

Data sheet acquired from Harris Semiconductor SCHS288

8-Input Universal Shift/Storage Register with Common Parallel I/O Pins

CD54/74AC/ACT299 - Asynchronous Reset CD54/74AC/ACT323 - Synchronous Reset

Type Features:

- Buffered inputs
- Typical propagation delay: 6 ns @ Vcc = 5 V, T_A = 25° C, C_L = 50 pF

The RCA CD54/74AC299 and CD54/74AC323 and the CD54/74ACT299 and CD54/74ACT323 are 3-state, 8-input universal shift/storage registers with common parallel I/O pins. These devices use the RCA ADVANCED CMOS technology. These registers have four synchronous-operating modes controlled by the two select inputs as shown in the Mode Select (S0, S1) table. The Mode Select, the Serial Data (DSO, DS7), and the Parallel Data (I/O₀ - I/O₇) respond only to the LOW-TO-HIGH transition of the clock (CP) pulse. S0, S1 and Data inputs must be present one setup time prior to the positive transition of the clock.

With the CD54/74AC/ACT299, the Master Reset (MR) is an asynchronous active-LOW input. When MR is LOW, the register is cleared regardless of the status of all other inputs. With the CD54/74AC/ACT323, the Master Reset (MR) clears the register in sync with the clock input. The register can be expanded by cascading same units by tying the serial output (QO) to the serial data (DS7) input of the preceding register, and tying the serial output (Q7) to the serial data (DSO) input of the following register. Recirculating the (n x 8) bits is accomplished by tying the Q7 of the last stage to the DSO of the first stage.

The 3-state input/output (I/O) port has three modes of operation:

- Both Output Enable (OE1 and OE2) inputs are LOW and S0 or S1 or both are LOW; the data in the register is present at the eight outputs.
- When both S0 and S1 are HIGH, I/O terminals are in the high-impedance state but being input ports, ready for parallel data to be loaded into eight registers with one clock transition regardless of the status of OE1 and OE2.

Family Features:

- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design
- Speed of bipolar FAST*/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply
- ± 24-mA output drive current
 - Fanout to 15 FAST* ICs
 - Drives 50-ohm transmission lines

*FAST is a Registered Trademark of Fairchild Semiconductor Corp.

 Either one of the two Output Enable inputs being HIGH will force I/O terminals to be in the off state. It is noted that each I/O terminal is a 3-state output and a CMOS buffer input.

The CD74AC/ACT299 and CD74AC/ACT323 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 to +125°C).

The CD54AC/ACT299 and CD54AC/ACT323, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

MODE SELECT — FUNCTION TABLE REGISTER OPERATING MODES

				INPUT	S			REGISTER OUTPUTS				
FUNCTION	MŘ	СР	S0	S1	DS0	D\$7	I/O _n	Q0	Q1		Q6 Q7	
Reset (Clear)	L	X.	Х	Х	X	Х	Х	L	L		L	L
Shift Right	Н	- /-	h∈	ı	ī	Х	Х	L	qo		Q ₅	Q ₆
	н		h	1	h	×	×	Н	\mathbf{q}_{o}		Q ₅	Q_6
Shift Left	Н		1	h ·	Х		Х	q ₁	q ₂		Q7	L
1	H		1	h	X	h	Х	q ₁	q_2		q ₇	Н
Hold (do nothing)	Н		ı	1	Х	Х	Х	q _o	q,		Q ₆	Q ₇
Parallel Load	Н		h	h	Х	X	I	L	L		L	L
	н		h	h	X	×	h	Н	Н		Н	Н

^{*}On CD54/74AC/ACT323, CP must be in transition from the LOW-to-HIGH state to Reset (Clear).

MODE SELECT — FUNCTION TABLE 3-STATE I/O PORT OPERATING MODE

FUNCTION				INPUTS		INPUTS/OUTPUTS
FUNCTION	OE1	OE1 OE2		S1	Qn (Register)	1/00 1/07
Read Register	L	LLXL		L ,		
	L	L	L	x	н	Н
	L	L	x	L	Ł	L
	L	L	x	L	н	н
Load Register	X	Х	Н	Н	Qn = 1/O _n	I/O _n = Inputs
Disable I/O	Н	Х	X	Х	X	(Z)
	×	н	х	X	X	(Z)

H = Input voltage high level.

h = Input voltage high one set-up time prior clock transition.

L = Input voltage low level.

I = Input voltage low one set-up time prior clock transition.

q_n = Lower case letters indicate the state of the referenced output one set-up time prior clock transition.

X = Voltage level on logic status don't care.

Z = Output in high-impedance state.

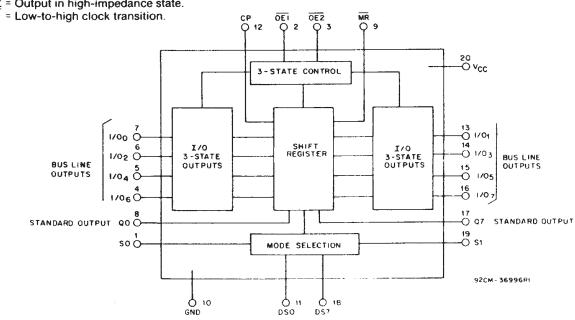


Fig. 1 - Functional diagram

MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY-VOLTAGE (Vcc)0.5 to 6 V
DC INPUT DIODE CURRENT, I _{IK} (for $V_1 < -0.5$ V or $V_1 > V_{CC} + 0.5$ V)
DC OUTPUT DIODE CURRENT, l_{OK} (for $V_O < -0.5$ V or $V_O > V_{CC} + 0.5$ V)
DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, I_0 (for $V_0 > -0.5$ V or $V_0 < V_{CC} + 0.5$ V) ± 50 mA
DC V_{cc} or GROUND CURRENT (I_{cc} or I_{GND})
POWER DISSIPATION PER PACKAGE (P₀):
For $T_A = -55$ to $+100^{\circ}$ C (PACKAGE TYPE E)
For $T_A = +100$ to $+125$ °C (PACKAGE TYPE E)
For $T_A = -55$ to $+70$ °C (PACKAGE TYPE M)
For T _A = +70 to +125°C (PACKAGE TYPE M)
OPERATING-TEMPERATURE RANGE (T _A)55 to +125°C
STORAGE TEMPERATURE (T _{stg})65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s maximum
Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contacting lead tips only +300°C
*For up to 4 outputs per device; add \pm 25 mA for each additional output.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTICS	LIN	NTS	LIMITO	
CHARACTERISTICS	MIN.	MAX.	UNITS	
Supply-Voltage Range, V _{cc} *: (For T _A = Full Package-Temperature Range)	1.5			
AC Types ACT Types	1.5 4.5	5.5 5.5	V	
DC Input or Output Voltage, V ₁ , V ₀	0	Vcc	V	
Operating Temperature, T _A	-55	+125	°C	
Input Rise and Fall Slew Rate, dt/dv at 1.5 V to 3 V (AC Types) at 3.6 V to 5.5 V (AC Types) at 4.5 V to 5.5 V (ACT Types)	0 0 0	50 20 10	ns/V ns/V ns/V	

^{*}Unless otherwise specified, all voltages are referenced to ground.

Technical Data

CD54/74AC299, CD54/74AC323 CD54/74ACT299, CD54/74ACT323

STATIC ELECTRICAL CHARACTERISTICS: AC Series

	-					AMBIEN'	T TEMPE	RATURE	(T _A) - °(С		
CHARACTERIST	ICS	TEST CO	NDITIONS	V _{cc}	+	25	-40 t	o +85.	-55 to	+125	UNITS	
	,	V, (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
High-Level Input Voltage	V _{IH}			1.5 3 5.5	1.2 2.1 3.85		1.2 2.1 3.85	_	1.2 2.1 3.85		V	
Low-Level Input Voltage	VIL			1.5 3 5.5		0.3 0.9 1.65	_	0.3 0.9 1.65	_	0.3 0.9 1.65	v	
High-Level Output			-0.05	1.5	1.4	-	1.4		1.4	_		
Voltage	V _{OH}	VIH	-0.05	3	2.9	-	2.9	<u> </u>	2.9		1	
		or	-0.05	4.5	4.4		4.4	_	4.4	_]	
		V _{IL}	-4	3	2.58		2.48	_	2.4	_	V	
			-24	4.5	3.94	<u> </u>	3.8		3.7	_]	
		#, * {	-75	5.5		_	3.85	_	_	_]	
		" , " }	-50	5.5	<u> </u>	_	[3.85	_		
Low-Level Output			0.05	1.5	_	0.1		0.1	_	0.1		
Voltage	Vol	Vol	V _{IH}	0.05	3	_	0.1	_	0.1	_	0.1	
		or	0.05	4.5	_	0.1		0.1		0.1]	
		Vil	12	3	_	0.36	_	0.44	_	0.5	٧	
			24	4.5	_	0.36	_	0.44		0.5		
		#, * {	75	5.5		_		1.65	_			
		" '	50	5.5			_		_	1.65		
Input Leakage Current	l _i	V _∞ or GND		5.5	_	±0.1	_	· ±1	_	±1	μА	
3-Stage Leakage Current	loz	V _{IH} or V _{IL} V _{cc} or GND		5.5		±0.5	_	±5		±10	μΑ	
Quiescent Supply Current, MSI	t _{cc}	V _{cc} or GND	0	5.5	_	8		80	-	160	μΑ	

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.
*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

	41,000					AMBIEN	T TEMPE	RATURE	E (T _A) - °	С	
CHARACTERIST	ICS	TEST CO	NDITIONS	V _{cc}	+	25	-40 t	o +85	-55 to	+125	UNITS
		V, (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input Voltage	ViH			4.5 to 5.5	2	_	2	_	2	_	v
Low-Level Input Voltage	VIL			4.5 to 5.5		0.8	_	0.8	_	0.8	V
High-Level Output		ViH	-0.05	4.5	4.4	<u> </u>	4.4	_	4.4		
Voltage	V _{OH}	or V _{IL}	-24	4.5	3.94		3.8		3.7	l –]
		#, * {	-75	5.5	_	_	3.85	_	_	_] v
			-50	5.5					3.85		
Low-Level Output		V _{IH}	0.05	4.5		0.1	–	0.1	–	0.1	
Voltage	Vol	or V _{IL}	24	4.5		0.36	_	0.44	_	0.5	v
		#, * {	75	5.5	_	_	_	1.65	_	_	
		" ' [50	5.5	_	_		_	_	1.65	
Input Leakage Current	l ₁	V _{cc} or GND		5.5	_	±0.1	_	±1	-	±1	μΑ
3-State Leakage Current	loz	V _{IH} or V _{IL} V _O or GND		5.5		±0.5		±5	_	±10	μΑ
Quiescent Supply Current, MSI	lcc	V _{cc} or GND	0	5.5	_	8	_	80	_	160	μΑ
Additional Quiescent Current per Input P TTL Inputs High 1 Unit Load	Supply in Δt _{cc}	V _{cc} -2.1		4.5 to 5.5		2.4		2.8	_	3	mA

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.

ACT INPUT LOADING TABLE

14.00.10	UNIT LOADS*				
INPUT	299	323			
S1, S0, OE1, OE2	0.83	0.83			
1/O ₀ - 1/O ₇ , CP, DS0, DS7	0.67	0.67			
MR	1.33	0.67			

^{*}Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25° C.

power dissipation.

*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

THE STATE OF STATE OF

CD54/74AC299, CD54/74AC323 CD54/74ACT299, CD54/74ACT323

PREREQUISITE FOR SWITCHING: AC Series

			AMBI	ENT TEMPE	RATURE (T	۸) - °C	1.
CHARACTERISTICS	SYMBOL	V _{cc}	-40 t	o +85	-55 to	+125	UNITS
		(V)	MIN.	MAX.	MIN.	MAX.]
Setup Time S1, S0, to CP	tsu	1.5 3.3* 5†	99 11.1 7.9	=	113 12.6 9		ns
Hold Time S1, S0 to CP	tн	1.5 3.3 5	0 0	=	0 0		ns
Setup Time (I/O)n, DS0, DS7 to CP	tsu	1.5 3.3 5	49 5.5 3.9	-	56 6.3 4.5	_ _ _	ns
Hold Time (I/O)n, DS0, DS7 to CP	t _{su}	1.5 3.3 5	0 0 0		0 0 0	_ _ _	ns
Setup Time MR to CP (323)	tsu	1.5 3.3 5	61 6.8 4.8	=	69 7.8 5.5		ńs
Hold Time MR to CP (323)	ţн	1.5 3.3 5	0 0 0	-	0 0 0	<u>-</u> -	ns
Maximum CP Frequency	fmax	1.5 3.3 5	9 78 108		8 68 95	— —	MHz
CP Pulse Width	tw	1.5 3.3 5	57 6.4 4.6	=	65 7.3 5.2		ns
MR Pulse Width	tw	1.5 3.3 5	55 6.1 4.4	<u>-</u>	63 7 5	_ _ _	ns
Recovery Time MR to CP 299	trec	1.5 3.3 5	55 6.1 4.4		63 7 5	_ _ _	ns

*3.3 V: min. is @ 3 V †5 V: min is @ 4.5 V

SWITCHING CHARACTERISTICS: AC Series; t, t = 3 ns, CL = 50 pF

			AMBI	ENT TEMPE	RATURE (Γ _Λ) - °C	
CHARACTERISTICS	SYMBOL	V _{cc}		o +85		0 +125	UNITS
		(V) .	MIN.	MAX.	MIN.	MAX.	7
Propagation Delays: CP to Q0, Q7	t _{PLH} t _{PHL}	1.5 3.3* 5†	4.7 3.3	147 16.5 11.7	- 4.5 3.2	162 18.1 12.9	ns
CP to (I/O)n	t _{PLH} t _{PHL}	1.5 3.3 5	4.9 3.5	154 17.2 12.3	4.7 3.4	169 18.9 13.5	ns
MR to Q0, Q7 (299 only)	tplH tpHL	1.5 3.3 5	- 4 2.9	127 14.3 10.2	 3.9 2.8	140 15.7 11.2	ns
MR to (I/O)n	telн tehl	1.5 3.3 5	5 3.6	158 17.7 12.6	 4.9 3.5	174 19.5 13.9	ns
Enable and Disable Times	tezi. tezh telz tehz	1.5 3.3 5	5.8 3.8	169 20.4 13.5	 5.6 3.7	186 22.4 14.9	ns
Power Dissipation Capacitance	C _{PD} §		280	Тур.	280	Тур.	pF
Input Capacitance	Cı	_	_	10		10	pF
3-State Output Capacitance	Co	_	_	15		15	pF

*3.3 V: min. is @ 3.6 V max. is @ 3 V

†5 V: min. is @ 5.5 V max. is @ 4.5 V $\ensuremath{\mbox{\$C}_{\mbox{\tiny PD}}}$ is used to determine the dynamic power consumption, per function.

 $P_D = C_{PD}V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o)$ where $f_i = input$ frequency

f_o = output frequency
C_L = output load capacitance
V_{CC} = supply voltage.

PREREQUISITE FOR SWITCHING: ACT Series

			AMBI	ENT TEMP	ERATURE (Γ _A) - °C		
CHARACTERISTICS	SYMBOL	V _{cc} (V)		to +85	1	o +125	UNITS	
		(*/	MIN.	MAX.	MIN.	MAX.		
Setup Time S1, S0 to CP	tsu	5*	7.9	_	9	_	ns	
Hold Time S1, S0 to CP	tii	5	0		0	_	ns	
Setup Time (I/O)n, DS0, DS7 to CP	ŧsu	5	3.9	_	4.5	_	ns	
Hold Time (I/O)n, DS0, DS7 to CP	ŧн	5	0	_	0	_	ns	
Setup Time MR to CP (323)	tsu	5*	4.8	-	5.5	_	ns	
Hold Time MR to CP (323)	tн	5	0	_	0	_	ns	
Maximum CP Frequency	f _{max}	5	103	_	90		MHz	
CP Pulse Width	tw	5	4.8		5.5	_	ns	
MR Pulse Width	tw	5	4.4	_	5	_	ns	
Recovery Time MR to CP (299)	trec	5	4.4	_	5		ns	

*5 V: min. is @ 4.5 V

SWITCHING CHARACTERISTICS: ACT Series; t, t, = 3 ns, CL = 50 pF

			AMBII	(A) - °C			
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 t	o +85	-55 to	+125	UNITS
	·	(*)	MIN.	MAX.	MIN.	MAX.	
Propagation Delays: CP to Q0, Q7	t _{РСН} t _{РН}	5*	3.3	11.7	3.2	12.9	ns
CP to (I/O)n	t _{РЕН} t _{РНL}	5	43.7	13.2	3.6	14.5	ns
MR to Q0, Q7 (299 only)	t _{PLH} t _{PHL}	5	3.1	11.1	3.1	12.2	ns
MR to (I/O)n	t _{РLН} t _{РНL}	5	4.8	16.9	4.7	18.6	ns
Enable and Disable Times	t _{PLZ} t _{PHZ} t _{PZL} t _{PZH}	5	3.8	13.5	3.7	14.9	ns
Power Dissipation Capacitance	C _{PD} §		280	Тур.	280	Тур.	pF
Input Capacitance	Cı		_	10		10	pF
3-State Output Capacitance	Co			15		15	pF

*5 V: min. is @ 5.5 V max. is @ 4.5 V C_{PD} is used to determine the dynamic power consumption, per function. $P_D = C_{PD} V_{CC}^2 \, f_i + \Sigma \, (C_L V_{CC}^2 \, f_o) + V_{CC} \Delta I_{CC} \, \text{where} \quad f_i = \text{input frequency}$

f_o = output frequency C_L = output load capacitance

 V_{cc} = supply voltage.

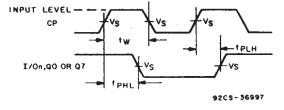


Fig. 2 - Clock prerequisite and propagation delays.

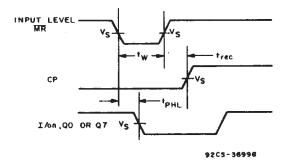


Fig. 3 - Master Reset prerequisite and propagation delays.

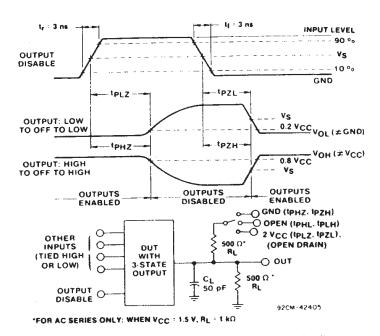


Fig. 4 - Three-state propagation delay times and test circuit.

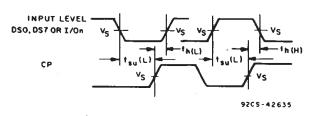


Fig. 5 - Data prerequisite times.

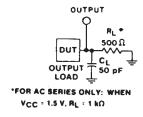


Fig. 6 - Test circuit.

	CD54/74AC	CD54/74ACT
Input Level	Vcc	3 V
Input Switching Voltage, Vs	0.5 V _{cc}	1.5 V
Output Switching Voltage, Vs	0.5 V _{CC}	0.5 V _{CC}

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CD54AC299F3A	ACTIVE	CDIP	J	20	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	CD54AC299F3A	Samples
CD54ACT299F3A	ACTIVE	CDIP	J	20	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	CD54ACT299F3A	Samples
CD74AC299M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC299M	Samples
CD74AC323M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC323M	Samples
CD74ACT299M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT299M	Samples
CD74ACT299M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT299M	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

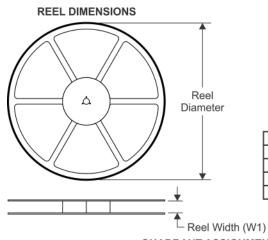
6-Feb-2020

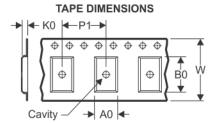
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54AC299, CD54ACT299, CD74AC299, CD74ACT299:

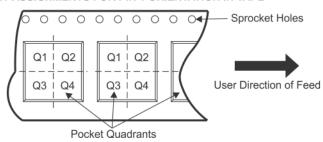
Military: CD54AC299, CD54ACT299


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jan-2013

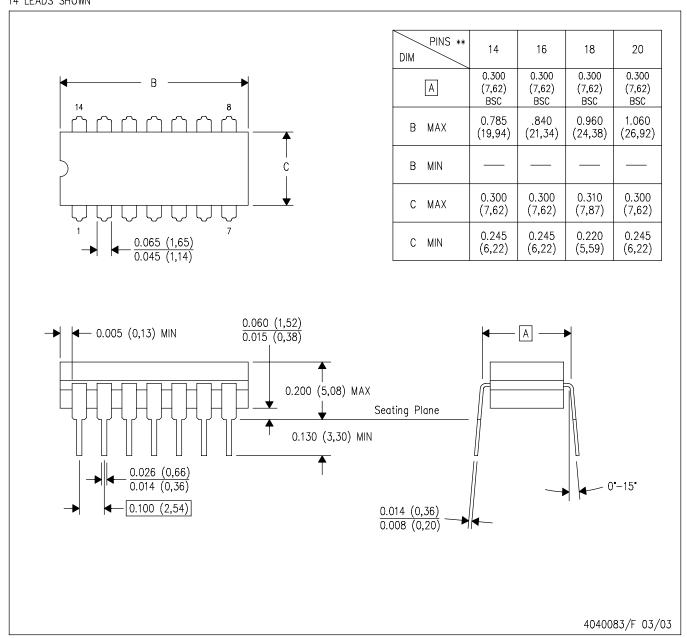

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

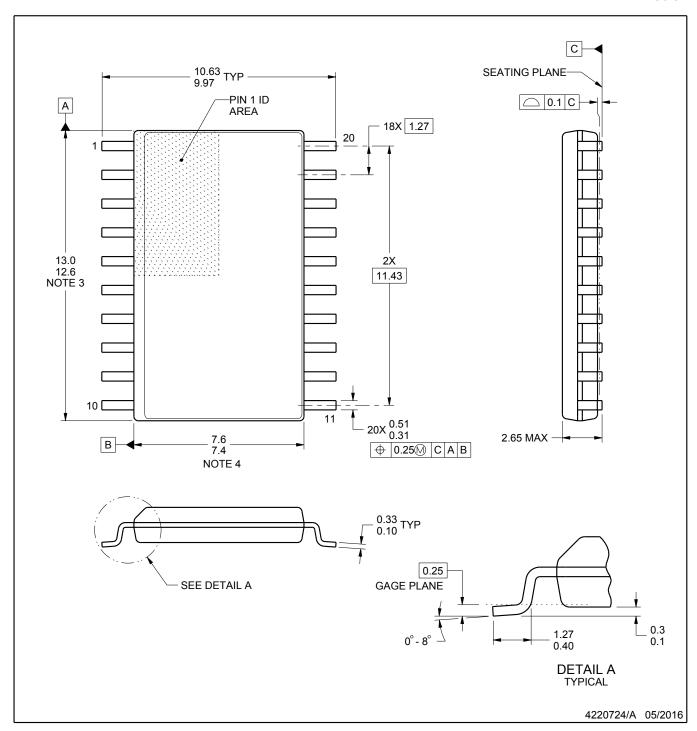
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74AC299M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
CD74ACT299M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1


www.ti.com 26-Jan-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
CD74AC299M96	SOIC	DW	20	2000	367.0	367.0	45.0	
CD74ACT299M96	SOIC	DW	20	2000	367.0	367.0	45.0	

14 LEADS SHOWN

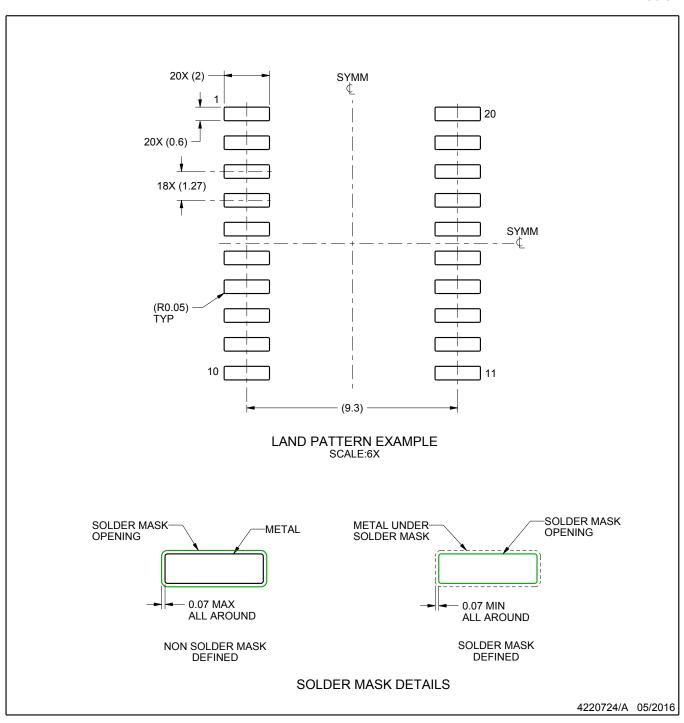


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

SOIC

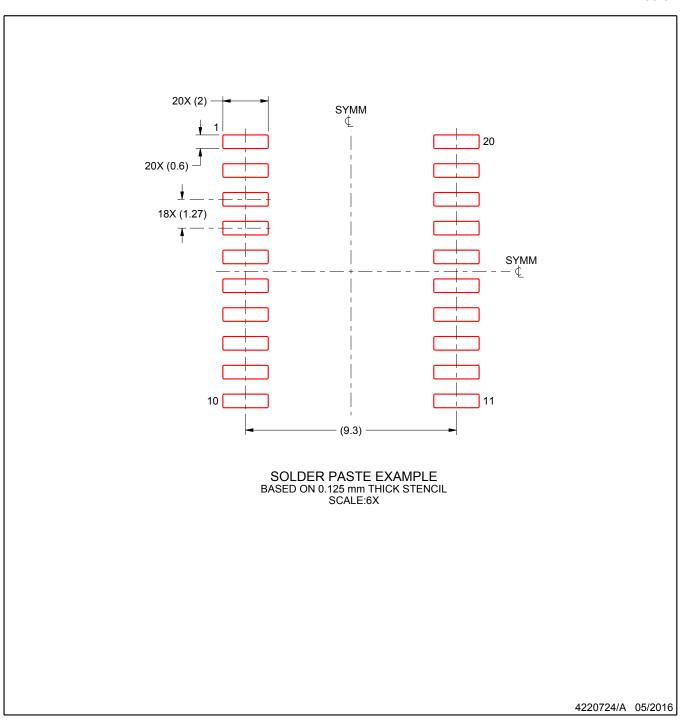
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated