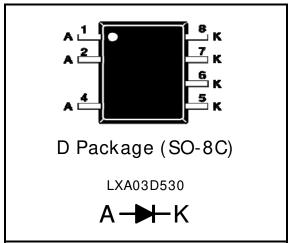
LXA03D530 Qspeed[™] Family



530 V, 3 A X-Series Diode

Product Summary

I _{F(AVG)}	3	Α
V_RRM	530	V
Q _{RR} (Typ at 125 °C)	75	nC
I _{RRM} (Typ at 125 °C)	3.2	Α
Softness t _B /t _A (Typ at 125 °C)	0.34	

Pin Assignment

RoHS Compliant

Package uses lead-free plating and green mold compound. Halogen-free per IEC 61249-2-21.

General Description

This device is an extremely low reverse recovery 530 V silicon diode. Its recovery characteristics increase efficiency, reduce EMI and eliminate snubbers.

Applications

- High-voltage power rectifier
- · Power factor correction (PFC) boost diode
- Motor drive circuits
- DC-AC inverters

Features

- Low Q_{RR}, low I_{RRM}, low t_{RR}
- High dl_F/dt capable
- Soft recovery

Benefits

- Reduces peak reverse voltage
- Increases efficiency
 - Eliminates need for snubber circuits
 - Reduces EMI filter component size & count
- · Enables extremely fast switching

Absolute Maximum Ratings

Absolute maximum ratings are the values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Symbol	Parameter	Conditions	Rating	Units
V_{RRM}	Peak repetitive reverse voltage	T _J = 25 °C	530	V
I _{F(AVG)}	Average forward current	$T_J = 150 ^{\circ}\text{C}, T_L = 29 ^{\circ}\text{C}$	3	Α
I _{FSM}	Non-repetitive peak surge current	60 Hz, ½ cycle, T _C = 25 °C	25	Α
I _{FSM}	Non-repetitive peak surge current	$1/2$ cycle of t = 28 μ s Sinusoid, T_C = 25 °C	350	Α
$T_{J(MAX)}$	Maximum junction temperature		150	°C
T _{STG}	Storage temperature		–55 to 150	°C
P_D	Power dissipation	T _L = 25 °C	4.6	W

www.power.com April 2015

Thermal Resistance

Symbol	Resistance	Conditions	Rating	Units
$R_{\theta JA}$	Junction to ambient	Soldered to 1 sq. in. (645 mm ²), 2 oz. Qu.	80	°C/W
$R_{\theta JL}$	Junction to lead	Lead temperature measured on pin 7	27	°C/W

Electrical Specifications at $T_J = 25$ °C (unless otherwise specified)

Electrical Specifications at 1j= 25°C (unless otherwise specified)							
Symbol	Parameter	Conditions		Min	Тур	Max	Units
DC Chara	DC Characteristics						
I _R Reverse current		$V_R = 530 \text{ V}, T_J = 25 ^{\circ}\text{C}$		-	0.4	250	μΑ
I _R	neverse current	V _R = 530 V, T _J = 125 °C		-	0.275	-	mA
V_{F}	Forward voltage	I _F = 3 A, T _J = 25 °C		-	1.55	1.71	٧
VF	rorward voltage	$I_F = 3 A, T_J = 150$	I _F = 3 A, T _J = 150 °C		1.33	-	٧
CJ	Junction capacitance	V _R = 10 V, 1 MHz		-	15	-	pF
Dynamic Characteristics							
	Devene vecesses time	dI/dt = 200 A/μs	T _J = 25 °C	-	25	34.3	ns
t _{RR}	Reverse recovery time	$V_R = 400 \text{ V}, I_F = 3 \text{ A}$	T _J = 125 °C	-	33	-	ns
	dI/dt = 200 A/μs	$dI/dt = 200 A/\mu s$	T _J = 25 °C	-	39	55	nC
Q_{RR}	Reverse recovery charge	V_{R} = 400 V, I_{F} = 3 A	T _J = 125 °C	-	75	-	nC
1	Maximum reverse	$dI/dt = 200 \text{ A/}\mu\text{s}$ V_R = 400 V, I_F = 3 A	$T_J = 25 ^{\circ}\text{C}$	-	2.2	-	Α
RRM	recovery current		T _J = 125 °C	-	3.2	-	Α
C	Softness factor = $\frac{t_B}{t_A}$		T _J = 25 °C	-	0.7	-	
S So			T _J = 125 °C	-	0.34	-	

Note to component engineers: X-Series diodes employ Schottky technologies in their design and construction. Therefore, component engineers should plan their test setups to be similar to those for traditional Schottky test set-ups. (For additional details, see Application Note AN-300.)

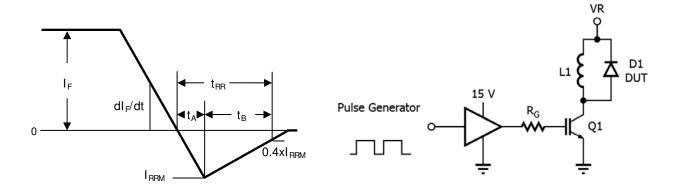
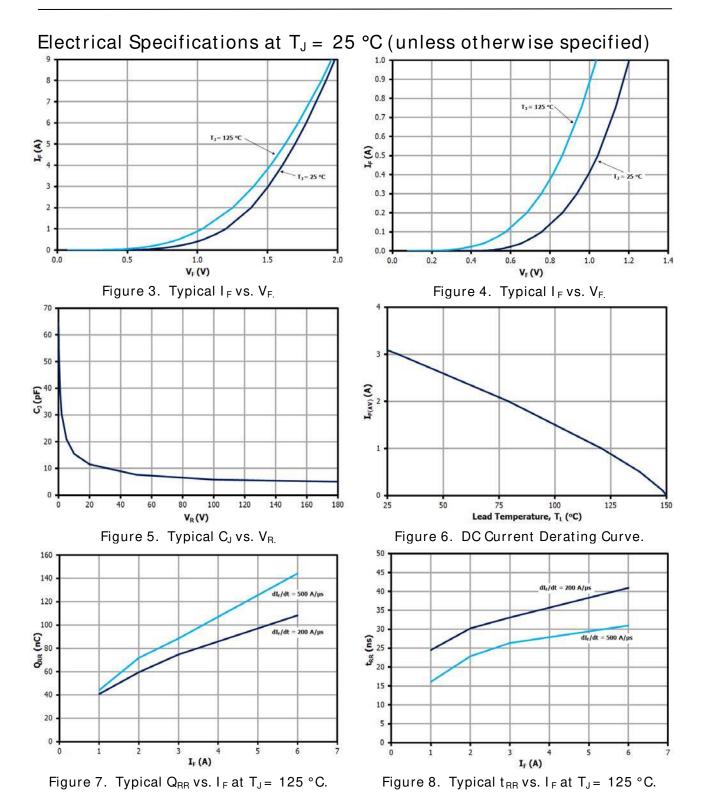
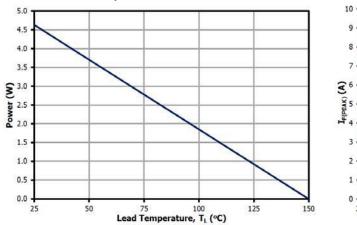



Figure 1. Reverse Recovery Definitions.


PI-7614-041315 Figure 2. Reverse Recovery Test Circuit.

Power integrations www.power.com

Electrical Specifications at $T_J = 25$ °C (unless otherwise specified)

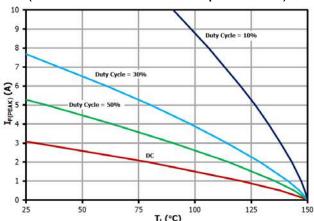


Figure 9. Power Derating Curve.

Figure 10. I_F (Peak) vs. T_L , f = 70 kHz.

LXA03D530

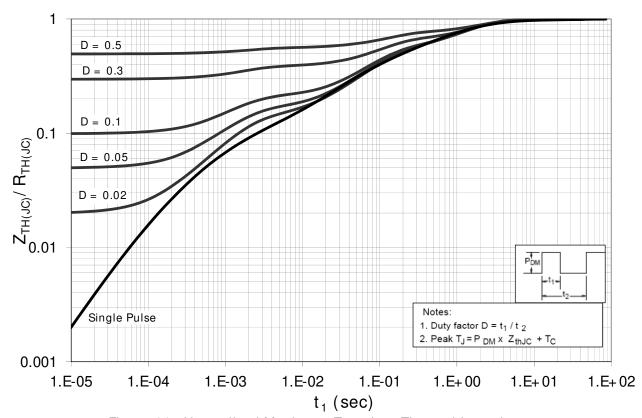
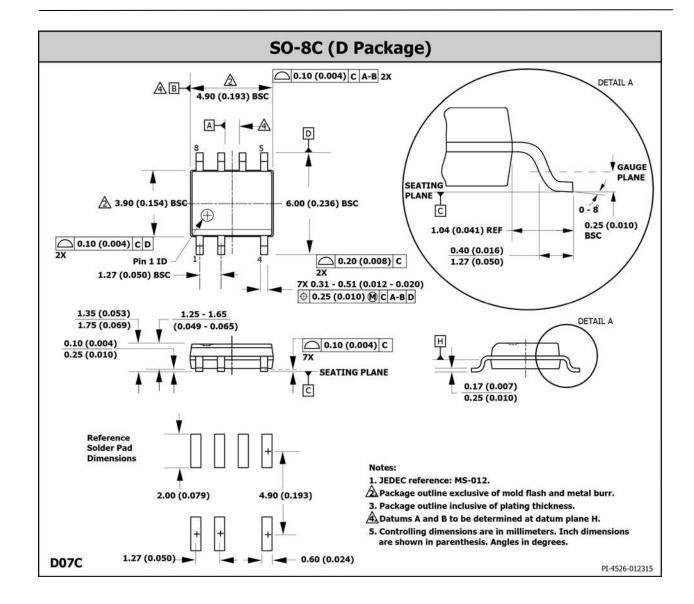



Figure 11. Normalized Maximum Transient Thermal Impedance.

Ordering Information

Part Number	Package	Packing
LXA03D530	SO-8C	2500 units/reel

The information contained in this document is subject to change without notice.

LXA03D530

Revision	Notes	Date
1.0	Initial Release.	04/15

For the latest updates, visit our website: www.power.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Life Support Policy

POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:

- A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or death to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, InnoSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Ospeed, EcoSmart, Clampless, E-Shield, Filterfuse, FluxLink, StackFET, Pl Expert and Pl FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. © Copyright 2015 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@power.com

CHINA (SHANGHAI) Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 e-mail: chinasales@power.com

CHINA (SHENZHEN) 17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 Fax: +86-755-8672-8690 e-mail: chinasales@power.com

GERMANY Lindwurmstrasse 114 80337, Munich Germany Phone: +49-895-527-39110 Fax: +49-895-527-39200 e-mail:

eurosales@power.com

INDIA #1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail:

indiasales@power.com

ITALY

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni Phone: +39-024-550-8701

(MI) Italy Fax: +39-028-928-6009 eurosales@power.com

JAPAN Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: japansales@power.com

KOREA RM 602, 6FL Korea City Air Terminal B/D, 159-6Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: koreasales@power.com

SINGAPORE 51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 singaporesales@power.com TAI WAN 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: taiwansales@power.com

UK First Floor, Unit 15, Meadway Court, Rutherford Close, Stevenage, Herts. SG1 2EF United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: eurosales@power.com