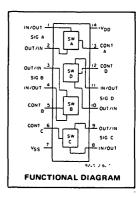
COS/MOS Quad Bilateral Switch

For Transmission or Multiplexing of Analog or Digital Signals

High-Voltage Types (20-Volt Rating)

The RCA-CD4066B is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-forpin compatible with RCA-CD4016B, but exhibits a much lower on-state resistance. In addition, the on-state resistance is relatively constant over the full input-signal range.


The CD4066B consists of four independent bilateral switches. A single control signal is required per switch. Both the p and the nedvice in a given switch are biased on or off simultaneously by the control signal. As shown in Fig.1, the well of the n-channel device on each switch is either tied to the input when the switch is on or to VSS when the switch is off. This configuration eliminates the variation of the switch-transistor threshold voltage with input signal, and thus keeps the on-state resistance low over the full operating-signal range.

The advantages over single-channel switches include peak input-signal voltage swings equal to the full supply voltage, and more constant on-state impedance over the input-signal range. For sample-and-hold applications, however, the CD4016B is recommended.

The CD4066B is available in 14-lead ceramic dual-in-line packages (D and F suffixes), 14-lead plastic dual-in-line packages (E suffix), 14-lead ceramic flat packages (K suffix), and in chip form (H suffix).

Features:

- 15-V digital or ±7.5-V peak-to-peak switching
- 125 Ω typical on-state resistance for 15-V operation
- Switch on-state resistance matched to within 5 Ω over 15-V signal-input range
- On-state resistance flat over full peak-to-peak signal range
- High on/off output-voltage ratio: 80 dB typ. @ f_{is} = 10 kHz, R_L = 1 k Ω
- High degree of linearity: <0.5% distortion typ. @ fis = 1 kHz, Vis = 5 Vp-p, VDD − VSS \geq 10 V, R_L = 10 kΩ
- Extremely low off-state switch leakage resulting in very low offset current and high effective off-state resistance: 10 pA typ. @ VDD — VSS = 10 V, TA = 25°C
- Extremely high control input impedance (control circuit isolated from signal circuit): 10¹² Ω typ.
- Low crosstalk between switches: -50 dB typ. @ f_{is} = 8 MHz, R_L = 1 kΩ
- Matched control-input to signal-output capacitance: Reduces output signal transients
- Frequency response, switch on = 40 MHz (typ.)
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13A, "Standard Specifications for Description of "B" Series CMOS Devices"

Applications:

- Analog signal switching/multiplexing Signal gating Modulator Squelch control Demodulator Chopper Commutating switch
- Digital signal switching/Multiplexing
- Transmission-gate logic implementation
- Analog-to-digital & digital-to-analog conversion
- Digital control of frequency, impedance, phase, and analog-signal gain

MAXIMUM RATINGS, Absolute-Maximum Values

DC SUPPLY-VOLTAGE RANGE, (VDD) (Voltages referenced to V_{SS} Term -05 to +20 V INPUT VOLTAGE RANGE, ALL INPUTS -0 5 to V_{DD} +0 5 V DC INPUT CURRENT, ANY ONE INPUT (except for TRANSMISSION GATE which is 25 mA) ±10 mA FOR TA = +60 to +85°C (PACKAGE TYPE E) 500 mW Derate Lines 14 at 12 mW/°C to 200 mW For TA = -55 to +100°C (PACKAGE TYPES D, F) For TA = +100 to +125°C (PACKAGE TYPES D, F) 500 mW Derate Linearly at 12 mW/°C to 200 mW DEVICE DISSIPATION PER OUTPUT TRANSISTOR FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types) 100 mW OPERATING-TEMPERATURE RANGE (TA) PACKAGE TYPES D, F, H -55 to +125°C PACKAGE TYPE E -40 to +85°C STORAGE TEMPERATURE RANGE (T_{stg})
LEAD TEMPERATURE (DURING SOLDERING) -65 to +150°C At distance 1/16 ± 1/32 inch (1 59 ± 0 79 mm) from case for 10 s max +265°C

Fig. 1 — Schematic diagram of 1 of 4 identical switches and its associated control circuitry.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHADACTERISTIC	LIN		
CHARACTERISTIC	Min.	Max.	UNITS
Supply-Voltage Range (For TA = Full Package-			
Temperature Range)	3	18	V

ELECTRICAL CHARACTERISTICS

Characteristic	Test Condition	s V _{IN}	V _{DD}	LIMITS AT INDICATED TEM- PERATURES (PC) Values at -55, +25, +125 Apply to D, F, H Packages Values at -40, +25, +85 Apply to E: Package					U N I T S	
		(Ÿ)	(V)	-55	-40	+85	+125	Тур.	Max.	
		0,5	5	0.25	0 25	7.5	7.5	0.01	0.25	
Quiescent Device		0,10	10	0.5	05	15	15	0.01	0.5	μА
Current, IDD	_	0,15	15	1_1	1	30	30	0.01	1	1 1
Simple Investo (M	\\	0,20	20	5	5	150	150	0 02	5	Щ
Signal Inputs (Vis) and Output (V _{os})									
On-State Resistance, r _{on}	V _C = V _{DD} R _L = 10 kΩ returned to V _{DD} - V _{SS}		5	800	850	1200	1300	470	1050	
Max.	2		10	310	330	500	550	180	400	Ω
	Vis = VSS to VDD	15	200	210	300	320	125	240		
∆On-State		5	I	_	_	_	15	_		
Resistance Between Any	RL=10k12, VC = VDD		10	ļ		-	_	10	-	Ω
2 Switches, ∆ron	15			-	-	-	_	5	_	1
Total Harmonic Distortion, THD	$V_C = V_{DD} = 5 \text{ V}, V_{SS} = -5 \text{ V}, V_{IS(p-p)} = 5 \text{ V} (Sine wave centered on 0 V)}$ $R_L = 10 \text{ k}\Omega, f_{IS} = 1 \text{ kHz sine wave}$				_	-	-	0.4	_	%
-3dB Cutolf Frequency (Switch on)	$V_{C}=V_{DD}=5$ V, $V_{SS}=-5$ V, $V_{IS(p\cdot p)}=5$ V (Sine wave centered on 0 V R $_{L}=1$ k Ω ,				-	_	_	40	-	MHz
-50dB Feed- through Frequency (Switch off)	$V_{C}=V_{SS}=-5V$, $V_{1S(p-p)}$ Sine wave centerd on 0 $R_{L}=1$ k Ω	-	_	_	_	1	-	MHz		
Input/Output Leakage Current (Switch off) I _{IS} Max.	V _C = 0 V V _{IS} = 18 V; V _{OS} = 0 V, V _{IS} = 0V; V _{OS} = 18 V	18	±0.1	±0.1	±1	±1	±10 ⁻⁵	±0 1	μΑ	
–50 dB Crosstalk Frequency	$\begin{array}{l} {\rm V_C(A) = V_{DD} =} \\ +5 \; {\rm V, V_C(B) = V_{SS}} \\ = -5 \; {\rm V, V_{is}(A) =} \\ 5 \; {\rm V_{p,p}}, \; 50 \; \Omega \; {\rm source} \\ {\rm R_L = 1} \; {\rm k} \Omega \end{array}$		-	_	_	-	8	_	MHz	
(Promonet = =	$R_1 = 200 \text{ k}\Omega$		5					20	40	
Propagation $V_C^{-} = V_{DD}$, $V_{SS}^{-} $					-	=	=	10	20 15	ns
Capacitance:								М		
Input, Cis	V _{DD} ≈ +5 V		<u> </u>	<u> -</u>		 -	۰	8	<u> </u>	[
Output, C _{os}	V _C = V _{SS} = -5 V				_	<u> </u>	匚	8	_	pF
Feedthrough, C _{ios}	`	`						0.5	-	

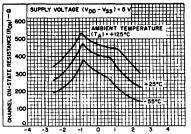


Fig. 2— Typical on-state resistance vs. input signal voltage (all types).

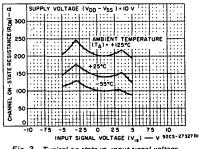


Fig. 3— Typical on-state vs. input signal voltage (all types).

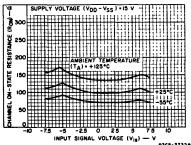


Fig. 4— Typical on-state resistance vs. input signal voltage (all types).

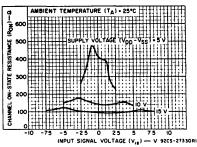


Fig. 5— on-state resistance vs. input signal voltage (all types).

ELECTRICAL CHARACTERISTICS (cont'd)

Characteristic	Test Conditions		LIMITS AT INDICATED TEMPERATURES (°C) Values at -55, +25, +125 Apply to D, F, H Packages Values at -40, +25, +85 Apply to E Package +25			-	U N I T		
		V _{DD}				5	s		
		(V)	-55	-40	+85	+125	Тур.	Max.	
Control (V _C)									
Control Input	II _{IS} I < 10 μΑ	5	1	1	1	1	<u> </u>	1	
Low Voltage, V _{II C} Max.	V _{IS} = V _{SS} , V _{OS} = V _{DD}	10	2	2	2	2	+=	2	V
	V _{IS} = V _{DD} , V _{OS} = V _{SS}	15	2	2	2	2		2	ľ
· · · · · · · · · · · · · · · · · · ·		5		<u> </u>	L				
Control Input	See Fig. 2	10	3.5 (Min.) 7 (Min.)						
High Voltage, VIHC		15	11 (Min.)						\ \
Input Current, I _{IN} Max.	$V_{1S} \le V_{DD}$ $V_{DD} - V_{SS} = 18 V$ $V_{CC} \le V_{DD} - V_{SS}$	18	±0.1		±1		±10-5	±0.1	μА
Crosstalk (Con- trol Input to Signal Output)	$V_C = 10 \text{ V (Sq. Wave)}$ t_r , $t_f = 20 \text{ ns}$ $R_L = 10 \text{ k}\Omega$	10	-	_	-	-	50	-	mV
Turn-On	V _{IN} = V _{DD}	5	_	-	-	-	35	70	
Propagation	t _r , t _f = 20 ns C ₁ = 50 pF	10	_	_	_	-	20	40	ns
Delay	RL = 1 kΩ	15	_	_	-	-	15	30	l
Maximum		5	_	 -	_	_	6	_	
Control Input Repetition Rate		10	_	-	_	_	9	-	MHz
	wave centered on 5 V) t_r , $t_f = 20$ ns, $V_{os} = \frac{1}{2} V_{os} @ 1 \text{ kHz}$	15	-	-	-	-	9.5	-	
Input Capacitance, C _{IN}			_	-	-	_	5	7.5	μF

Characteristic	Test Conditions			Values at -55, +25, +125 Apply to D, F, H Packages Values at -40, +25, +85 Apply to F Package						
		V _{DD}	E Package +25			5	T S			
		(v)	-55	-4 0	+85	+125	Тур.	Max.		
Control (V _C)										
Control Input Low Voltage,	$ I_{IS} < 10 \mu\text{A}$ $V_{IS} = V_{SS}, V_{OS} = V_{DD}$ and	5	1	1	1	1	-	1		
VILC Max.		10	2	2	2	2	-	2	v	
	$V_{is} = V_{DD}, V_{OS} = V_{SS}$	15	2	2	2	2	_	2	1	
Control Input		5		3.9	5 (Min	.)			T	
High Voltage,	See Fig. 2	10	7 (Min.)							
VIHC		15	11 (Min.)						1	
Input Current, I _{IN} Max.	$V_{1S} \le V_{DD}$ $V_{DD} - V_{SS} = 18 V$ $V_{CC} \le V_{DD} - V_{SS}$	18	±0.1	±0.1	±1	±1	±10-5	±0.1	μА	
Crosstalk (Con- trol Input to Signal Output)	V_C = 10 V (Sq. Wave) t_r , t_f = 20 ns R_L = 10 k Ω	10	-	-	-	-	50	-	mV	
Turn-On	V _{IN} = V _{DD}	5	-	-	_	-	35	70		
Propagation	t _r , t _f = 20 ns C _L = 50 pF	10		_	-	-	20	40	ns	
Delay	R _L = 1 kΩ	15	_	_	_	-	15	30	<u> </u>	
Maximum	V _{IS} = V _{DD} , V _{SS} = GND, R _L = 1 kΩ to gnd, C _L = 50 pF,	5			_	_	6	-		
Control Input	VC = 10 V(Square	10	-	-	_	_	9		MHz	
Repetition Rate	wave centered on 5 V) t_r , $t_f = 20$ ns, $V_{OS} = \frac{1}{2} V_{OS} @ 1 \text{ kHz}$	15	-	-	-	-	9.5	-		
Input Capacitance, C _{IN}			_	_	-	_	5	7.5	μF	

	Switch Input							
V _{DD}	Vis			I _{is} (mA)			Vos	(V)
(V)	(V)	–55°C	-40°C	+25°C	+85°C	+125°C	Min.	Max.
5	0	0.64	0.61	0.51	0.42	0.36	_	0.4
5	5	-0.64	-0.61	-0.51	-0.42	-0.36	4.6	_
10	0	1.6	1.5	1.3	1.1	0.9	-	0.5
10	10	1.6	-1.5	-1.3	-1.1	-0.9	9.5	_
15	0	4.2	4	3.4	2.8	2.4	_	1.5
15	15	-4.2	- 4	-3.4	-2.8	-2.4	13.5	-

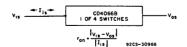


Fig. 6— Determination of r_{on} as a test condition for control input high voltage (V_{IHC}) specification.

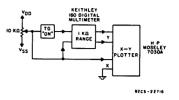


Fig. 7 - Channel on-state resistance measurement circuit.

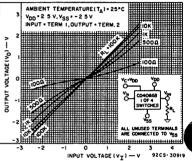


Fig. 8 - Typical r_{on} characteristics for 1 of 4 channels.

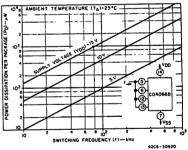


Fig. 9 - Power dissipation per package vs. switching frequency.

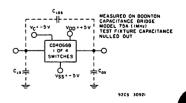


Fig. 10 - Capacitance test circuit.

Fig. 11 - Off-switch input or output leakage.

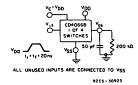


Fig. 12 — Propagation delay time signal input (V_{is}) to signal output (V_{os}).

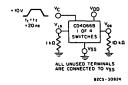


Fig. 13 — Crosstalk-control input to signal output.

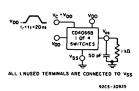


Fig. 14 — Prupagation delay t_{PLH} , t_{PHL} controlsignal output. Delay is measured at $V_{\rm GS}$ level of +10% from ground (turn-on) or on-state output level (turn-off).

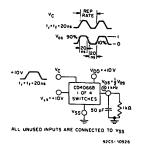


Fig. 15 — Maximum allowable control input repetition rate.

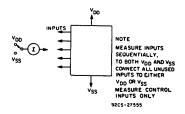


Fig. 16 - Input leakage current test circuit.

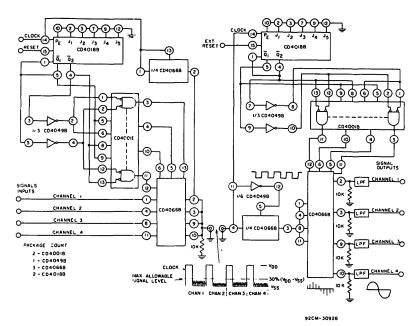


Fig. 17- 4-channel PAM multiplex system diagram.

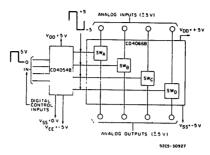
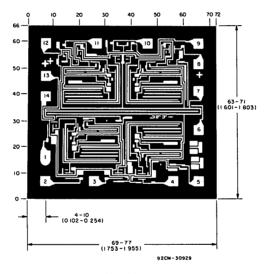



Fig. 18 - Bidirectional signal transmission via digital control logic.

CD4066BH CHIP PHOTOGRAPH

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

SPECIAL CONSIDERATIONS — CD4066B

 In applications that employ separate power sources to drive VDD and the signal inputs, the VDD current capability should exceed VDD/RL (RL = effective external load of the four CD4066B bilateral switches). This provision avoids any permanent current flow or clamp action on the VDD supply when power is applied or removed from the CD4066B. The photographs and dimensions of each COS/MOS chip represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57° instead of 90° with respect to the chip. Therefore, the isolated chip is actually 7 mils (0.17 mm) larger in both dimensions.

 In certain applications, the external load-resistor current may include both VDD and signal-line components. To avoid drawing VDD current when switch current flows into terminals 1,4,8, or 11, the voltage drop across the bidirectional switch must not exceed 0.8 volts (calculated from RON values shown).

No V_{DD} current will flow through R_L if the switch current flows into terminals 2,3,9, or 10.