s LATTICE

FFT Compiler IP Core - Lattice Radiant
Software

User Guide

FPGA-IPUG-02153-1.3

November 2022

FFT Compiler IP Core - Lattice Radiant SoftwareLATT’CE

User Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer.
Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited
testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products
should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s product could create a situation
where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice
Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

© 2020-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-IPUG-02153-1.3

= LATTICE

Contents
ACTONYMS N THIS DOCUMEBNT ...cccitiiieeiiie e ctieeeecie e eete e e ettt eeeette e e eeteeeeeaabeseeatseeesassasaessseaaaanssssaasssaeaassssaeansssseeansasaesassenanans 5
N 1Y i oo [F ot oo H OO TP PO PPRTPRUPPRR 6
1.1. @ T ol - T 3RSt 6
1.2. =T L TP PUPRTTNN 6
1.3. CONVENTIONS «.neieiieiieiee ettt e et e et e e e st r e s et e s s et e e s mr e e e s e me et e samne e e e s n et e e s e s e e e e s mnn e e e s neeeeeanneeesanneeesaananesennnenesannnne 7
00 70 O o] 4 o T=T o ol =1 U T PP POPPPPRONE 7
0 T B - (s =1 I\ . 1= USRSt 7
0 T8 T AN o i 1 TV PO PO P PP OTPTPPPTOPPPRPPPPORE 7
2 SV To To Yo F=1 I D T=EYol e o o HO PRSPPI 8
2.1. OVEIVIBW .ttt ettt ettt e e e e e sttt e e e e e e e et ee e e e e s e aa b e e eeeeeee s e a s e e et eeeeeeseaanbeeeeeeesenaanseaeaeeeseesassaneeaeeeesannns 8
2.1.1. High Performance ArCHItECTUIE.......c.uiiieieee ettt ettt e e e ettt e e e etaee e s e beeeeetbeeeeeasaaeeessaeaesntaseeennnns 9
2.1.2. LOW RESOUICE ArCHITECTUI . ..cciutiieieiiieeetee ettt ettt s e ste e st e s te e st e st e e s e e eseeesaeeessteesnseesaseesnseesaseesnseesns 9
2.2. YT ed g DT ol o o Yo Y- TR 10
2.3. ALEIDULE SUMIMIAIYttt e st e e et e e e e atee e s ateeeeassteeesanseaeesaseaeeeanssaeeansseasarnsanesanssnessansnnens 12
2.4, Interfacing With the FFT COmMPIlEI et e e et eetee e e st e e e e bt e e e e ensaeeesananeeeensaeeeenens 14
2 o R 00 YoV =W =Y o T TS P - | U 14
D Ny N o - 1 To [= 1 (ST Y= - SR 14
2.4.3. EXPONENT OULPUL ..eeiiiiiiiiiiiiiiiiiiiiiiiii s s s s s s s e s s s s s e s e s s s e sesesesesasasasasasasasassasasssanaaaaaaes 14
S oy (o1~ o £ o] [PPSR PTPPPPPPPN 14
2.5. LI L0 1 F= g o =Ty ot 4 o o TSR 15
2.6. (@101 o 10N o 1= =1 o Vo O PP PP 17
3. IP Generation and EVAlUGTIONuii ittt st e et st e et e e st e et b e e s teean b e e sbeesabaesbeeebaaennreens 18
3.1. [Tol=Y a1y [Yeak o o [T | =PSRN 18
3.2. GENEration @Nd SYNTNESIS ...ccuueiie ittt eee e e e et e e e et e e e e eneeeeeaabeeeeenseeesansaeaeensteeesanneneessseeaans 18
3.3. RUNNING FUNCEIONA] SIMUIGTIONveiiiiiiie et e e et e e e tae e e st e e e e bt e e e eensaeeesaseeeeennsaeeeennns 20
3.4. HardWare EVAIUGTIONccuii ittt ettt sttt e e e sae e e sb e e sab e e sateesateesabaesabeesbaasnbeesnsaesseeensseenses 21
B O 1o L= a1 V- - T a1V U T2 o =Y SR 22
Appendix A. RESOUICE ULIIIZATION ...coceeiii ettt e e et e e e et e e e s tta e e e e taee e e ssaaeeanssaaeansaeeeassseeennneeens 23
FAY oY1= oo [Nl 2 T X[y o1 = d o T o SR 25
(0] {=T =Y ool OO T OSSO PP U PTRPPPPPPRORTOR 26
TEChNICAl SUPPOIT ASSISTANCE ...ttt et e et e s bt e e bt e e bt e e ate e saeeeeaeeesabeeeaseesbeeeaseeenneeeaneeennneennee 27
REVISION HISTOIY .eiiiiiiiiiiiiiiiiiititieteteieteie et b bbb et aa e e e aaasa s s asasssasssasssasasasasesssesesesesesereseseeeeeseeeeaeeeaeaeeaaaens 28

www. latticesemi.com/legal

= LATTICE

Figures

Figure 2.1. FFT Compiler INterface DIiagIamcccueeiiiiieeeeiieeeeeiiee e e ettt e eecte e e e s taeeeestteseeeasaesesasesaaanssesesassassasnsseseaansaeseassnens 8
Figure 2.2. Implementation Diagram for High-Performance FFT ... stee et e e ree e e et e e s 9
Figure 2.3. Low-Resource FFT Data FIOW DI@Iramccccueiiiieriieiiieeiie ettt ettt e st sbe e e saee s bt e e saeeessteesnaeesateesaseesaseeeaneas 9
Figure 2.4. Timing Diagram for Streaming [/O fOr 64 POINTSccveciieiieeiieiee e ceeereeere et eeteeeteenreenssanesreeeseeeteeeseesseenseennes 15
Figure 2.5. Timing Diagram Showing Handshake Signals for Low ReSOUICe FFToieiecieiiiieieeeeieeeeeeee e seeee e s vee e e 16
Figure 2.6. Timing Diagram Showing Handshake Signals for High Performance FFTccccviviirieceeecccee e 17
Figure 3.1. ModUule/IP BIOCK WIZAIdcccviiiieiieiie et et et et eteete et e te e e saeesteeeteeeba e ba e baenbeenseensesasesnsesssenssensaeseenteenses 18
Figure 3.2. Configure User Interface of FFT COMPIIEr [P COME .. .uuuiiiiiiiiiiiiiiieeicieeseriteeeesite e ssvaeeestteeesstaeesssraeeeesbaeesenens 19
Figure 3.3. Check GENErated RESUILeiiiiiiieeee ettt e e s st e e s st ae e s sbee e e sensaeessaseeeessnbeeesennes 19
Figure 3.4. SIMUIAtION WIZard.......ccueiiiiiiieieeee ettt et e e et e e s et e e s ste e e esnteeesassaeesssseeeeeansaeesenseeeesansenesnnnnnn 20
Figure 3.5. Adding and REOINEITNE SOUICEuuiiiiiie ittt ettt e e ettt e e e e e e eee b te e e e e e e ee s aabaaaeeeeeeesanstaseeeeaesseannnssaneeeeans 21
Figure 3.6. SIMUIation WaVeTOrMc..eiiiecce e e e e et e e e e nt e e e saeaeeeeaseeeeeensaeeesnsseeeeaasaeeeannnns 21

Tables

I o] (=0 0 @ [ol 1 =T 3OO PP PP ROPPTRPTN 6
Table 2.1. TOP 1EVEI I/O INTEITACE ..c..vveeveecreeeiee ettt ettt et e et e s te e e be e e sbae e beeestbeeetbeesabeeeabeesabeesasesebeesbesessseensseessseenans 10
Table 2.2, ATEFDULES TABIE ..t s b e st e bt e s bt e s s bt e e s st e e sabeesateesabeesbeesaseesseeesseeennen 12
I Lo [2 T N] o TU LT B LY 1o [o USSR 13
Table 2.4. Local User Interface FUNCLIONAl GrOUPSccviiiiiiieeiciieecerttescetee s sree e e st e e seete e e streeeesbaaesensaaessnnseeeesnsanesansnns 17
Table 3.1, GENEIAtE Fil LISt ...ccveiiiieeieiiieieiee ettt ettt ettt se e st e st e s bt e e be e s bt e s bteesbteesaseesabeesaseesabaesabeesnseesnsenensseennen 20
Table A.1. Resource Utilization (FOr LFMXO5-25-9BBGA00I)oeieeiuiieeeeeeeeeeeeeeeereeeeeeteeeeeereeeeessreeeeeseeeesnsneeeeesneeeennnns 23
Table A.2. Resource Utilization (FOr LFMXO5-25-7BBGA00I)ooeeeirieeeeieeeeeeeeeeeeereeeeeieeeeeereeeeesseeeeeeseeeesesseeesesneeeennnns 23
Table A.3. Resource Utilization (for LAV-AT-500E-3LFGL1561)....cccceiiiiiiiiiiiiieeiieeiireesteesreesseesseessesssseesssesesssesssssesssessnns 24
Table A.4. Resource Utilization (for LAV-AT-500E-1LFGLI561)......cccciiriiiieiiireeiiirieeeeireeeeeitreeeeereeeeestreeeeesreeesesseeeessssesensnnns 24

www. latticesemi.com/legal

= LATTICE

FFT Compiler IP Core - Lattice Radiant Software
User Guide

Acronyms in This Document

A list of acronyms used in this document.

Acronym Definition

EBR Embedded Block RAM

DIF Decimation-in-Frequency

DFT Discrete Fourier Transform
DSP Digital Signal Processor

FFT Fast Fourier Transform

FPGA Field-Programmable Gate Array
IFFT Inverse Fast Fourier Transform
IP Intellectual Property

GUI Graphical User Interface

RAM Random Access Memory

© 2020-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02153-1.3

= LATTICE

1. Introduction

The Lattice Semiconductor Fast Fourier Transform (FFT) Compiler IP Core offers forward and inverse FFTs for point sizes
from 64 to 16384. The FFT Compiler IP Core can be configured to perform forward FFT, inverse FFT (IFFT), or port
selectable forward/inverse FFT. It offers two modes of implementation: High Performance (Streaming I/0) and Low
Resource (Burst 1/0).

In High Performance implementation, the FFT Compiler IP Core can perform real-time computations with continuous
data streaming in and out at clock rate. There can also be arbitrary gaps between data blocks allowing discontinuous
data blocks.

In Low Resource implementation, the requirement is to use less slice (logic unit of Lattice FPGA devices), Embedded Block
RAM (EBR), and Digital Signal Processor (DSP) resources. The device could also be too small to accommodate the High-
Performance version.

To account for the data growth in fine register length implementations, the FFT Compiler IP Core allows several different
modes (fixed and dynamic) for scaling data after each radix-2 stage of the FFT computation. The Low Resource version
also supports block floating point arithmetic that provides increased dynamic range for intermediate computations. It
allows the number of FFT points to be varied dynamically through a port.

1.1. Quick Facts

Table 1.1 presents a summary of the FFT Compiler IP Core.

Table 1.1. Quick Facts

CrossLink™-NX, Certus™-NX, CerturPro™-NX, MachXO5-NX,

IP Requirements Supported FPGA Families Lattice Avant
Targeted Devices LIFCL-40, LIFCL-17, LFD2NX-40, LFD2NX-17, LFCPNX-100,
Resource Utilization LFMXO05-25, LAV-AT-500E
Resources See Table A.1 and Table A.2
Lattice Implementation IP Core v1.x.x — Lattice Radiant™ Software 2.2 or later
. Lattice Synthesis Engine
. Synthesis - -
Design Tool Support Synopsys® Synplify Pro® for Lattice
. . For a list of supported simulators, see the Lattice Radiant
Simulation

software user guide.

1.2. Features

The key features of FFT Compiler IP Core include:

e Wide range of point sizes: 64, 128, 256, 512, 1024, 2048, 4096, 8192, and 16384

e Choice of high-performance (streaming I/0) or Low Resource (burst I/0O) versions

e Run-time variable FFT point size

e Forward, inverse, or port-configurable forward/inverse transform modes

e Choice of no scaling, fixed scaling (RS111/RS211), or dynamically variable stage-wise scaling
e Data precision of 8 to 24 bits

e Twiddle factor precision of 8 to 24 bits

e Natural order for input and choice of bit-reversed or natural order for output

e Support for arbitrary gaps between input data blocks in high-performance realization
e Block floating point scaling support in Low Resource configurations

www. latticesemi.com/legal

.I.I’LATT’CE FFT Compiler IP Core - Lattice Radiant Software

User Guide

1.3. Conventions

1.3.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL.

1.3.2. Signal Names
Signal Names that end with:
e _jareinput signals

e o areoutputsignals

1.3.3. Attribute
The names of attributes in this document are formatted in title case and italicized (Attribute Name).

© 2020-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02153-1.3

= LATTICE

2. Functional Description

2.1. Overview

Figure 2.1 shows the interface diagram for the FFT compiler. The diagram shows all of the available ports for the IP. It
should be noted that not all the I/O ports are available for a chosen configuration.

clk_i——» ——exponent_o
rstn_i —— ——mexpect_o
mode_i —
modeset_i —»|
sfact_ i —m

L »rfib o

——ibend_o

. FFT
sfactset_i——» Compiler —obstart_o
points_i ——m .
. - —outvalid_o
pointset_i ——»
ibstart_i ——» - »dore o

dire_i —»

L —doim_o
drim_i —»

Figure 2.1. FFT Compiler Interface Diagram

FFT is a fast algorithm to implement the following N point Discrete Fourier Transform (DFT) function.
N-1

X(k) = Z x(n)erl\;C

n=0
(1)

where Wy is given by:

WNzeN

The inverse DFT is given by:
1N—1
—nk
X == X(w™
) nk§_0 tow™ g

(3)
However, the output of the FFT Compiler IP Core differs from the true output by a scale factor determined by the scaling
scheme. If right-shift by 1 at all stages scaling mode (RS111) is used, there is a division by 2 at every stage resulting in an
output that is 1/Nth of the true output of Equation (1). The output for inverse FFT matches with Equation (3) for this
scaling mode. Using other scaling modes results in outputs scaled by other appropriate scale factors.

In High Performance mode, the FFT Compiler IP Core can continuously read in and give out one data sample per clock,
block after block. The FFT throughput is equal to the clock rate when the data blocks are applied continuously. Low
Resource mode uses less logic and memory resources, but requires 4 to 8 block periods to compute the FFT for one block
of input data. Both versions of FFT do not allow breaks in the data stream within a block but do allow arbitrary additional
gaps between data blocks.

www. latticesemi.com/legal

= LATTICE

2.1.1. High Performance Architecture
The implementation diagram for the High Performance FFT is shown in Figure 2.2.

PEO PE1 PE[log2N-1]
mem mem mem
Input Output
Registers g g g processing,Bit
din_i—»| — = | P || = = | P " F—®dout_o
and bty 3 bfly 8 bfly 3 reversal and
Control control

Figure 2.2. Implementation Diagram for High-Performance FFT

The High Performance FFT implementation consists of several processing elements (PEs) connected in cascade. The
number of PEs is equal to log2 N, where N is the number of FFT points. Each PE has a radix-2 decimation-in-frequency
(DIF) butterfly (bfly), a memory (mem), an address generation and control logic (control), and a scaling unit (scaling).
Some of the butterflies include a twiddle multiplier and a twiddle factor memory. The scaling unit performs a division by
2, a division by 4, or no division, depending on the scaling mode and scale factor inputs at the port. There is an input-
processing block at the beginning of the PE chain and an output-processing block at the end of the PE chain. The input
processing block has registers and control logic for handshake signals and dynamic mode control. The output-processing
block contains handshake, mode control and bit-reversal logic, if configured for natural ordered output.

The High Performance FFT implementation enables streaming 1/O operation, where the data is processed at clock speed
without any gaps between blocks. This implementation can also be employed for burst 1/O situations by using the
handshake signals.

2.1.2. Low Resource Architecture

The Low Resource implementation employs only one physical radix-2 butterfly and reuses the same butterfly over
multiple time periods to perform all stages of the FFT computation. Hence the resource requirement (EBR and slices) is
lower compared to the high-performance version. Depending on the number of points, an N-point FFT computation may
require 4N to 8N cycles. The implementation diagram for the low-resource FFT is shown in Figure 2.3.

Twiddle
ROM

Input Data‘ ™ * —

| mem o o
| e
Butterfly g
™ :
> mem _ | o

n o b o o
% ||

 J

Output Data

Figure 2.3. Low-Resource FFT Data Flow Diagram

www. latticesemi.com/legal

= LATTICE

As Figure 2.3 shows, the FFT module is built with a butterfly reading from and writing to two memories at the same time.
There is a commutator after the butterfly to handle the writing sequence of the intermediate outputs. The twiddle
memory contains the pre-computed twiddle factors for the FFT. When an input block is applied, the first half of the block
is written into memory a and the second half into memory b in a bit-reversed order. The butterfly reads from the two
memories, performs stage 0 computation and writes out the intermediate results to the same sites in each memory.
Again, for stage 1 computation, the butterfly reads from the two memories, performs computation and writes back into
the two memories through the commutator. A similar process of reading, computing and writing continues for each of
the remaining stages. For every block of input data read, four to eight blocks of computation time is required for this
scheme. Due to the twin memory architecture, when data is unloaded form FFT in bit-reversed mode, the data in memory
a (points 0 to N/2-1) is unloaded first, followed by the data in memory b (N/2 to N-1), both in a bit-reversed order.

2.2. Signal Descriptions

The top-level interface diagram for the FFT Compiler IP Core is shown in Figure 2.1 and the details of the 1/O ports are
summarized in Table 2.1.

Table 2.1. Top level I/0 interface

Port | Direction Bits Description

Clock and Reset

clk_i Input 1 System clock

rstn_i Input 1 System wide asynchronous active-low reset signal

Data Input and Output

dire_i Input Input Data Width Real part of the input data

diim_i Input Input Data Width Imaginary part of the input data

dore_o Output Output Data Width | Real part of the output data

doim_o Output Output Data Width | Imaginary part of the output data

exponent_o Output Log2(N) +1 This value denotes the effective scaling that was done during

block floating scaling. Available only when Scaling Mode ==
Block Floating Point.

Configuration Signals

mode_i Input 1 When asserted, core will perform inverse FFT else core will
perform forward FFT.

The value at mode_i is loaded into the system whenever
modeset_i input goes high. The changes are effective from the
start of the next input data block, i.e., for an ibstart_i going
high during or after modeset_i.

modeset_i Input 1 Sets the FFT mode signal. When this signal goes high, the value
at mode_i port is read and the FFT mode (forward or inverse
FFT) is set.

sfact_i Input A Stage-wise scaling factors. This signal is a concatenation of

individual 2-bit stage scaling factors. The most significant 2 bits
correspond to stage 1 scale factor, the next significant 2 bits to
stage 2 scale factor and so on. When the number of point is
not a power of 4, the last stage has only 1-bit scaling factor.
Each scaling factor denotes the number of right shifts
performed to that stage’s output data.

The scale factors are loaded into the system when sfactset_i
input goes high. The changes are effective from the start of the
next input data block, for example, for an ibstart_i going high
during or after sfactset_i.

www. latticesemi.com/legal

= LATTICE

Port

Direction

Bits

Description

sfactset_i

Input

Set scale factor signal. When this signal goes high, stage-wise
scaling factors are set with the values at sfact_i input port.

points_i

Input

3 if Maximum
Points == 128

,otherwise, 4

Number of FFT points. This input is used to specify the number
of points in the dynamic points mode. The value at this port
must be equal to the log2 of the number of points represented
in unsigned binary form. The valid range of values is from 6 to
14. A value less than 6 is read as 6 and a value greater than 14
is read as 14.

pointset_i

Input

Set the number of points signal. When this input signal goes
high, the value at points_i port is read and the number of FFT
points is set accordingly. The new number of points is effective
from the next block of data, for example, for a valid ibstart_i
applied after pointset_i going high. For Low Resource mode,
pointset_i can be applied during or before ibstart_i. For High
Performance mode, pointset_i must be applied five cycles
before ibstart_i.

Status and Handshake Signals

ibstart_i

Input

Input block start signal. Asserted high by the user to identify
the start of an input data block. Once this signal goes high for
a cycle, the core enters an input read cycle, during which input
data is read in N consecutive cycles (N is the number of FFT
points). Any ibstart_i signal during an input read cycle is
ighored.

except_o

Output

Exception output signal. Denotes that an exception (overflow)
has occurred in the computation. This could be due to the use
of a wrong set of scaling factors. The exception always
corresponds to a problem with the data that is currently
output and not with a problem with the data that is being
processed.

rfib_o

Output

Ready for input block output signal. This signal indicates that
the core is ready to receive the next block of input data. The
driving system can assert ibstart_i one cycle after rfib_o goes
high. After ibstart_i goes high, the core pulls rfib_o low in the
next clock cycle.

ibend_o

Output

Input block end output signal. This signal goes high for one
cycle to coincide with the last sample of the current input data
block that is being read through input ports.

obstart_o

Output

Output block start output signal. This signal is asserted high by
the core for one clock cycle, to signify the start of an output
block of data.

outvalid_o

Output

Output data valid output signal. This signal indicates that the
core is now giving out valid output data through dore_o and
doim_o ports.

Notes:
If Points Variability == Variable N = Maximum Points else N = Number of Points

If Points Variability == Fixed : A = 11 when Number of Points == 64, A = 13 when Number of Points == 128, ..., A= 27 when
Number of Points == 16384

If Points Variability == Variable : A = 11 when Maximum Points == 64, A = 13 when Maximum Points == 128, ..., A = 27 when
Maximum Points == 16384

www. latticesemi.com/legal

2.3. Attribute Summary

The configurable attributes of the FFT Compiler IP Core are shown in Table 2.2 and are described in Table 2.3.The
attributes can be configured through the IP Catalog’s Module/IP wizard of the Lattice Radiant software.

Table 2.2. Attributes Table

= LATTICE

4096, 8192

Attribute Selectable Values Default Dependency on Other Attributes
Points/Mode
Number of Points
Points Variability Fixed, Variable Fixed —
Number of Points 64,128, 256,512, 1024, 2048, 64 Points Variability == Fixed
4096, 8192, 16384
Maximum Points 128, 256,512, 1024, 2048, 128 Points Variability == Variable
4096, 8192, 16384 Maximum Points available are always
greater than Minimum Points setting
Minimum Points 64,128, 256, 512, 1024, 2048, 64 Points Variability == Variable

Minimum Points available is always
less than Maximum Points setting

Architecture

Architecture

High Performance, Low

Low Resource

Resource
FFT Mode
FFT Mode Forward, Inverse, Dynamic Forward —
Through Port
Output Order

Output order

Bit-reversed, Natural

Bit-reversed

Scaling/Width

Scaling Mode
Scaling Mode None, RS111, RS211, Dynamic RS111 Block Floating Point
Through Port, Block Floating is only available when Architecture ==
Point Low Resource
Fix Last Stage Scaling to True, False True Editable when Scaling Mode ==
RS111 Truncation Dynamic Through Port and
Architecture == High performance
Data Width
Input Data Width 8to24 16 —
Output Data Width 81032 16 Display information only.
When Scaling Mode ==
Dynamic Through Port or
Scaling Mode == None, Output
Data Width will be Input Data
Width + log2 [Points] ,
otherwise Output data width
will be Input Data Width
Twiddle Factor Width 81024 16 -
Precision Reduction Method
Precision Reduction Truncation, Rounding Truncation Editable when Scaling Mode != None
Truncate Last Stage 0,1 1 Editable only when

Architecture == High performance,
Precision Reduction == Rounding,

Scaling Mode == RS111 or Scaling

Mode == RS211

www. latticesemi.com/legal

= LATTICE

Attribute

Selectable Values Default Dependency on Other Attributes

Implementation

Multiplier Type

DSP Block Based, LUT based DSP Block Based —

Multiplier Pipeline 2,3,4 3 Editable when Architecture == Low
Resource and Multiplier Type == LUT
based

Adder Pipeline 0,1 0 Editable when Architecture == Low

resource and Scaling Mode != Block
Floating Point

Memory Type

EBR Memory, Distributed
Memory, Automatic

EBR Memory —

Table 2.3. Attributes Description

Attribute

Description

Points/Mode

Points Variability

Allows you to specify fixed or variable number of points

Number of Points

Specifies the number of FFT points if Points variability == Fixed

Minimum Points

Denotes the minimum for the points range if Points variability == Variable

Maximum Points

Denotes the maximum for the points range if Points variability == Variable

Architecture

This option selects either High-Performance (streaming I/O) or Low Resource (Burst I/O) architecture.

FFT Mode

This parameter configures operating mode of the core.

Output order

This parameter specifies whether the output data is in bit-reversed or natural order. Each is described
as:

Natural order output: Output is directly fed to the following stage

Bit Reversal: Applicable separately to the lower and upper half of the output. For an N point FFT, the
first N/2 points are available in bit-reversed order first, followed by the second N/2 points in a bit-
reversed order.

Scaling/Width

Scaling Mode

This parameter defines whether the data is scaled or not after each radix-2 butterfly and if so, what

kind of scaling is used. Each is describe as:

e None: There is no scaling at the output of butterflies.

e RS111: Results in a fixed scaling of right shift by 1 in all FFT stages.

e RS211: Results in a fixed scaling of right shift by 2 in the first stage and right shift by 1 in the
subsequent stages.

e Dynamic Through Port: The scale factors for the FFT stages are read dynamically from the input
port sfact_i for every data block.

e Block Floating Point Scaling: The dynamic range for the intermediate computation is increased by
extracting a common exponent for all the data points in each stage and using the full arithmetic
width for processing only the mantissa. An additional output port exponent_o is added to the FFT
compiler core when this option is selected. This option is not available for the High performance.

Fix Last Stage Scaling to
RS111 Truncation

Can be enabled to improve scaling performance.

Data Width

Input Data Width

Specifies input data width of either of the components: real or imaginary

Output Data Width

Specifies output data width of either of the components: real or imaginary

Twiddle Factor Width

Specifies twiddle factor width of either of the components: real or imaginary

Precision Reduction

Selects the scaling process to be applied after every stage.

e Truncation: Truncating the data (discarding last one or two bits). This will result to less logic
utilization.

e Rounding: Rounding the data to the nearest number in the scaled precision (discarding one or
two bits and making correction to the output based on discarded bits). This will improve the
accuracy of the results.

Truncate Last Stage

This can be enabled to have better throughput.

www. latticesemi.com/legal

= LATTICE

Attribute Description

Implementation

Multiplier Type This option specifies whether DSP blocks or LUTs are used for implementing multipliers and multiply-
add components.

Adder Pipeline This option is used to specify an additional pipeline after the adders. This can be enabled to have
better performance at the cost of slightly increased utilization and latency.

Multiplier Pipeline This option is used to specify the pipeline of LUT based multipliers. Higher values for pipeline leads to
better performance at the cost of slightly increased utilization and latency.

Memory Type This parameter specifies the balance between using EBR and distributed memories. If EBR memory is
selected, EBRs are used for memory depths 32 and higher. If the Distributed Memory option is
selected, EBR memories are used only for depths 512 or more and the rest uses distributed memories.
In the automatic option, the IP generator uses a pre-defined setting to select the EBR and distributed
memories based on the FFT parameters.

2.4. Interfacing with the FFT Compiler

2.4.1. Configuration Signals

There are three dynamic configuration signals used in the FFT compiler: mode_i, sfact_i, and points_i. You can
independently select each of these. The configuration signals are sampled and stored when the corresponding set
signals are active. Specifically, mode_i is set when modeset_i is active, sfact_i is set when sfactset_i is active, and
points_i is set when pointset_i becomes active. However, these values must be set during or before the start of a block
for them to be effective for that block. In other words, the set signals must be active at or before ibstart_i going active,
for them to be effective for that block. There are a couple of exceptions to this rule. In low-resource implementation
and in bit-reversed output mode, the set signals are ignored when outvalid_o is high. Refer to Figure 2.5 for an
illustration of configuration signal timing. In High Performance implementation, the pointset_i must be applied five
cycles before ibstart_i for it to be effective for the next block.

2.4.2. Handshake Signals

The input ibstart_i is used to specify the start of a data block and it is assumed to coincide with first data point in the
input block. This signal also sets the configuration of the core based on the values set by the corresponding set signals.
Once ibstart_i is valid, the core starts reading the input in consecutive clocks without gap until all the N- points are read.
When the last data in a block is being read from input, the output ibend_o is asserted high by the core. The output control
signal rfib_o indicates that the core is ready for a new input block. One cycle after ibstart_i, the output rfib_o goes low
and it remains low until one cycle before the next block can be applied. The external driving system can check for rfib_o
and start an input block in the next cycle after rfib_o goes high. Refer to Figure 2.5 for an illustration of configuration
signal timing.

2.4.3. Exponent Output

The output port exponent_o gives the value of the exponent of the multiplicative factor for the output to get the true
FFT output. The value of exponent is an unsigned number. The true (i)FFT output is given by:

True (i)FFT output = (dore_o x 2*exponent_o) + j (doim_o x 2*exponent_o)

2.4.4. Exceptions

Exceptions occur if there is an internal overflow in the computation of an output block. An exception is notified by the
except_o signal going high during a valid output. The except_o signal goes high if one or more overflows occur during
the computation of a block. The severity and number of overflow exceptions in a block depends on the scaling scheme
used and the property of the input data. If the user is using an appropriate scaling method for the expected input data
and can tolerate occasional exceptions, the except_o output may be left unconnected leading to a slightly reduced
resource utilization.

www. latticesemi.com/legal

= LATTICE

2.5. Timing Specifications

The top-level timing diagrams for several cases are given in Figure 2.4 and Figure 2.6.

acs | LD L]

rfib_o

ibstart_i /7]

dire_i,
diim_i

1)

——
x

ibend_o /

outpltlatency
dore_o, | py e o o
doim_o X}(0) XJ(1) § x| o

1

obstart_o

outvalid_o

Figure 2.4. Timing Diagram for Streaming 1/0O for 64 Points

www. latticesemi.com/legal

= LATTICE

rfib_o N |

mode_i X X moflel X T X X moge2 X -
modeset_i / | / \
sfact_i x X sfactl X S X X sfact2 X X
sfactset_i / \ e / \
points_i X X pointsl X X T X XpOintsz X
pointset_i / LN A R /—\—
ibstart_i / \ / \

dire_i,
diim_i %0 NS EHEEE
ibend_o L / \

This block uses: This block uses:

model, sfactl and pointsl mode2, sfact2 and points1, as
only modeset and sfactset
occur at or before ibstart

Figure 2.5. Timing Diagram Showing Handshake Signals for Low Resource FFT

www. latticesemi.com/legal

= LATTICE

FFT Compiler IP Core - Lattice Radiant Software
User Guide

o LT LT e L

tfib_o \ 1 al
mode_i X model X X e mode2 X X
modeset_i / \ L L
sfact_i (sfactl X -T- x (sfact2 x
sfactset_i / o -
== X points2

>

points_i X x points1

pointset_i \

ibstart_i

dire_i,

diim_i

ibend_o

(x,(0) x,(1) <: - :Xxl(€3) — - X,(0) x,(1)

A

This block uses:

model, sfactl and pointsl

This block
P uses:

mode2, sfact2
and pointsl, as
pointset does
notarrive 5
cycles before
ibstart

Figure 2.6. Timing Diagram Showing Handshake Signals for High Performance FFT

2.6. Output Latency

Table 2.44 provides the latency through the IP Core as a function of FFT point size and implementation mode.

Table 2.4. Local User Interface Functional Groups

FFT Point Size Low Resource Mode High Performance Mode

64 278 83

128 598 152

256 1302 282

512 2838 543

1024 6166 1057

2048 13334 2086

4096 28694 4136

8192 61462 8237

16384 131094 16431

© 2020-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02153-1.3

17

= LATTICE

3. IP Generation and Evaluation

This section provides information on how to generate the 2D Scaler IP Core using the Lattice Radiant software and how
to run simulation and synthesis. For more details on the Lattice Radiant software, refer to the Lattice Radiant Software
User Guide.

3.1. Licensing the IP

An IP core-specific license string is required enable full use of the FFT Compiler IP Core in a complete, top-level design.
You can fully evaluate the IP Core through functional simulation and implementation (synthesis, map, place and route)
without an IP license string. This IP Core supports Lattice’s IP hardware evaluation capability, which makes it possible to
create versions of the IP core, which operate in hardware for a limited time (approximately four hours) without requiring
an IP license string. See Hardware Evaluation section for further details. However, a license string is required to enable
timing simulation and to generate bitstream file that does not include the hardware evaluation timeout limitation.

3.2. Generation and Synthesis

The Lattice Radiant software allows you to customize and generate modules and IPs and integrate them into the device’s
architecture. The procedure for generating the FFT Compiler IP Core in Lattice Radiant software is described below.

To generate the FFT Compiler IP Core:
1. Create a new Lattice Radiant software project or open an existing project.

2. Inthe IP Catalog tab, double-click on FFT Compiler under IP, DSP category. The Module/IP Block Wizard opens as
shown in Figure 3.1. Enter values in the Component name and the Create in fields and click Next.

Madule/IP Block Wizard X

Generate Component from IP fft_compiler Version 1.2.0
This wizard will guide you through the configuration, generation and instantiation of this Module/IP. Enter the following information to get started.

Component name: | fft 0

Create in: C:/Radiant_Projects/fft_compiler Browse...

Next > Cancel

Figure 3.1. Module/IP Block Wizard

www. latticesemi.com/legal

= LATTICE

FFT Compiler IP Core - Lattice Radiant Software

User Guide

3. Inthe module’s dialog box of the Module/IP Block Wizard window, customize the selected FFT Compiler IP Core
using drop-down menus and check boxes. As a sample configuration, see Figure 3.2. For configuration options, see
the Attribute Summary section.

Module/IP Block Wizard
Ci G from IP fft_s iler Version 1.2.0
Set the following parameters to configure this component.
Diagram fft_0 Configure fft_0:
Points/Mode Scaling/Width Implementation
Property Value
~ Number of ponts
ﬁ:t 0 Points Variability | Fixed
= Number of Points | 64

doim_o[15:0] =
—iclk_i dore_o[15:0] =
- d“m—l[15:0] except_o— Architecture Low Resource
= dire_i[15:0] ibend_ol— ~ FFT Mode

4 4 FFT Mode Forward
—ibstart_i obstart_o— w——
—{rstn_i outvalid_of— Cutput Order Bit-reversed
rfib_o—
fft_compiler
-
4 3 Mo DRC issues are found.
< Back Generate

Cancel

Figure 3.2. Configure User Interface of FFT Compiler IP Core

4. Click Generate. The Check Generated Result dialog box opens, showing design block messages and results as

shown in Figure 3.3.

Module/IP Block Wizard

Check Generated Result
Check the generated component results in the panel below. Uncheck option ‘Insert to project’ if you do not want to add this component to your design.

1P: fft_compiler Version: 1.2.0
Vendor: latticesemi.com
Language: Verilog

Generated files:

IP-XACT_component: component.xml
IP-XACT_design: design.xml
black_box_verilog: riffft_0_bb.v

cfg: fit_0.cfg

1P package file: fft_0.ipx
template_verilog: misc/fft_0_tmplv
dependency_file: testbench/dut_inst.v
dependency_file: testbench/dut_params.v
timing_constraints: constraints/fft_0.ldc
template_vhdl: misc/fft_0_tmpl.vhd
top_level_verilog: rtl/fft_0.v

Component 'fft_0' is successfully generated.

Insert to project

< Back

Finish

Figure 3.3. Check Generated Result

FPGA-IPUG-02153-1.3

© 2020-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

19

= LATTICE

5. Click the Finish button. All the generated files are placed under the directory paths in the Create in and the
Component name fields shown in Figure 3.1.

The generated FFT Compiler IP Core package includes the black box (<Component name>_bb.v) and instance templates
(<Component name>_tmpl.v/vhd) that can be used to instantiate the core in a top-level design. An example RTL top-
level reference source file (<Component name>.v) that can be used as an instantiation template for the IP Core is also
provided. You may also use this top-level reference as the starting template for the top-level for their complete design.
The generated files are listed in Table 3.1.

Table 3.1. Generated File List

Attribute

Description

<Component name>.ipx

This file contains the information on the files associated to the generated IP.

<Component name>.cfg

This file contains the parameter values used in IP configuration.

component.xml

Contains the ipxact:component information of the IP.

design.xml

Documents the configuration parameters of the IP in IP-XACT 2014 format.

rtl/<Component name>.v This file provides an example RTL top file that instantiates the IP core.

rtl/<Component name>_bb.v This file provides the synthesis black box.

misc/<Component
misc
name>_tmpl.vhd

name>_tmpl.v
/<Component

These files provide instance templates for the IP core.

3.3. Running Functional Simulation

After the IP is generated, running functional simulation can be performed using different available simulators. The
default simulator already has pre-compiled libraries ready for simulation. Choosing a non-default simulator, however,
may require additional steps.

To run functional simulation using default simulator:

1. Click the @

button located on the Toolbar to initiate the Simulation Wizard shown in Figure 3.4.

Simulation Wizard ? il

Simulator Project Name and Stage
Enter name and directory for your simulation project. Choose simulator and the process stage you
wizh to simulate, Available stages are automatically displayed.

Project

Project name: ri_sim_fft_0

Project location: | C:/Radiant_Projects/fft_compiler Browse. ..
Simulator

Active-HDL
® ModelSim/Questa Sim

Performing Simulation with Mentor Graphics MadelSim/Quests

Process Stage
® RTL

< Back Mext = Cancel

Figure 3.4. Simulation Wizard

www.latticesemi.com/legal

= LATTICE

2. Click Next to open the Add and Reorder Source window as shown in Figure 3.5.

Simulation Wizard T X

Add and Reorder Source
Add HDL type source files and place test bench files under the design files.

Source Files: d la W & |3

Ci/Radiant_Projects/fft_compiler/fft_0/rtlfft_0.
Ci/Radiant_Projects/fft_compiler/fft_0/testbench/fft_compiler_output_monitorv
C:/Radiant_Projects/fft_compiler/fft_0/testbench/fft_compiler_random_data_gen.v
C:/Radiant_Projects/fft_compiler/fft_0/testbench/fft_compiler_scoreboard.v
Ci/Radiant_Projects/fft_compiler/fft_0/testbench/fft_compiler_th_defines.v
C:/Radiant_Projects/fft_compiler/fft_0/testbench/tb_top.v

Automatically set simulation compilation file order

< Back Next > Cancel

Figure 3.5. Adding and Reordering Source

3. Click Next. The Summary window is shown. Click Finish to run the simulation.
Note: It is necessary to follow the procedure above until it is fully automated in the Lattice Radiant software suite.

The results of the simulation in our example are provided in Figure 3.6.

Figure 3.6. Simulation Waveform

3.4. Hardware Evaluation

The FFT Compiler IP Core supports Lattice’s IP hardware evaluation capability when used with Lattice FPGA devices built
on the Lattice Nexus™ platform. This makes it possible to create versions of the IP Core that operate in hardware for a
limited period of time (approximately four hours) without requiring the purchase of an IP license. It may also be used to
evaluate the core in hardware in user-defined designs. The hardware evaluation capability may be enabled/disabled in
the Strategy dialog box. It is enabled by default. To change this setting, go to Project > Active Strategy > LSE/Synplify Pro
Settings.

www. latticesemi.com/legal

= LATTICE

4. Ordering Part Number

The Ordering Part Number (OPN) for this IP Core are the following:

FFT-COMP-CNX-U — FFT Compiler for CrossLink-NX — Single Design License
FFT-COMP-CNX-UT — FFT Compiler for Crosslink-NX — Site License
FFT-COMP-CTNX-U — FFT Compiler for Certus-NX — Single Design License
FFT-COMP-CTNX-UT — FFT Compiler for Certus-NX — Site License
FFT-COMP-CPNX-U — FFT Compiler for CertusPro-NX — Single Design License
FFT-COMP-CPNX-UT — FFT Compiler for CertusPro-NX — Site License
FFT-COMP-XO5-U — FFT Compiler for MachX0O5-NX - Single Design License
FFT-COMP-XO5-UT — FFT Compiler for MachXO5-NX - Site License
FFT-COMP-X05-US — FFT Compiler for MachXO5-NX - 1 Year Subscription License
FFT-COMP-AVE-U — FFT Compiler for Avant-E — Single Design License
FFT-COMP-AVE-UT — FFT Compiler for Avant-E — Site License
FFT-COMP-AVE-US — FFT Compiler for Avant-E — 1-Year Subscription License

www. latticesemi.com/legal

= LATTICE

Appendix A. Resource Utilization
Table A.1 shows the resource utilization of the FFT Compiler IP Core for the LFMX05-25-9BBG400I device using Synplify

Pro of Lattice Radiant Software 2022.1. Default configuration is used, and some attributes are changed from the
default value to show the effect on the resource utilization.

Table A.1. Resource Utilization (For LFMX05-25-9BBG400l)

Configuration Clk Fmax (MHz)! | Registers LUTs EBRs DSPs?
Default 200 999 673 3 4
Architecture: High Performance,

200 1128 1527 1 8
Others = Default
Architecture: High Performance, 131.631 5338 4343 1 0
Multiplier Type: LUT-based ’
FFT Mode: Dynamic Through Port,

200 1004 674 3 4
Others = Default
Input Data Width: 24,
Twiddle Factor Width: 24, 200 1483 973 6 16
Others = Default
Multiplier Type: LUT-based,
Memory Type: Distributed Memory, 140.154 1280 2364 0 0
Others = Default

Note:

1. Fmaxis generated when the FPGA design only contains FFT Compiler IP Core, and the target frequency is 100MHz. These values
may be reduced when user logic is added to the FPGA design.

2. Number of Multipliers

Table A.2 shows the resource utilization of the FFT Compiler IP Core for the LFMX05-25-7BBG400I device using Synplify
Pro of Lattice Radiant Software 2022.1. Default configuration is used, and some attributes are changed from the
default value to show the effect on the resource utilization.

Table A.2. Resource Utilization (For LFMX05-25-7BBG400l)

Configuration Clk Fmax (MHz)' | Registers LUTs EBRs DSPs?
Default 164.772 999 673 3 4
Architecture: High Performance,
167.757 1128 1527 1 8

Others = Default
Architecture: High Performance, 84.402 2110 4349 n 0
Multiplier Type: LUT-based ’
FFT M :D icTh h Port

ode: Dynamic Through Port, 171.527 1004 674 3 4
Others = Default
Input Data Width: 24,
Twiddle Factor Width: 24, 162.153 1483 973 6 16
Others = Default
Multiplier Type: LUT-based,
Memory Type: Distributed Memory, 85.121 1280 2364 0 0
Others = Default

Note:

1. Fmaxis generated when the FPGA design only contains FFT Compiler IP Core, and the target frequency is 100MHz. These values
may be reduced when user logic is added to the FPGA design.

2. Number of Multipliers

www.latticesemi.com/legal

= LATTICE

Table A.3 shows the resource utilization of the FFT Compiler IP Core for the LAV-AT-500E-3LFG1156I device using
Synplify Pro of Lattice Radiant Software 2022.1. Default configuration is used, and some attributes are changed from
the default value to show the effect on the resource utilization.

Table A.3. Resource Utilization (for LAV-AT-500E-3LFG11561)

Configuration Clk Fmax (MHz)' | Registers LUTs EBRs DSPs

Default 251.762 830 638 3.0 4

Architecture: High Performance,
Others = Default

Architecture: High Performance,

Multiplier Type: LUT-based 156.323 1674 4021 1.0 0

FFT Mode: Dynamic Through Port,

251.762 835 639 3.0 4
Others = Default

Input Data Width: 24,
Twiddle Factor Width: 24, 185.632 1921 1156 3.0 16
Others = Default

Multiplier Type: LUT-based,
Memory Type: Distributed Memory, 178.508 1296 2163 0 0
Others = Default

Note:
1. Fmaxis generated when the FPGA design only contains FFT Compiler IP Core, and the target frequency is 100MHz. These values
may be reduced when user logic is added to the FPGA design.

Table A.4 shows the resource utilization of the FFT Compiler IP Core for the LAV-AT-500E-1LFG1156I device using
Synplify Pro of Lattice Radiant Software 2022.1. Default configuration is used, and some attributes are changed from
the default value to show the effect on the resource utilization.

Table A.4. Resource Utilization (for LAV-AT-500E-1LFG11561)

Configuration Clk Fmax (MHz)! | Registers LUTs EBRs DSPs

Default 225.887 830 638 3.0 4

Architecture: High Performance,
Others = Default

Architecture: High Performance,

Multiplier Type: LUT-based 145.815 1674 4021 1.0 0

FFT Mode: Dynamic Through Port,

237.304 835 639 3.0 4
Others = Default

Input Data Width: 24,
Twiddle Factor Width: 24, 162.655 1921 1156 3.0 16
Others = Default

Multiplier Type: LUT-based,
Memory Type: Distributed Memory, 165.673 1296 2163 0 0
Others = Default

Note:
1. Fmaxis generated when the FPGA design only contains FFT Compiler IP Core, and the target frequency is 100MHz. These values
may be reduced when user logic is added to the FPGA design.

www. latticesemi.com/legal

.I.I’LATT’CE FFT Compiler IP Core - Lattice Radiant Software

User Guide

Appendix B. Limitations

The following configurations are not yet support for Avant devices:

e ‘High Performance’ Architecture with ‘DSP Block Based’ Multiplier Type Implementation

© 2020-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02153-1.3 25

FFT Compiler IP Core - Lattice Radiant Software
User Guide

= LATTICE

References

e CrossLink-NX FPGA Web Page at www.latticesemi.com
e Certus-NX FPGA-Web Page at www.latticesemi.com

e CertusPro-NX FPGA Web Page at www.latticesemi.com

© 2020-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

26

FPGA-IPUG-02153-1.3

.I.ILATT’CE FFT Compiler IP Core - Lattice Radiant Software

User Guide

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

© 2020-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02153-1.3 27

FFT Compiler IP Core - Lattice Radiant Software

User Guide

Revision History

Document Revision 1.3, Lattice Radiant SW Version 2022.1, November 2022

Section

Change Summary

Introduction

Updated Table 1.1. Quick Facts:
e Added Lattice Avant to Supported FPGA Families.
e Added LAV-AT-500E to Targeted Devices.

Appendix A: Resource Utilization

e Updated LFMX05-25-9BBG400! and LFMX05-25-7BBG400I resource data using Radiant

2022.1.
e Added LAV-AT-500E-3LFG1156] and LAV-AT-500E-1LFG1156l.

Ordering Part Number

Added part numbers for Avant-E.

Appendix B: Limitations

Added IP Configuration limitation for Avant devices.

Document Revision 1.2, Lattice Radiant SW Version 3.2, May 2022

Section

Change Summary

Introduction

Updated Table 1.1. Quick Facts
e Added MachX05-NX to Supported FPGA Families
e Added LFMXO05-25 to Targeted Devices

IP Generation and Evaluation

Updated Figure 3.1. Module/IP Block Wizard, Figure 3.2. Configure User Interface of FFT
Compiler IP Core, and Figure 3.3. Check Generated Result.

Ordering Part Number

Added the following part numbers:

e FFT-COMP-XO5-U - FFT Compiler for MachXO5-NX - Single Design License

. FFT-COMP-XO5-UT - FFT Compiler for MachXO5-NX - Site License

. FFT-COMP-X0O5-US - FFT Compiler for MachXO5-NX - 1 Year Subscription License

Appendix A: Resource Utilization

Updated resource utilization for LFMXO05-25-9BBG400! and LFMXO05-25-7BBG400I.

Document Revision 1.1, Lattice Radiant SW Version 3.0, June 2021

Section

Change Summary

All

Minor adjustments in formatting.

Introduction

Updated section content, including Table 1.1 to add CertusPro-NX support.

Ordering Part Number

Added part numbers for CertusPro-NX.

References

Added webpage for CertusPro-NX.

Document Revision 1.0, Lattice Radiant SW Version 2.1, December 2020

Section Change Summary
All Initial release
© 2020-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

28

FPGA-IPUG-02153-1.3

= LATTICE

WWWWWWWWWWWWWWWWWWW

