

3 ch DC/DC for TFT LCD

No. EA-368-210514

OUTLINE

The R1294L is the optimized DC/DC converter IC for TFT LCD displays. R1294L contains one PWM stepup DC/DC converter controller and two diode charge-pump controllers. The charge-pumps can control a boost output and a negative output and have the output voltage regulation function with external resistors. The poweron sequence can be made with setting the delay time with external capacitors for each charge-pump channel.

FEATURES

• Input Voltage Range (Maximum Rating) ·············· R1294L101A: 2.0 V to 5.5 V (6.5 V)

·············· R1294L102A: 2.5 V to 5.5 V (6.5 V)

- ·············· R1294L103A: 3.3 V to 5.5 V (6.5 V)
- Temperature Coefficient of VFB (∆VFB/∆T) ··········· Typ. ±150 ppm/°C (−40°C ≤ Ta ≤ 95°C)
- Temperature Coefficient of VREF (∆VREF/∆T)········ Typ. 150 ppm/°C
- Temperature Coefficient of CPPFB (∆VPFB/∆T)······ Typ. 150 ppm/°C (−40°C ≤ Ta ≤ 95°C, CPVCC = 9 V) [Step-up DC/DC Controller]
	- Built-in 2 A Nch-switch (R_{ON} = 150 m Ω Typ.)
	- Overcurrent Protection
	- Adjustable V_{OUT} up to 20 V with external resistors
	- Adjustable Phase compensation with external components
	- Maxduty adjustable with external resistors for DTC pin
	- Soft-start time adjustable with external capacitor for SS pin
	- Oscillator Frequency: Adjustable frequency with resistors (210 kHz to 1400 kHz)

[Charge-pump]

- Adjustable output voltage with external resistors
- Sequence function: Charge-pump turns on after the main step-up converter voltage outputs. The positive charge-pump and the negative charge-pump turn-on sequence control is adjustable by setting delay time for each channel

• Oscillator Frequency: 1/4 of the main step-up DC/DC converter oscillator frequency

[Controller]

- Under Voltage Lock-Out (UVLO: selectable detector threshold from 1.8 V/2.2 V/2.8 V)
- Reference Voltage (VREF: Typ.1.2 V)
- Short Protection with timer latch function (adjustable delay time with external capacitor)
- Shutdown all the outputs if at least one of three outputs is shorted to the GND.
- Stand-by function by CE pin
- Package··· Thin 24-pin package QFN0404-24B

No. EA-368-210514

APPLICATIONS

- Power source for hand-held equipment
- Power source for LCD and CCD

SELECTION GUIDE

The UVLO threshold voltage is user-selectable.

x: Specify the UVLO threshold voltage

1: 1.8 V 2: 2.2 V 3: 2.8 V

No. EA-368-210514

BLOCK DIAGRAM

No. EA-368-210514

PIN DESCRIPTIONS

<TOP VIEW>

R1294L(QFN0404-24B) Pin Configuration

¹∗ The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

No. EA-368-210514

ABSOLUTE MAXMUM RATINGS

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

(1) Refer to *POWER DISSIPATION* in the APPENDIX for detailed information.

No. EA-368-210514

RECOMMENDED OPERATING CONDITIONS

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

No. EA-368-210514

ELECTRICAL CHARACTERISTICS

V_{IN} is set as shown below for every version, unless otherwise noted.

R1294L101A: V_{IN} = 2.5 V R1294L102A: V_{IN} = 2.5 V

R1294L103A: V_{IN} = 3.5 V

The specifications surrounded by are guaranteed by design engineering at −40°C ≤ Ta ≤ 95°C.

No. EA-368-210514

 V_{IN} is set as shown below for every version, unless otherwise noted.

R1294L101A: V_{IN} = 2.5 V R1294L102A: V_{IN} = 2.5 V

R1294L103A: V_{IN} = 3.5 V

The specifications surrounded by are guaranteed by design engineering at −40°C ≤ Ta ≤ 95°C

No. EA-368-210514

 V_{IN} is set as shown below for every version, unless otherwise noted.

R1294L101A: V_{IN} = 2.5 V

R1294L102A: V_{IN} = 2.5 V

R1294L103A: V_{IN} = 3.5 V

The specifications surrounded by are guaranteed by design engineering at −40°C ≤ Ta ≤ 95°C

No. EA-368-210514

THEORY OF OPERATION

Overcurrent Protection

R1294L monitors the Nch-swich current of the step-up DCDC converter and limits the current. If Nch-switch current reaches the current limit, the R1294L immediately turns off Nch-switch. Nch-switch turns on every internal cycle, and the R1294L monitors Nch-switch current and turns off Nch-switch if Nch-switch current reaches the current limit again. By repeating this operation, the R1294L protects itself from the overcurrent.

Under Voltage Lock Out (UVLO)

If V_{IN} pin voltage becomes equal to or lower than UVLO detector threshold, the R1294L immediately disables all the switching outputs (Lx , CPP, and CPN) as well as discharges the external capacitors on DTC pin and SS pin down to 0 V immediately, and the system will be reset.

Operation and Output Current of Step-up DC/DC Converter

No. EA-368-210514

In PWM step-up DC/DC converter, there are two modes; the discontinuous mode and the continuous mode. These two modes depend upon the continuous characteristic of the inductor current.

While PWM step-up DC/DC converter is turned on, the voltage into the inductance L will be V_{IN} , and the additional current (i1) can be calculated by the next formula.

 Δ i1 = V_{IN} × ton / L

In the circuit of the step-up DC/DC converter, during the off time of the switiching, the power is supplied. In this case, the decrease of input current (i2) can be calculated by the next formula:

$$
\Delta i2 = (V_{\text{OUT}} - V_{\text{IN}}) \times \text{Tf} / L
$$

In the PWM switching method, the current of inductor becomes continuous when it is Tf = toff. The operating of DC/DC converter becomes continuous mode. In the continuous mode, the variance of the ratio of current is equal (∆i1 = ∆i2), therefore the DUTY in the continuous mode is calculated by the next formula.

duty (
$$
\%
$$
) = ton / (ton + toff) = (V_{OUT} - V_{IN}) / V_{OUT}

If the input power and the output power are equal, the mode becomes continuous when the I_{OUT} value is larger than the next formula.

 $V_{IN}^2 \times \text{ton}$ / (2 \times L \times V_{OUT})

The average of the inductor current when Tf = toff is calculated by the next formula.

i1 (Ave.) = $V_{IN} \times$ ton / (2 \times L)

The peak current (ILxmax) of the inductor in the continuous mode can be calculated by the next formula:

ILxmax = $I_{\text{OUT}} \times V_{\text{OUT}} / V_{\text{IN}} + V_{\text{IN}} \times \text{ton} / (2 \times L)$ ILxmax = $I_{\text{OUT}} \times V_{\text{OUT}} / V_{\text{IN}} + V_{\text{IN}} \times T \times (V_{\text{OUT}} - V_{\text{IN}}) / (2 \times L \times V_{\text{OUT}})$

As stated above, the value of the peak current becomes larger than the I_{OUT} value, therefore note that the ILxmax to determine the I/O condition and the components around the I/O.

The actual maximum output current is 50 to 80% of the above-mentioned. Especially, in case that the IL is large, or V_{IN} is low, the loss of V_{IN} will be the amount of the ON resistance of the switch. As for the V_{OUT} , it is necessary to consider the V_F of the diode (approximately 0.3 V).

Note: The above-mentioned explanation is based on the calculations of the ideal case. The external components or the loss of L_x switching are not included.

R1294L

No. EA-368-210514

TIMING CHART

Overall Sequence

Overall Sequence Timing Chart

The timing chart above describes from the power on to the Vout1, Vout2, and Vout3 turn on and until they are stable.

By releasing from the standby mode, Vout1 begins the soft-start, and the output voltage rises gradually. After preset soft-start time passes, and the V_{OUT1} reaches the preset output voltage, the charge to capacitors set to CPPDLY pin and CPNDLY pin will start. CPPDLY pin and CPNDLY pin voltage reach respectively to the CPPDLY detector threshold (V_{PDLY}) and CPNDLY detector threshold (V_{NDLY}), then the soft-start of the chargepump will begin. The delay time for soft-start of charge pump (tp_{DLY} , tp_{DLY}) can be set respectively.

When each delay time has passed, the soft-start of the charge-pump begins. V_{OUT2} and V_{OUT3} gradually turn on, and when the soft-start time ends, Voutz and Vouts reach the preset output voltage.

No. EA-368-210514

VOUT1 Soft-start Operation

VOUT1 Soft-start Timing Chart

The timing chart above describes from the CE signal turns on until the soft-start of V_{OUT1} ends.

(STEP1)

SS voltage gradually increases with the internal IC's constant current and the external capacitor. During the soft-start time, the amplifier's reference input to the OP AMP becomes an equal voltage as SS, and it gradually increases. Since V_{OUT} reaches to the input voltage just after the power on, the VFB voltage rises at the specific voltage determined by the resistance ratio of the input voltage and the feedback part. However, the switching does not begin since AMPOUT is "L".

(STEP2)

When the SS becomes the specified voltage determined with the resistance ratio of the input voltage and the feedback part, the switching begins. In this case, the amplifier reference rises as well as SS, therefore Vout rises to balance the amplifier reference and VFB. The DUTY in this case is determined by the three inputs PWM comparator, among the AMPOUT and DTC, the lowest voltage is selected.

(STEP3)

When the SS becomes 1 V, the soft-start ends. After that, the amplifier reference becomes the constant voltage (= 1 V), and the operation changes to the normal switching. At this time, the voltage of the AMPOUT becomes constant. The AMPOUT value is determined by the I/O voltage and the output current.

No. EA-368-210514

During the soft-start period, the soft-start time needs to be set shorter than the timer latch delay time due to the charging of DELAY pin. When the preset soft-start time finishes, the charging of DELAY pin stops and discharges to the GND.

SS Pin

No. EA-368-210514

APPLICATION INFORMATION

TYPICAL APPLICATION

R1294L10xA Typical Application 1

No. EA-368-210514

Recommended External Components

No. EA-368-210514

Precautions for Selecting External Components

How to Set the Step-up Converter Output Voltage

 V_{OUT1} of the step-up converter controls the voltage of V_{FB} pin, which should be $V_{FB} = 1.0$ V. It is possible to set V_{OUT1} voltage according to the following formula of R1 and R2 (refer to the *Typical Application*). V_{OUT1} voltage should be equal to or lower than 20 V. R1 + R2 should be equal to or lower than 500 kΩ.

 $V_{\text{OUT1}} = V_{\text{FB}} \times (R1 + R2) / R2$

How to Set the Step-up Charge-pump Output Voltage

Voutz of the positive charge pump controls the voltage of CPPFB pin, which should be VPFB = 1.5 V. It is possible to set V_{OUT2} voltage according to the following formula of R3 and R4 (refer to the *Typical Application*). R3 + R4 should be equal to or less than 500 k Ω .

 $V_{OUT2} = V_{PER} × (R3 + R4) / R4$

In the case of *Typical Application 1*, the maximum output voltage can be described as the following formula.

VOUT2 (Max.) = CPVCC × 2 - V^F × 2 ······················ (V^F is the forward voltage for the diodes D2-D3)

Set C15, D6 and D7 of diodes, and C16 (1µF) (refer to the *Typical Application 2*) if the output voltage needs more than the range above. In this case, the maximum output voltage can be described as the following formula.

 V_{OUT2} (Max.) = CPVCC \times 3 - V_F \times 4 \cdots \cdots \cdots \cdots (V_F is the forward voltage for diodes D2-D3, D6-D7)

The maximum load current of the boost charge pump is determined by Cfly (C13, C15), the oscillator frequency of charge pump (fREQCP), and CPP "L" On Resistance (RCPPL) as described in the following formula.

 I_{OUT2} (Max.) = Cfly \times (1 - exp (-1 / (2 \times Cfly \times RcppL \times f_{REQCP}))) \times (CPVCC \times 2 - V_{OUT2} - V_F \times 2) \times f_{REQCP}

How to Set the Inverting Charge-pump Output Voltage

Vouts of the inverting charge-pump controls the voltage of CPNFB pin, which should be VNFB = 0 V. It is possible to set V_{OUT3} voltage by the following formula by R5 and R6 that are between V_{REF} pin and V_{OUT3} (refer to the *Typical Application*). R5 + R6 should be equal to or less than 500 kΩ

 $V_{OUT3} = V_{NFB} - (V_{REF} - V_{NFB}) \times R5 / R6$

The minimum output voltage can be set by the following formula.

 V_{OUT3} (Min.) = - (CPVCC - $V_F \times 2$) $\cdots \cdots \cdots \cdots \cdots$ (V_F is the forward voltage of the diode D4 and D5)

The maximum load current of inverting charge pump is determined by Cfly (C14), the oscillator frequency of charge pump (fREQCP), and CPN "L" ON Resistance (RCPNL) as described in the following formula.

IOUT3 (Max.) = Cfly \times (1 – exp (-1 / (2 \times Cfly \times RcpnL \times freqcp))) \times (CPVCC + Vouts - VF \times 2) \times freqcp

No. EA-368-210514

How to set the Step-up DC/DC Converter's Phase Compensation (Refer to *Typical Application*)

In the DC/DC converter, with the load current and the external components (L and C) the phase may be delayed by 180 degrees. Due to this, the phase margin of system is lost and stability would be worse. Thus, it is necessary to proceed the phase, and keep a certain phase margin.

The phase compensation and the system gain can be set with using the resistor, R7 and capacitors, C7 and C8. The position and the setting values shown in the *Typical Application* are one of the examples.

Select R7 and C7, so that the cut-off frequency of this Zero point may become approximately the cutoff frequency of pole made by the external components (L and C). The following formula shows the pole made by the external components (L and C) and the "Zero" point.

Fpole ~ 1 / {2 \times
$$
\pi
$$
 × $\sqrt{(L \times C1)}$ }
Fezero ~ 1/(2 × π × R7 × C7)

For example, when L = 4.7 μ H and C_{OUT} (C1) = 20 μ F, the cut-off frequency of the pole is approximately 16 kHz. Then set the cut-off frequency of the Zero point around 16 kHz to 1.6 kHz.

The gain can be set with the ratio of the resistance of R7 and combined resistance of R1 and R2 (RT: RT = R1 \times R2/ (R1 + R2)). If R7 is larger than the combined resistance (RT), the gain becomes high. If the gain is too high, the characteristics of response will be improved but the operating stability will be worse. Set R7 with an appropriate value.

Due to the R1 setting in the gain setting, another Zero point is set by R1 and C8.Set this cut-off frequency of Zero point at around the cut-off frequency by pole made by the external components (L and C). This Zero point is shown in the formula below.

Fzero ~ $1/(2 \times \pi \times R1 \times C8)$

Noise Reduction of the Feedback Voltage (Refer to *Typical Application*)

When the system noise is large, the output noise may be on to the feedback loop, and the operation may become unstable. In this case, set the value of the resistance R1 to R6 low and make the noise into the feedback reduction. It is possible to reduce the noise to the V_{FB} pin by connecting the resistance in the range from 1 kΩ to 5 kΩ around as R8.

Input Voltage

The range of V_{IN} voltage must be between 2.0 V and 5.5 V. For CPVCC pin, it is possible to use input V_{OUT1} or input another voltage of 6 V to 20 V to CPVCC as a power supply. In that case, set a capacitor of 1.0 µF or more as C5 between GND and CPVCC pin.

No. EA-368-210514

How to Set the Oscillator Frequency

Set a resistor (R12) between GND and RT pin. The oscillator frequency of the step-up converter (fREQ) can be set according to the next formula. This value depends upon the resistance value.

 $f_{REQ} = 2.7 \times 10^{10}$ / [0.8542 \times R12 \times {0.66 + $\sqrt{(0.66^2 + 12643 / R12)}$]

Set the frequency between 210 kHz and 1400 kHz. The oscillator frequency of the charge-pump is one fourth of the oscillator frequency of the main step-up DC/DC converter.

How to Set the Soft-start of Step-up Converter (Refer to the *Timing Chart*)

The soft-start of the step-up converter operates when V_{IN} is equal to or more than the UVLO release voltage, or when CE signal is "H". External capacitor of SS pin (C9) is charged with the soft-start charge current (Iss). Then the voltage of SS pin is input to the error amplifier as the reference voltage. When the voltage of SS pin reaches to the reference voltage (Typ.1.0 V) in the normal state, the reference voltage of the error amplifier stabilized at 1.0 V, and it changes to the normal state. The soft-start of step-up converter time (tss) is set by the external capacitor (C9) for the SS pin in the next formula.

$$
t_{\text{SS}} = C9 \times V_{\text{FB}} / \text{lss}
$$

How to Set the Start-up Sequence (Refer to the *Timing Chart*)

When the output voltage of step-up converter is up to 85% of a set value, and the soft-start is finished, the external capacitors (C10 and C11) of the CPPDLY pin and the CPNDLY pin are charged by the CPPDLY charge current (IPDLY) and the CPNDLY charge current (INDLY). When the voltage of the CPPDLY pin and the CPNDLY pin charged up to the CPPDLY detector threshold (VPDLY) and the CPNDLY detector threshold (V_{NDLY}), then the soft-start of the positive charge-pump and the negative charge-pump is operated respectively. After the stepup converter is operated, the delay time (t_{PDLY} and t_{NDLY}) until the soft-start of charge-pump is set by the external capacitors (C10 and C11) of the CPPDLY pin and the CPNDLY pin. The delay time is set by the following formula.

The delay time until the soft-start of positive charge-pump operates: $t_{POLY} = C10 \times V_{PDLY} / V_{PDLY}$ The delay time until the soft-start of negative charge-pump operates: $t_{NDLY} = C11 \times V_{NDLY}$ / l_{NDLY}

Thus, after the main step-up DC/DC converter starts operating, the positive charge-pump and the negative charge-pump can be operated by the arbitrary order.

No. EA-368-210514

Soft-start of the Charge-pump (Refer to *Typical Application* and *Timing Chart*)

When the soft-start of boost charge-pump operates, the output of CPPSW changes from "H" to "L". Setting the PNP-Tr1 (Tr1) keeps $V_{\text{OUT2}} = 0$ V until the positive charge-pump is started. If it is not required to keep V_{OUT2} $= 0$ V, then PNP-Tr1 is unnecessary. In this case, V_{OUT2} outputs approximately the same voltage as V_{OUT1}. Arrange the resistor (R11) between the CPPSW pin and the base of PNP-Tr1 (Tr1). The maximum current of Tr1 can be set by the R11 value. This value can be calculated in the next formula.

Imax = hFE \times (V_{OUT1} - V_{BE}) / R11 \cdots [hFE is DC current gain of Tr1 and V_{BE} is base emitter voltage of Tr1.]

Select the appropriate value for R11 since the efficiency gets worse if the value is too small (refer to the *Short Current Protection* section. PNP-Tr1 has some effect on the operation of the short-current protection).

When the positive charge-pump starts, the reference voltage of the error amplifier starts from 0 V, turns on to the reference voltage $(= 1.5 V)$ and becomes stable. Thus, the output voltage of V_{OUT2} can turn on by set output voltage within the time period of soft-start time.

In the initial state before starting the positive charge-pump, CPP pin generates High- level output voltage from the voltage supplied of CPVCC pin. Minim voltage of V_{OUT2} may occur when the "High" output voltage of CPP pin turns on by a rising of CPVCC voltage. The rising voltage level is susceptible to the rising width of CVPCC voltage (CPVCC-VIN under the normal condition), the capacitor C13 for CPP pin, and the capacitor C2 for V_{OUT2} . Since estimated calculation is $(CPVCC-V_{\text{IN}})XC13/(C2+C13)$, maximum voltage is about 0.79V for V_{IN} =3.3V, CPVCC=12V, C13=0.1µF, and C2=1µF.

Before the soft-start of the negative charge-pump starts, the reference voltage of the error amplifier rises to VREF voltage (= 1.2 V) and falls down to 0 V in the soft start time fixed internally by the soft-start operation. Thus, the output voltage of V_{OUT3} can turn on by set output volatge within the time period of soft-start time.

How to set the Short Current Protection and Timer Latch Delay Time

If any output among the step-up converter output, the positive charge-pump output or the negative chargepump output falls, the R1294L detects the short circuit. If this short circuit condition stays for a certain time, the latch-type protection circuit shuts down all the switching outputs (L_X, CPP, CPN) and outputs "H" through the CPPSW pin. Even if the switching stopped, the current path from CPVCC to V_{OUT2} is remained. If PNP-Tr is set on the CPPSW pin, the current path to Voutz is cut off after shutdown.

The detect voltages of V_{FB}, CPPFB and CPNFB are:

85% of predetermined VFB voltage for VFB

85% of predetermined CPPFB voltage for CPPFB

+ 0.15 V for CPNFB

The latch timer delay is set by an external capacitor (C12) of the DELAY pin. This delay time can be calculated by the next formula.

$$
t_{DLY} = C12 \times V_{DLY} / I_{DLY}
$$

To release the latch state, set VIN voltage below UVLO detector threshold and restart, or Set the CE pin "L" once and change the CE pin to "H" level.

No. EA-368-210514

How to set the Maxduty Limit

The value of maxduty can be set by the input voltage to DTC pin. Set the voltage in which the VREF output divided with the resistors R9 and R10. If the voltage of DTC pin increases more than the limit value, the lower value between the set value and the internally fixed value is selected and in valid.

TEST Pin

In terms of TEST pin, connect the GND level or remain it open.

No. EA-368-210514

Other Notes

- \bullet Use a 1.0 uF or higher capacitor (C4) in between GND and V_{IN} pin. Connect the capacitor as close as possible to the IC. If the noise level is large, use the $4.7 \mu F$ or higher capacitor is recommended.
- Use a 1.0 µF or higher capacitor (C1, C2, and C3) in between GND and each Vout (Vout1, Vout2, and V_{OUT3}). The recommended capacitance is C1 = 4.7 μ F to 22 μ F, C2 = C3 = 1 μ F to 2.2 μ F (refer to the *Typical Application*).
- Use a 0.1 μ F to 1 μ F or higher capacitance (C6) in between V_{REF} and GND.
- To connect the GND of the capacitors (C9, C10, C11, and C12) for setting the delay time as short as possible to the GND of the IC.
- Selection of the diodes and inductors and capcitors should be considered. When Nch-switch turns on, the high voltage of spike by an inductor might be generated. Thus, using more than twice of the set output voltage for the voltage tolerance of the capacitor connecting to V_{OUT} is recommended. The diode and inductors should not exceed the rated value of the voltage, the current and the power .
- Select the diode with low forward voltage such as a Schottky barrier diode. The small reverse current and the fast switching speed type is desirable. Especially, the characteristics of diode (D1) influence the efficiency and the stability of the system.
- As the junction temperature rises, the switch limit current will decrease. Make sure that the desired output current can be obtained even at high temperatures. Also note that the output may overshoot significantly if the load suddenly changes from overcurrent protection.

No. EA-368-210514

TYPICAL CHARACTERISTICS

Typical Characteristics are intended to be used as reference data, they are not guaranteed.

1) VOUT1 (DCDC)

 $f_{\text{REQ}} = 1400$ kHz, $V_{\text{OUT}} = 8.0$ V

 f_{REQ} =700kHz, V_{OUT} =8.0V

No. EA-368-210514

 f_{REQ} =210kHz, V_{OUT} =18.0V freq =700kHz, V_{OUT} =18.0V

 $f_{\text{REQ}} = 1400$ kHz, $V_{\text{OUT}} = 18.0$ V

No. EA-368-210514

No. EA-368-210514

2) VOUT2 (Step-Up Charge-pump part) 2-1) Output Voltage vs. Output Current

No. EA-368-210514

3) VOUT3 (Invert Charge-pump part) 3-1) Output Voltage vs. Output Current

 f_{REQ} =700kHz, CPVCC=12.0V, V_{OUT}=24.0V fREQ =1400kHz, CPVCC=12.0V, V_{OUT}=24.0V

No. EA-368-210514

 f_{REQ} =700kHz, CPVCC=12.0V, V_{OUT} =-6.0V

 $f_{REQ} = 1400$ kHz, CPVCC=12.0V, V_{OUT}=-6.0V

No. EA-368-210514

6) Supply Current vs. Input Voltage

 $V_{IN} (V)$

21 3 4 5

Maxduty (%)

Maxduty (%)

Ta=25°C

 f_{REQ} =1400kHz, Ta=25°C

8) VIN Supply Current vs. Temperature 9) CP Supply Current vs. Temperature

Nisshinbo Micro Devices Inc.

No. EA-368-210514

10) UVLO Detect Voltage vs. Temperature

11) UVLO Release Voltage vs. Temperature

R1294L103A R1294L101A

No. EA-368-210514

12) VFB Voltage vs. Temperature 13) Maxduty vs. Temperature

No. EA-368-210514

 V_{IN} =2.5V

18) Switch Limit Current vs. Temperature 19) Oscillator Frequency vs. Temperature

600

650

700

FDCDCM [kHz]

FDCDCM [KHz]

750

800

-40 -15 10 35 60 85 Ta [°C]

20) VREF Voltage vs. Temperature 21) Terminal SS charge current vs. Temperature

No. EA-368-210514

22) CPP Soft-Start vs. Temperature 23) CPN Soft-Start vs. Temperature

No. EA-368-210514

28) CPPFB Voltage vs. Temperature 29) CPNFB Voltage vs. Temperature

No. EA-368-210514

34) Charge-pump Frequency vs. Temperature

No. EA-368-210514

39) Standby Current vs. Temperature

No. EA-368-210514

42) Load Transient Response

R1294L102A

No. EA-368-210514

V_{IN} =3.3V, V_{OUT} =8V, I_{OUT} =1mA - 100mA, fREQ =800kHz $\overline{0}$ 100 200 300 400 500 600 6 6.5 7 7.5 8 8.5 9 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IOUT1 (mA) $V_{\rm OUT}(V)$ 500 600 13 14

R1294L102A

No. EA-368-210514

L 2.2uH C1 20uF R1 70kΩ $R2$ 10kΩ C7 2200pF $R7$ 10kΩ C8 47pF $R8$ 1kΩ

V_{IN} =3.3V, V_{OUT} =8V, I_{OUT} =1mA - 100mA, fREQ =1400kHz V_{IN} =3.3V, V_{OUT} =12V, I_{OUT} =1mA - 100mA, fREQ =1400kHz $\overline{0}$ 100 200 300 400 500 600 6 6.5 7 7.5 8 8.5 9 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IOUT1 (mA) $V_{\rm OUT}$ (V) 400 500 600 12 13 14

R1294L102A

8 9

10 11

 $V_{\rm OUT}$ (V)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Nisshinbo Micro Devices Inc.

 $\overline{0}$ 100

200 300

IOUT1 (mA)

No. EA-368-210514

43) CE Switch Response

POWER DISSIPATION QFN0404-24B

Ver. A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Result \blacksquare **Measurement Result** (Ta = 25°C, Timax = 125°C)

ja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

PACKAGE DIMENSIONS QFN0404-24B

Ver. A

* The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). The tab is recommended to connect to the ground plane on the board. Otherwise it may be left floating.

QFN0404-24B Package Dimensions

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.
- 11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

NSSHNBC

Nisshinbo Micro Devices Inc.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

[https://www.nisshinbo-microdevic](https://www.e-devices.ricoh.co.jp/en/)es.co.jp/en/buy/