SN74LS365A, SN74LS367A, SN74LS368A

3-State Hex Buffers

These devices are high speed hex buffers with 3-state outputs. They are organized as single 6-bit or 2-bit/4-bit, with inverting or non-inverting data (D) paths. The outputs are designed to drive 15 TTL Unit Loads or 60 Low Power Schottky loads when the Enable (E) is LOW.

When the Output Enable (E) is HIGH, the outputs are forced to a high impedance "off" state. If the outputs of the 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

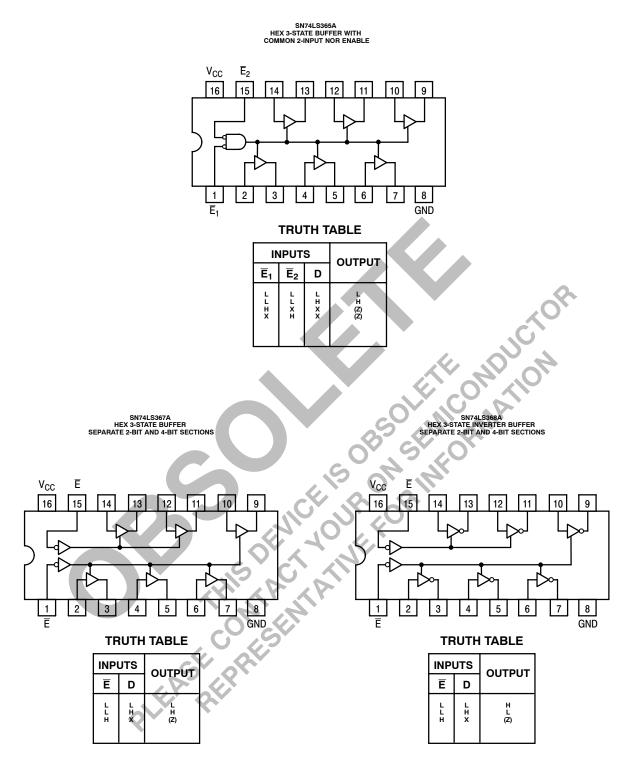
GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Max	Unit	
V _{CC}	Supply Voltage	4.75	5.0	5.25	V	
T _A	Operating Ambient Temperature Range	0	25	70	°C	BSGEFMI
I _{OH}	Output Current – High			-2.6	mA	B
I _{OL}	Output Current – Low			24	mA	D. 2. C
	O		S	Ś	ATIN	-
		C	SNG	FIN		OF
		SEC	SAF	FM		OF Device SN74LS365/
		SHA	2RF	EN		OF Device SN74LS365, SN74LS365,
	plf	ASH RE	PRE	SEN I		OI Device SN74LS365 SN74LS365 SN74LS365
	PLE	SHAF	2Rt	5EM		OI Device SN74LS365, SN74LS365, SN74LS365, SN74LS365,
	PIER	SFRE	2Rt	SER		OI Device SN74LS365, SN74LS365, SN74LS365, SN74LS367, SN74LS367,
	PLE	SH RE	2RF	5EM		OF Device SN74LS365/ SN74LS365/ SN74LS367/ SN74LS367/ SN74LS367/

ON Semiconductor™

http://onsemi.com

LOW POWER SCHOTTKY



ORDERING INFORMATION

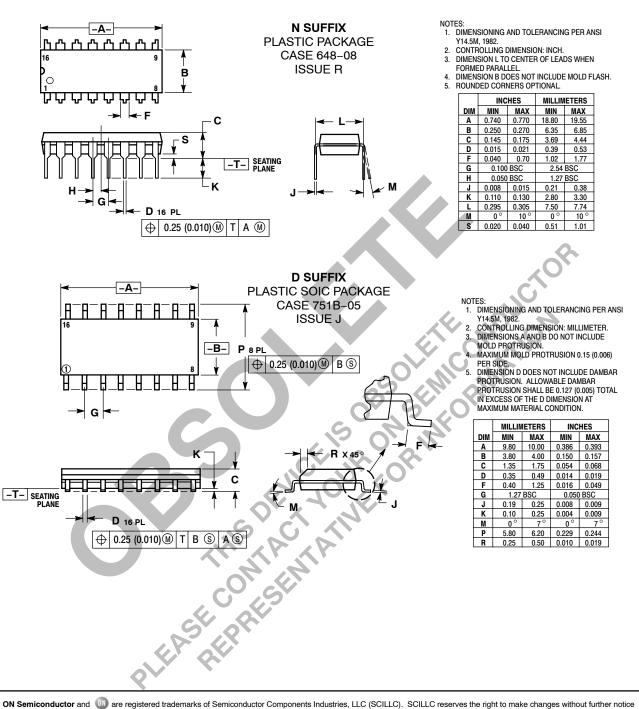
Device	Package	Shipping
SN74LS365AN	16 Pin DIP	2000 Units/Box
SN74LS365AD	SOIC-16	38 Units/Rail
SN74LS365ADR2	SOIC-16	2500/Tape & Reel
SN74LS367AN	16 Pin DIP	2000 Units/Box
SN74LS367AD	SOIC-16	38 Units/Rail
SN74LS367ADR2	SOIC-16	2500/Tape & Reel
SN74LS368AN	16 Pin DIP	2000 Units/Box
SN74LS368AD	SOIC-16	38 Units/Rail
SN74LS368ADR2	SOIC-16	2500/Tape & Reel

SN74LS365A, SN74LS367A, SN74LS368A

SN74LS365A, SN74LS367A, SN74LS368A

		Limits							
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions			
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs			
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs			
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$			
V _{OH}	Output HIGH Voltage	2.4	3.1		V	$\label{eq:V_CC} \begin{split} V_{CC} &= MIN, \ I_{OH} = MAX, \ V_{IN} = V_{IH} \\ \text{or } V_{IL} \ \text{per Truth Table} \end{split}$			
V _{OL}	Output LOW Voltage		0.25	0.4	V	I _{OL} = 12 mA	$V_{CC} = V_{CC} MIN,$		
			0.35	0.5	V	I _{OL} = 24 mA	V _{IN} = V _{IL} or V _{IH} per Truth Table		
I _{OZH}	Output Off Current HIGH			20	μΑ	V _{CC} = MAX, V _{OUT} = 2.7 V			
I _{OZL}	Output Off Current LOW			-20	μΑ	V _{CC} = MAX, V _{OUT} = 0.4 V			
1	Input HIGH Current			20	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V			
IIH				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V			
	Input LOW Current Ē Inputs		Y	-0.4	mA	V_{CC} = MAX, V_{IN} = 0.4 V			
IIL	D Inputs			-20	μΑ	$V_{CC} = MAX, V_{IN} = 0.5 V$ Either E Input at 2.0 V			
				-0.4	mA	$V_{CC} = MAX, V_{IN} = 0.4 V$ Both E Inputs at 0.4 V			
I _{OS}	Short Circuit Current (Note 1)	- 40		-225	mA	V _{CC} = MAX			
I _{CC}	Power Supply Current LS365A, 367A			24	mA	V _{CC} = MAX			
	LS368A			21	0				

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)


Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V)

	C C	Limits							
		LS365A/L		367A LS366A/		66A/LS368A			
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
t _{PLH} t _{PHL}	Propagation Delay	S	10 9.0	16 22		7.0 12	15 18	ns	C _L = 45 pF,
t _{PZH} t _{PZL}	Output Enable Time		19 24	35 40		18 28	35 45	ns	$R_L = 667 \Omega$
t _{PHZ} t _{PLZ}	Output Disable Time			30 35			32 35	ns	C _L = 5.0 pF
	X								

SN74LS365A, SN74LS367A, SN74LS368A

PACKAGE DIMENSIONS

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative