
Copyright © mikroElektronika, 2012. All rights reserved.

Page 2

I want to express my thanks to you for being interested in our products and for having

con昀椀dence in MikroElektronika.

The primary aim of our company is to design and produce high quality electronic products

and to constantly improve the performance thereof in order to better suit your needs.

The AVR®, Atmega® names, logos and products names are trademarks of Atmel Inc. in the U.S.A and other countries.

TO OUR VALUED CUSTOMERS

Nebojsa Matic

General Manager

Page 3

1. Introduction to mikroBasic PRO for AVR® . 04

2. Hardware Connection . 05

3. Creating a New Project . 06

 Step 1 - Project Settings . 07

 Step 2 - Add files . 10

 Step 3 - Include Libraries . 11

 Step 4 - Finishing . 12

 Blank new project created . 13

4. Code Example . 14

5. Building the Source . 16

6. Changing Project Settings . 17

7. What’s next . 18

Table of Contents

Page 4

mikroBasic PRO for AVR® organizes

applica tions into projects consisting of a

single project file (file with the .mbpav

extension) and one or more source files

(files with the .mbas extension). The

mikroBasic PRO for AVR® compiler allows

you to manage several projects at a time.

Source files can be compiled only if they are

part of the project.

In this reference guide, we will create a

new project, write code, compile it and test

the results. The purpose of this project is

to make microcontroller PORTA LEDs blink,

which will be easy to test.

A project file contains:

• Project name and optional description;

• Target device in use;

• Device clock;

• List of the project source files;

• Binary files (*.mcl); and

• Other files.

1. Introduction to mikroBasic PRO for AVR®

05

06

07

01 04 07

02 05 08

03 06

Main Toolbar

Code Explorer

Project Settings

Messages

Code Editor

Image Preview

Project Manger

Library Manager

03

02

04

01

08

Page 5

Prior to creating a new project, it is necessary to do the following:

Step 1: Install the compiler

Install the mikroBasic PRO for AVR® compiler from the Product

DVD or download it from the MikroElektronika website:

http://www.mikroe.com/eng/products/view/226/mikrobasic-pro-for-avr/

Step 2: Start up the compiler

Double click on the compiler icon in the Start menu, or on your desktop

to Start up the mikroBasic PRO for AVR® compiler. The mikroBasic

PRO for AVR® IDE (Integrated Development Environment) will appear

on the screen. Now you are ready to start creating a new project.

2. Hardware Connection

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

RESET

VDD

GND

XTAL2

XTAL1

PD0

PD1

PD2

PD3

PD4

PD5

PD6

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

AREF

GND

AVDD

PC7

PC6

PC5

PC4

PC3

PC2

PC1

PC0

PD7

A
T
m
e
g
a
1
6

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

LD4

LD5

LD6

LD7

LD0

LD1

LD2

LD3

R5

4K7

R6

4K7

R7

4K7

R8

4K7

R1

4K7

R2

4K7

R3

4K7

R4

4K7

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

C2 22pF

C1 22pF

X18MHz

VCC

Figure 2-1:

Hardware connection schematics

Let’s make a simple “Hello world” example for the

selected microcontroller. First thing embedded

programmers usually write is a simple LED blinking

program. So, let’s do that in a few simple lines of Basic

code.

LED blinking is just turning ON and OFF LEDs that are

connected to desired PORT pins. In order to see the

example in action, it is necessary to connect the target

microcontroller according to schematics shown on Figure

2-1. In the project we are about to write, we will use only

PORTA, so you should connect the LEDs to PORTA only.

Eight LEDs are more then enough for demonstration.

Page 6

The process of creating a new project is

very simple. Select the New Project option

from the Project menu as shown below.

The New Project Wizard window appears.

It can also be opened by clicking the New

Project icon from the Project toolbar.

The New Project Wizard (Figure 3-1)

will guide you through the process of

creating a new project. The introductory

window of this application contains a list

of actions to be performed when creating

a new project.

Click Next.

3. Creating a New Project

Figure 3-1: Introductory window of the New Project Wizard

01

01

Page 7

First thing we have to do is to specify the

general project information. This is done

by selecting the target microcontroller, it’s

operating clock frequency, and of course

- naming our project. This is an important

step, because compiler will adjust the

internal settings based on this information.

Default configuration is already suggested

to us at the begining. We have to change

the device name to ATMEGA16 as it is our

microcontroller of choice for this project.

Step 1 - Project Settings

Figure 3-2: You can specify project name, path, device and clock in the 昀椀rst step

Page 8

If you do not want to use the suggested

path for storing your new project, you can

change the destination folder. In order to

do that, follow a simple procedure:

Step 1 - Project Settings

Figure 3-3: Change the destination folder using Browse For Folder dialog

01

01

02

03 03

Click the Browse button of the Project

Settings window to open the Browse

for Folder dialog.

Select the desired folder to be the

destination path for storing your new

project files.

Click the OK button to confirm your

selection and apply the new path.

02

Page 9

Once we have selected the destination

project folder, let’s do the rest of the project

settings:

Step 1 - Project Settings

Figure 3-4: Enter project name and change device clock speed if necessary

01

02

03

03

01

02

Enter the name of your project. Since

we are going to blink some LEDs,

it’s appropriate to call the project

“LedBlinking”

For this demonstration, we will use

the external crystal 8MHz clock.

Clock speed depends on your target

hardware, but however you configure

your hardware, make sure to specify

the exact clock (Fosc) that the

microcontroller is operating at.

Click the OK button to proceed.

Page 10

This step allows you to include additional

files that you need in your project: some

headers or source files that you already

wrote, and that you might need in further

development. Since we are building a simple

application, we won’t be adding any files at

this moment.

Step 2 - Add 昀椀les

01

Figure 3-5: Add existing headers, sources or other 昀椀les if necessary

Click Next.01

Page 11

Following step allows you to quickly set

whether you want to include all libraries in

your project, or not. Even if all libraries are

included, they will not consume any memory

unless they are explicitely used from within

your code. The main advantage of including

all libraries is that you will have over 500

functions available for use in your code

right away, and visible from Code Assistant

[CTRL+Space]. We will leave this in default

configuration:

Step 3 - Include Libraries

02

01

Figure 3-6: Include all libraries in the project, which is a default con昀椀guration.

01

02

Make sure to leave “Include All”

selected.

Click Next.

Page 12

After all configuration is done, final step

allows you to do just a bit more.

Step 4 - Finishing

Figure 3-7: Choose whether to open Edit Project window after dialog closes.

02

0101 There is a check-box called “Open Edit

Project window to set Con昀椀guration
bits” at the final step. Edit Project is a

specialized window which allows you to

do all the necessary oscillator settings,

as well as to set desired fuse bits. We

made sure that everything is described

in plain English, so you will be able

to do the settings without having to

open the datasheet. Anyway, since we

are only building a simple application,

we will leave it at default configuration

(external crystal oscillator). Therefore,

leave the checkbox unchecked.

Click Finish.02

Page 13

New project is finally created. A new source

file called “LedBlinking.mbas” is created

and it contains the main: function, which

will hold the program. You may notice

that project is configured according to the

settings done in the New Project Wizard.

Blank new project created

Figure 3-8: New blank project is created with your con昀椀guration

Page 14

Time has come to do some coding. First

thing we need to do is to initialize PORTA

to act as digital output. DDRA data direction

register, associated with PORTA, is used to

set whether each pin acts as input or output.

We can now initialize PORTA it with logic

zeros on every pin:

Finally, in a while loop we will invert all bits

in PORTA in every iteration, and put a 1000

ms delay, so the blinking is not too fast (see

Figure 4-1).

program LedBlinking

main:

 ‘ set PORTA to be digital output

 DDRA = 0

 ‘ Turn OFF LEDs on PORTA

 PORTA = 0

 while TRUE

 ‘ Toggle LEDs on PORTA

 PORTA = not PORTA

 ‘ Delay 1000 ms

 Delay_ms(1000)

 wend

end.

‘ set PORTA to be digital output

DDRA = 0

‘ Turn OFF LEDs on PORTA

PORTA = 0

‘ Toggle LEDs on PORTA

PORTA = not PORTA;

‘ Delay 1000 ms

Delay_ms(1000);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

LedBlinking.mbas - source code

4. Code Example

Figure 4-1: Complete source code of the PORTA LED blinking

Page 15

Figure 4-2: This is how the code looks

written in compiler code editor window

Page 16

When we are done writing our first

LedBlinking code, we can now build

the project and create a .HEX file

which can be loaded into our target

microcontroller, so we can test the

program on real hardware. “Building”

includes compilation, linking and

optimization which are done automatically. Build your code by clicking

on the icon in the main toolbar, or simply go to Build menu and

click Build [CTRL+F9]. Message window will report the details of

the building process (Figure 5-2). Compiler automatically creates

necessary output files. LedBlinking.hex (Figure 5-1) is among them.

5. Building the Source

Figure 5-2: After the successful compilation and linking, the message window should look something like this

Figure 5-1: Listing of project 昀椀les after building is done

Page 17

If you need to change the target microcontroller or clock speed, you don’t have to go through the new project wizard all over again. This can be

done quickly in the Edit Project window. You can open it using Project->Edit Project [CTRL+SHIFT+E] menu option.

6. Changing Project Settings

Figure 6-1: Edit Project Window

01

02

02

03

04

01

02

03

04

To change your MCU, just select the

desired microcontroller from the

dropdown list.

To change your settings enter

the oscillator value and adjust

configu ration register bits using

drop-down boxes.

You can always load the default

configuration by clicking the

Default button.

For more experienced users there

is a box that displays generated

values of LOW and HIGH

configuration registers.

Page 18

mikroBasic PRO for AVR® comes with 96 examples which demonstrate a variety of

features. They represent the best starting point when developing a new project. You

will find projects written for mikroElektronika development boards, additional boards,

internal MCU modules and other examples. This way you always have a starting point,

and don’t have to start from scratch. In most cases, you can combine di昀昀erent simple

projects to create a more complex one. For example, if you want to build a temperature

datalogger, you can combine temperature sensor example with MMC/SD example and

do the job in much less time. All projects are delivered with a working .HEX files, so you

don’t have to buy a compiler license in order to test them. You can load them into your

development board right away without the need for building them.

Figure 7-1: Project explorer window

enables you to easily access provided

examples and load them quickly

7. What’s next?

If you want to find answers to your questions on many interesting topics we invite you

to visit our forum at http://www.mikroe.com/forum and browse through more than 170

thousand posts. You are likely to find just the right information for you.

On the other hand, if you want to download more free projects and libraries, or share your

own code, please visit the Libstock website http://www.libstock.com. With user profiles,

you can get to know other programmers, and subscribe to receive notifications on their code.

Community

More examples

Page 19

DISCLAIMER

All the products owned by MikroElektronika are protected by copyright law and international copyright treaty. Therefore, this manual is to be treated as any

other copyright material. No part of this manual, including product and software described herein, may be reproduced, stored in a retrieval system, translated or

transmitted in any form or by any means, without the prior written permission of MikroElektronika. The manual PDF edition can be printed for private or local use,

but not for distribution. Any modification of this manual is prohibited. MikroElektronika provides this manual ‘as is’ without warranty of any kind, either expressed
or implied, including, but not limited to, the implied warranties or conditions of merchantability or fitness for a particular purpose.

MikroElektronika shall assume no responsibility or liability for any errors, omissions and inaccuracies that may appear in this manual. In no event shall

MikroElektronika, its directors, o昀케cers, employees or distributors be liable for any indirect, specific, incidental or consequential damages (including damages for
loss of business profits and business information, business interruption or any other pecuniary loss) arising out of the use of this manual or product, even if
MikroElektronika has been advised of the possibility of such damages. MikroElektronika reserves the right to change information contained in this manual at any

time without prior notice, if necessary.

TRADEMARKS

The MikroElektronika name and logo, the MikroElektronika logo, mikroC™, mikroBasic™, mikroPascal™, mikroProg™, EasyAVR6™, mikromedia™ for XMEGA®,

mikromedia™ for ATMEGA®, and Ready for AVR® are trademarks of MikroElektronika. All other trademarks mentioned herein are property of their respective

companies. All other product and corporate names appearing in this manual may or may not be registered trademarks or copyrights of their respective companies,

and are only used for identification or explanation and to the owners’ benefit, with no intent to infringe.

Copyright © MikroElektronika, 2012, All Rights Reserved.

HIGH RISK ACTIVITIES

The products of MikroElektronika are not fault – tolerant nor designed, manufactured or intended for use or resale as on – line control equipment in hazard-

ous environments requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air tra昀케c
control, direct life support machines or weapons systems in which the failure of Software could lead directly to death, personal injury or severe physical

or environmental damage (‘High Risk Activities’). MikroElektronika and its suppliers specifically disclaim any expressed or implied warranty of fitness for
High Risk Activities.

If you want to learn more about our products, please

visit our website at www.mikroe.com. If you are

experiencing some problems with any of our products or

just need additional information, please place your ticket

at www.mikroe.com/esupport If you have any questions,

comments or business proposals, do not hesitate to

contact us at o昀케ce@mikroe.com

Designed by

MikroElektronika,

November 2012.

Creating the first project in
mikroBasic PRO for AVR ver. 2.00

0 100000 022900

