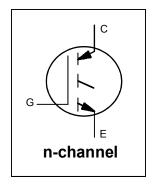

International


 $V_{CES} = 1200V$ $I_{C(Nominal)} = 75A$ $T_{J(max)} = 175^{\circ}C$ $V_{CE(on)} typ = 1.6V @ I_{C} = 75A$

Applications

- Medium Power Drives
- UPS
- HEV Inverter
- Welding
- Induction Heating

INSULATED GATE BIPOLAR TRANSISTOR

G	С	E		
Gate	Collector	Emitter		

Features	Benefits
Low V _{CE(ON)} and switching Losses	High efficiency in a wide range of applications
Square RBSOA	Rugged Transient Performance
Maximum Junction Temperature 175°C	Increased Reliability
Positive V _{CE (ON)} Temperature Coefficient	Eventer automate charing in nevellation evention
Integrated Gate Resistor	Excellent current sharing in parallel operation

Bass port number	Deekege Ture	Standa	rd Pack	Ordereble nert number	
Base part number	Package Type	Form	Quantity	Orderable part number	
IRG7CH73UEF-R	Die on film	Wafer	1	IRG7CH73UEF-R	

Mechanical Parameter

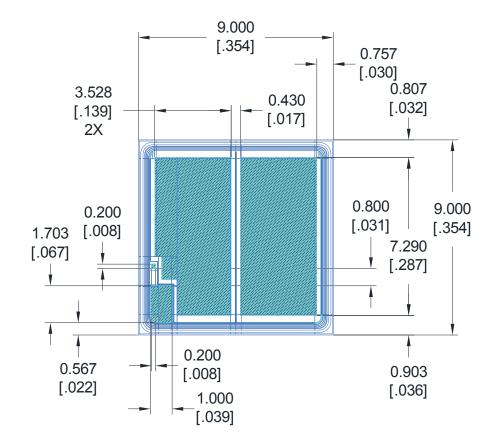
Die Size	9.0 x 9.0	mm ²		
Minimum Street Width	75	μm		
Emiter Pad Size (Included Gate Pad)	See Die Drawing			
Gate Pad Size	1.0 x 1.7	mm ²		
Area Total / Active	81/57.7			
Thickness	120	μm		
Wafer Size	200	mm		
Flat Position	0	Degrees		
Maximum-Possible Chips per Wafer	319 pcs			
Passivation Front side	Silicon Nitride			
Front Metal	Al, Si (4µm)			
Backside Metal	Al- Ti - Ni- Ag (1kA°-1kA°-4kA°-6kA°)			
Die Bond	Electrically conductive epoxy or solder			
Reject Ink Dot Size	0.25 mm diameter minimum			

Maximum Ratings

	Parameter	Max.	Units
V _{CE}	Collector-Emitter Voltage, TJ=25°C	1200	V
I _C	DC Collector Current	\bigcirc	A
I _{LM}	Clamped Inductive Load Current ②	300	Α
V_{GE}	Gate Emitter Voltage	± 30	V
T _J , T _{STG}	Operating Junction and Storage Temperature	-40 to +175	°C

Static Characteristics (Tested on wafers) . T_J =25°C

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200	_			V _{GE} = 0V, I _C = 100µA
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage			2.0	V	V _{GE} = 15V, I _C = 75A, T _J = 25°C
$V_{GE(th)}$	Gate-Emitter Threshold Voltage	3.0		6.0		$I_{C} = 3.5 \text{mA}$, $V_{GE} = V_{CE}$
I _{CES}	Zero Gate Voltage Collector Current		1.0	25	μA	V _{CE} = 1200V, V _{GE} = 0V
I _{GES}	Gate Emitter Leakage Current			± 400	nA	$V_{CE} = 0V, V_{GE} = \pm 30V$
R _{G INTERNAL}	Internal Gate Resistance	1.9	2.5	3.1	Ω	


Electrical Characteristics (Not subject to production test- Verified by design/characterization)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V	Collector to Emitter Saturated Voltage		1.6		V	V_{GE} = 15V, I_C = 75A , T_J = 25°C ④
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage		2.0		v	V _{GE} = 15V, I _C = 75A , T _J = 175°C④
	SOA Reverse Bias Safe Operating Area FULL SQUARE			T _J = 175°C, I _C = 300A		
RBSOA			FULL SQUARE			V _{CC} = 960V, Vp ≤1200V
						Rg = 5 Ω , V _{GE} = +20V to 0V
C _{iss}	Input Capacitance		10000			V _{GE} = 0V
C _{oss}	Output Capacitance		330		pF	V _{CE} = 30V
C _{rss}	Reverse Transfer Capacitance		250			f = 1.0 MHz,
Q _g	Total Gate Charge (turn-on)		540			I _C = 75A ⑥
Q _{ge}	Gate-to-Emitter Charge (turn-on)		80		nC	V _{GE} = 15V
Q _{gc}	Gate-to-Collector Charge (turn-on)	_	230			V _{CC} = 600V

Switching Characteristics (Inductive Load-Not subject to production test-Verified by design/characterization)

	Parameter	Min.	Тур.	Max.	Units	Conditions ©⑦
t _{d(on)}	Turn-On delay time		90			I _C = 75A, V _{CC} = 600V
t _r	Rise time	—	70	_		R _G = 5Ω, V _{GE} =15V, L=200μH
t _{d(off)}	Turn-Off delay time	—	580	_		T _J = 25°C
t _f	Fall time	—	50	_	n 0	
t _{d(on)}	Turn-On delay time	—	80	_	ns	I _C = 75A, V _{CC} = 600V
t _r	Rise time	_	70	_		R _G = 5Ω, V _{GE} =15V, L= 200μH
t _{d(off)}	Turn-Off delay time	_	735	_		T _J = 175°C
t _f	Fall time	_	150	_		

Die Drawing

NOTES:

- 1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIE WIDTH AND LENGTH TOLERANCE: -0.0508 [.002]
- 4. DIE THICKNESS = 0.120 [.0047]

REFERENCE: IRG7CH73UB-R

Notes:

- \odot The current in the application is limited by T_{JMax} and the thermal properties of the assembly.

- ④ Die Level Characterization
- ⑤ Not subject to production test-Verified by design / characterization
- © Pulse width limited by junction temperature
- ⑦ Values influenced by parasitic L and C in measurement

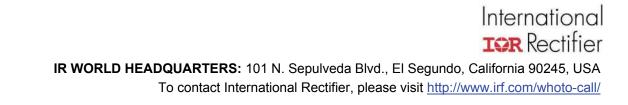
Additional Testing and Screening

For Customers requiring product supplied as Known Good Die (KGD) or requiring specific die level testing, please contact your local IR Sales.

Shipping

Sawn Wafer on Film. Please contact your local IR sales office for non-standard shipping options

Handling


- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environment.
- Singulated die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

Wafer/Die Storage

- Proper storage conditions are necessary to prevent product contamination and/or degradation after shipment.
- Note: To reduce the risk of contamination or degradation, it is recommended that product not being used in the assembly process be returned to their original containers and resealed with a vacuum seal process.
- Sawn wafers on a film frame are intended for immediate use and have a limited shelf life.

Further Information

For further information please contact your local IR Sales office or email your enquiry to http://die.irf.com

