SYNC	BLANK	DAC Input Data
WHITE LEVEL	26.67	1	1	FFH
DATA	data+8.05	1	1	data
DATA-SYNC	data	0	1	data
BLACK LEVEL	8.05	1	1	00H
BLACK-SYNC	0	0	1	00H
BLANK LEVEL	8.05	1	0	xxH
SYNC LEVEL	0	0	0	xxH

NOTE

¹Typical with full-scale IOG= 26.67 mA, SETUP = GND.

External voltage or current reference adjusted for 26.67 mA full-scale output.

PC BOARD LAYOUT CONSIDERATIONS

PC Board Considerations

The layout should be optimized for lowest noise on the ADV478/ ADV471 power and ground lines by shielding the digital inputs and providing good decoupling. The lead length between groups of V_{AA} and GND pins should by minimized so as to minimize inductive ringing.

Ground Planes

The ground plane should encompass all ADV478/ADV471 ground pins, current/voltage reference circuitry, power supply bypass circuitry for the ADV478/ADV471, the analog output traces and all the digital signal traces leading up to the ADV478/ADV471.

Power Planes

The ADV478/ADV471 and any associated analog circuitry should have its own power plane, referred to as the analog power plane. This power plane should be connected to the regular PCB power plane (V_{CC}) at a single point through a ferrite bead, as illustrated in Figures 5 and 6. This bead should be located within three inches of the ADV478/ADV471.

The PCB power plane should provide power to all digital logic on the PC board, and the analog power plane should provide power to all AD V478/AD V471 power pins and current/voltage reference circuitry.

Plane-to-plane noise coupling can be reduced by ensuring that portions of the regular PCB power and ground planes do not overlay portions of the analog power plane, unless they can be arranged such that the plane-to-plane noise is common mode.

Supply Decoupling

For optimum performance, bypass capacitors should be installed using the shortest leads possible, consistent with reliable operation, to reduce the lead inductance.

Best performance is obtained with a 0.1 μ F ceramic capacitor decoupling each of the two groups of V_{AA} pins to GND. These capacitors should be placed as close as possible to the device.

It is important to note that while the AD V478 and AD V471 contain circuitry to reject power supply noise, this rejection decreases with frequency. If a high frequency switching power supply is used, the designer should pay close attention to reducing power supply noise and consider using a three terminal voltage regulator for supplying power to the analog power plane.

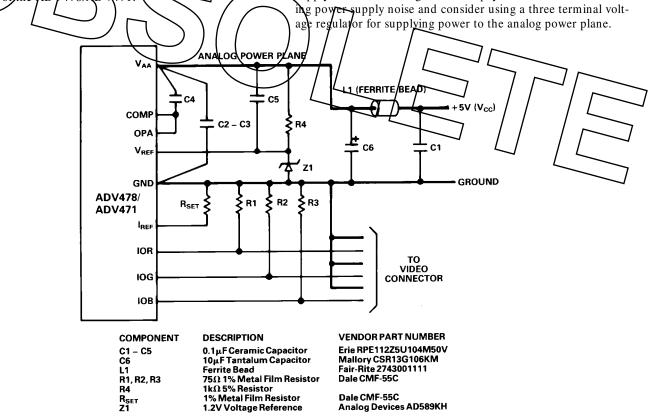


Figure 5. Typical Connection Diagram and Component List (External Voltage Reference)

Digital Signal Interconnect

Analog Signal Interconnect

The digital inputs to the ADV478/ADV471 should be isolated as much as possible from the analog outputs and other analog circuitry. Also, these input signals should not overlay the analog power plane.

Due to the high clock rates involved, long clock lines to the ADV478/ADV471 should be avoided to reduce noise pickup.

Any active termination resistors for the digital inputs should be connected to the regular PCB power plane (V_{CC}), and not the analog power plane.

The ADV478/ADV471 should be located as close as possible to the output connectors to minimize noise pickup and reflections due to impedance mismatch.

The video output signals should overlay the ground plane, and not the analog power plane, to maximize the high frequency power supply rejection.

For maximum performance, the analog outputs should each have a 75 Ω load resistor connected to GND. The connection between the current output and GND should be as close as possible to the ADV478/ADV471 to minimize reflections.

NOTE: Additional information on PC Board layout can be obtained in an application note entitled "Design and Layout of a Video Graphics System for Reduced EMI" from Analog Devices (Publication Note E1309–15–10/89).

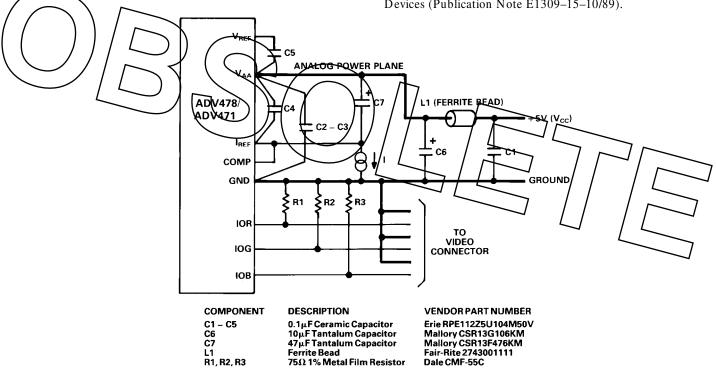
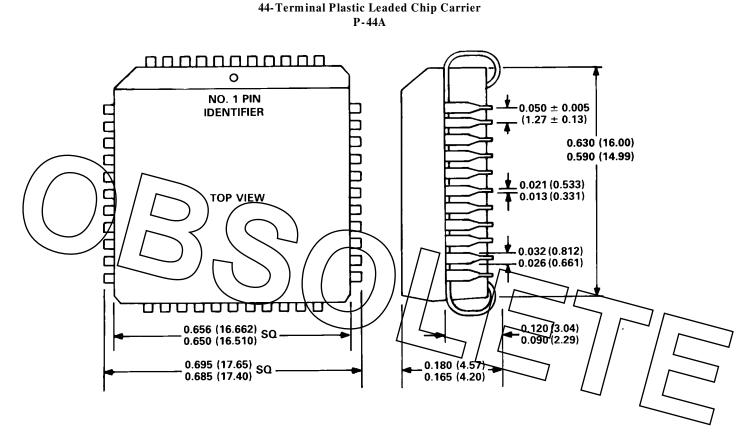


Figure 6. Typical Connection Diagram and Component List (External Current Reference)

APPLICATION INFORMATION EXTERNAL VOLTAGE VS. CURRENT REFERENCE

The AD V478/AD V471 is designed to have excellent performance using either an external voltage or current reference. The voltage reference design (Figure 5) has the advantages of temperature compensation, simplicity, lower cost and provides excellent power supply rejection. The current reference design (Figure 6) requires more components to provide adequate power supply rejection and temperature compensation (two transistors, three resistors and additional capacitors).


RS-170 Video Generation

For generation of RS-170 compatible video, it is recommended that the DAC outputs be connected to a singly terminated 75 Ω load. If the ADV478/ADV471 is not driving a large capacitive load, there will be negligible difference in video quality between doubly terminated 75 Ω and singly terminated 75 Ω loads.

If driving a large capacitive load (load RC> $1/(2 \pi f_C)$), it is recommended that an output buffer (such as an AD848 or AD9617 with an unloaded gain>2) be used to drive a doubly terminated 75 Ω load.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

