

SPEAKER-1115-4-SC-COBRA SF

The 11×15×4 mm COBRA SF is high-end miniature speaker of rectangular shape with lateral sound outlets. Specifically designed for sidefiring applications, this speaker version enables a reduced application height in small, slim consumer devices, such as music phones, smartphones or tablet computers where high quality sound and maximum space efficiency are required.

In addition, COBRA SF features Knowles' advanced membrane technologies resulting in a state-of-the-art silicone membrane. This unique silicone membrane enables ultra-high excursion rates and superior robustness.

Features:

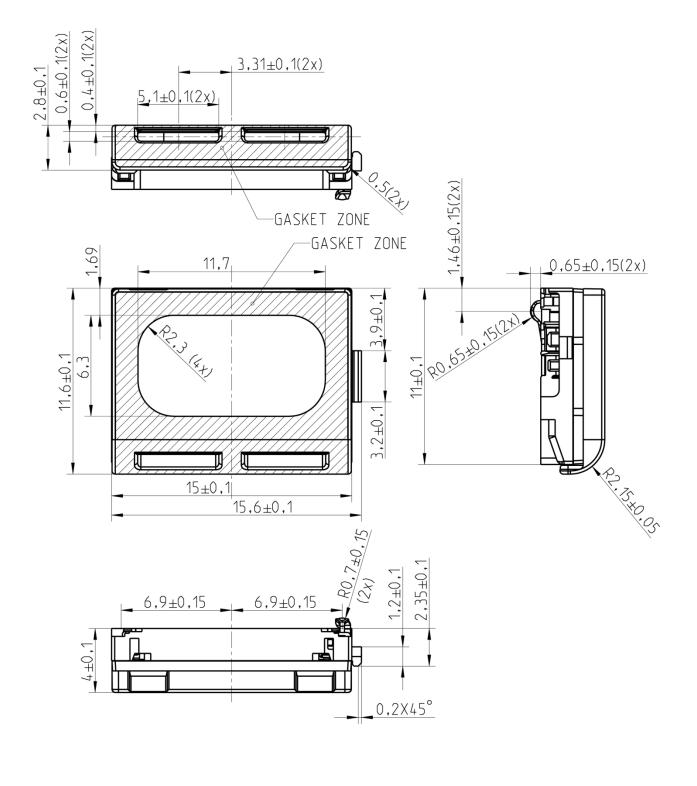
- Lateral sound outlet integrated in cover of speaker
- Significant height reduction for side-firing applications
- 100% in-line measurement of all specified acoustical and electrical parameters
- Pre-tested and integrated side-porting acoustics
- Manufactured to the highest standards
- High power handling capacity of 1000mW

This document contains information which is confidential and/or proprietary to Knowles Electronics, LLC or its affiliates. Do not distribute or use the information contained herein without permission from an authorized representative of Knowles

Contents

	KNOWLES	-
Theory	y of operation	3
Mechar	anical Lavout and Dimensions	4
	•	
	-	
7. Fo	orce on component	9
Electric	cal and Acoustical Specifications	10
1. Fre	requency response	10
2. Ele	lectro-acoustic parameters	11
3. Po	ower handling	11
4. Me	1easured parameters	12
5. Me	1easurement setup	12
6. Me	leasurement adapter	13
Environ	nmental Conditions	14
1. Sto	torage	14
2. Tra	ransportation	14
3. Fu	unctionality	14
Environ	nmental Tests	15
1. Qu	ualification tests	15
2. Re	eliability tests	15
3. Sai	ample size, sequence	15
4. Pe	eriod of shelf-life	15
5. Te	esting procedures	15
Related	d Documents	19
Change	e History	20
Disclain	mer	20
	Mecha 1. N 2. P 3. N 4. S 5. P 6. N 7. F Electri 1. F 2. E 3. P 4. N 5. N 6. N Enviro 1. S 2. T 3. F Enviro 1. S 2. T 3. F Enviro 1. C 2. R 3. S 4. P 5. T Relate Chang	Theory of operation Mechanical Layout and Dimensions 1. Main dimensions 2. PWB layout & electric polarity 3. Magnetic polarity 4. Spring force 5. Part marking/labeling 6. Material list 7. Force on component Electrical and Acoustical Specifications. 1. Frequency response 2. Electro-acoustic parameters 3. Power handling 4. Measured parameters. 5. Measurement setup 6. Measurement adapter Environmental Conditions 1. Storage 2. Transportation 3. Functionality Environmental Tests. 1. Qualification tests 2. Reliability tests 3. Sample size, sequence 4. Period of shelf-life

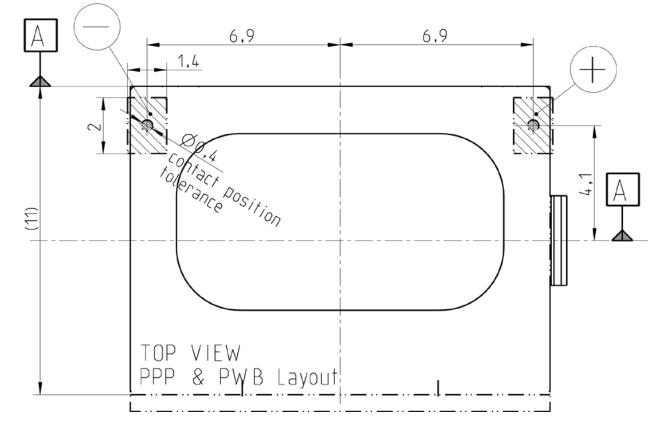
1. Theory of operation



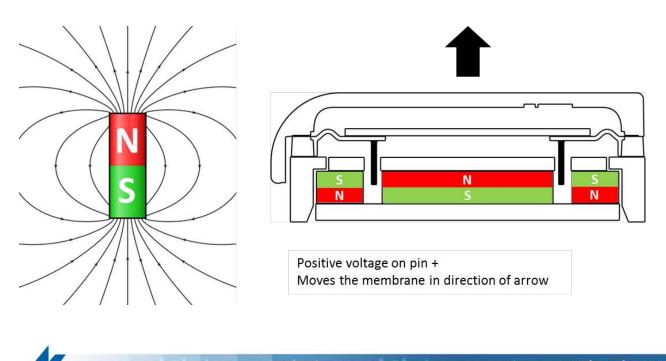
SPEAKER-1115-4-SC-COBRA SF is an electrodynamic transducer, designed to translate electrical analog signals into acoustic waves. The input signal is fed into a coil which is exposed to a permanent magnetic field and where a membrane is attached to. Through the principle of the resulting electromagnetic force, the membrane is moved according to the contents of the input signal and thus emitting sound by the air shifted.

2. Mechanical Layout and Dimensions

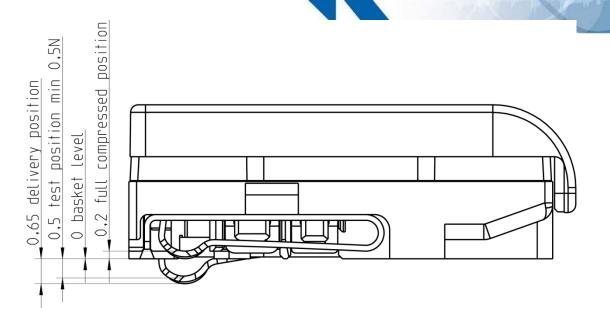
2.1. Main dimensions

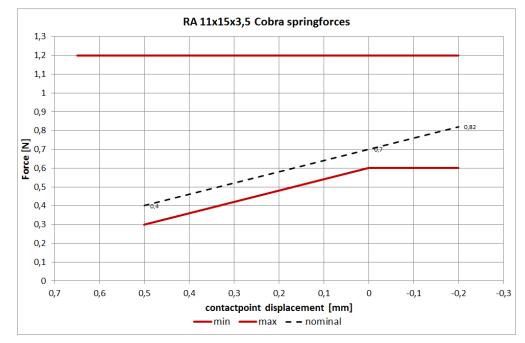


KNOWLES


A Page 4 of 20 ©2011 Knowless Electronics

2.2. PWB layout & electric polarity

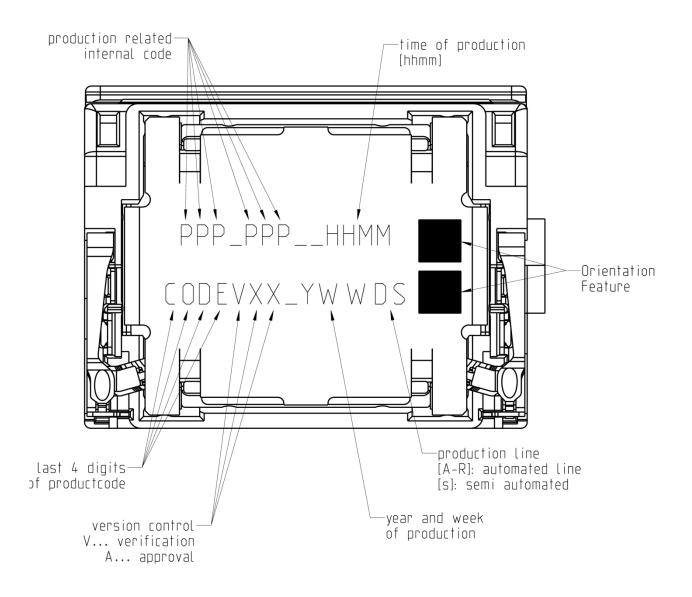

2.3. Magnetic polarity



www.knowles.com

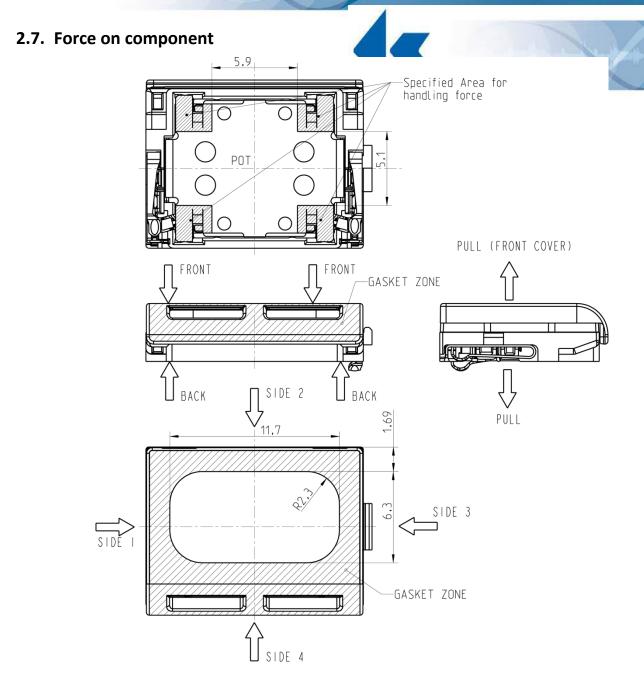
Release - Revision: A

2.4. Spring force



SPRING FORCE TABLE				
Force at Basket level 0.0 mm min. 0.6 N				
Force at Start Working position	0.5 mm	min. 0.3 N		
uncompressed (delivery position)	0.65 ±0.15mm	0.0 N		
Force at PPP level	-0.2 mm	max 1.2 N		

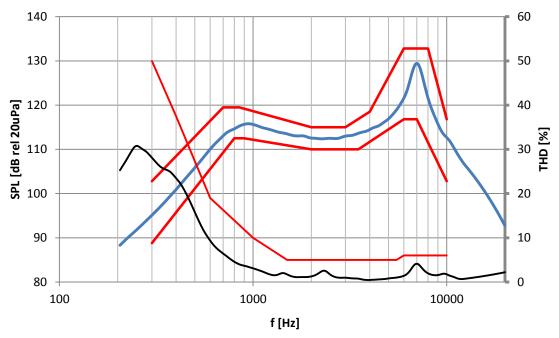
Release – Revision: A


The samples have a serial number on bottom (pot) side

2.6. Material list

	KNOWEES
Material of basket:	Polycarbonate
Material of membrane:	Silicone
Material of membrane frame	Polybutylene Terephthalate (PBT)
Material of pot:	soft magnetic Iron
Material of magnet:	Nd Fe B
Material of contact	CrNi-Steel, gold plated
Material of cover:	Polycarbonate
Dimensions (in mm):	11 × 15 × 4
Mass:	1.56 g

FORCES ON DIFFERENT STATE OF COMPONENT					
STATE	MIN. SURFACE OF	MAX. PERMANENT	MAX. HANDLING		
	PRESSURE [mm ²]	FORCE [N]	FORCE [N]		
FROM FRONT TO BACK	-	10	15		
(GASKET AREA)					
FROM SIDE 1 TO SIDE 3	3	10	15		
FROM SIDE 2 TO SIDE 4	10	10	15		
TO POT	-	10	15		
TO MEMBRANE	-	0	0		
PULL OFF FORCE	-	0	20		



3. Electrical and Acoustical Specifications

3.1. Frequency response

KNOWLES

Typical frequency response measured on baffle according to chapter 3.5 (distance d = 1cm, p = 1000mW, 1cm³)

SPL	[dB]	—— THD

Limit

	Tolerance window					
	Frequency Response THD					
f [Hz]	lower limit (floating) [dB]	upper limit (floating) [dB]	f [Hz]	upper limit [%]		
300	88.8	102.8	300	50		
700	-	119.5	450	37.5		
800	112.5	-	650	19		
850	-	119.5	1000	10		
900	112.5	-	1300	5		
2000	110	115	5500	5		
3000	-	115	6000	6		
3500	110	-	10000	6		
4000	-	118.5				
6000	116.8	132.8				
7000	116.8	-				
8000	-	132.8				
10000	102.8	116.8				

3.2. Electro-acoustic parameters	4	
Loudspeaker mounted in adapter acc. to 3.5.	KNOWLES	
1. Rated impedance	Z:	6Ω
2. Voice coil DC resistance	R:	5.4Ω±10%
3. Resonance frequency (measured @1cm ³ , 1000mV	V) f ₀ :	780Hz±10%
4. Maximum usable excursion (peak-to-peak)	x _{max} :	0.74mm _{p-p}
5. Nominal characteristic sensitivity (measured at 1W in 1cm, calculated to 1m average from 2kHz to 3kHz, thermal compression included)		73.5±2.5dB
5.1 Measured characteristic sensitivity (at 1W in 10c) average from 2kHz to 3kHz	m)	86.5±2dB
6. THD		according chapter 3.1
7. Rub & buzz		no audible Rub & Buzz
All acoustic measu	urements at 23±2	°C

3.3. Power handling

Speaker mounted in 1cm³ test device (open front)

1. Max sine Power		1000mW (RMS)
 Max short term power (pink noise, 2nd order high pass filtered, -3dB 	(70°C, 1 sec. ON / 60sec. OFF) at 1.2kHz, crest factor 2)	1200mW (RMS)
3. Max continuous power (pink noise, 2₁ order high pass filtered, -3d	(70°C, 500h) B at 800Hz, crest factor 2)	1000mW (RMS)

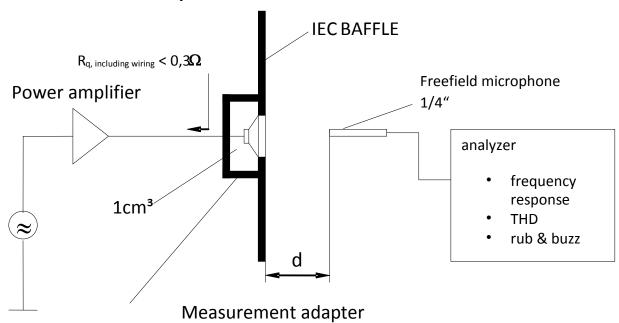
3.4. Measured parameters

3.4.1. Sensitivity

KNOWLES SPL is expressed in dB rel 20μPa, computed according to IEC 268-5. Measurement set up and parameters according chapter 3.5. This test is performed for 100% of products in the production line.

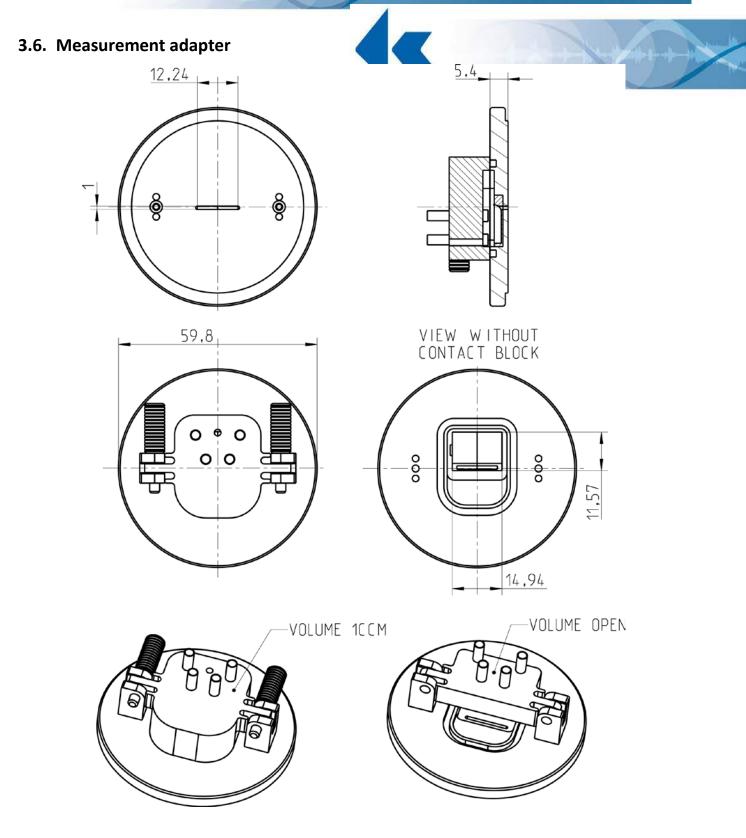
3.4.2. Frequency response

Frequency response is measured according test set up in chapter 3.3 data sheet and checked against the tolerance window defined in chapter 3.5. This Test is performed for 100% of products in the production line.


3.4.3. Total harmonic distortion (THD)

Is measured according IEEE and test set up in chapter 3.5. This test is performed for 100% of products in the production line.

3.4.4. Rub & buzz


Rub & buzz will be measured in the Inline-measuring device with a sinusoidal sweep. Rub and buzz is defined as the maximum peak sound pressure in transmission range of the 5kHz high pass filter. This test is performed for 100% of products in the production line.

3.5. Measurement setup

Measurement signal: Logarithmic sine sweep, 1.5s, 22kHz-180Hz

4. Environmental Conditions

4.1. Storage

The transducer fulfills the specified data after treatment according to the conditions of

ETS 300 019-2-1Specification of environmental test: Storage
Test spec. T 1.2: Weather protected, not temperature controlled storage
locations.

KNOWLES

4.2. Transportation

The transducer fulfills the specified data after treatment according to the conditions of

ETS 300 019-2-2	Specification of environmental test: Transportation
	Test Spec. T 2.3: Public Transportation

4.3. Functionality

The transducer fulfills the specified data after treatment according to the conditions of

ETS 300 019-2-5Specification of environmental test: Ground vehicle installations
Test spec. T 5.1: Protected installationETS 300 019-2-7Specification of environmental test: Portable and non-stationary use
Test spec. T 7.3E: Partly weather protected and non-weather protected
locations.

5. Environmental Tests

5.1. Qualification tests

According to our milestone plan (Product Creation Process), a complete qualification test will be done at design validation of products manufactured under serial conditions.

KNOWLES

1x per year and product family a requalification takes place. The qualification process covers all tests described under 4.5 and a complete inspection.

5.2. Reliability tests

1x per month and product family samples are taken and submitted to tests described under 4.5.2

5.3. Sample size, sequence

Unless otherwise stated 20 arbitrary new samples will be used to perform each test for both, qualification and requalification test as described under 4.1 and 4.2.

5.4. Period of shelf-life

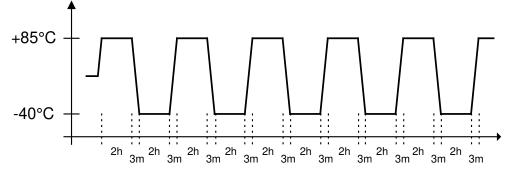
The period of shelf-life is 2 years.

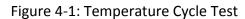
5.5. Testing procedures

5.5.1. Storage tests

5.5.1.1. Cold storage test

Parameter	Test Method and Con- ditions	Duration	Evaluation Standard
Low Temperature Storage (Ref. EN 60068-2-1)	-40°C rel. humidity not con- trolled	168h	Measurements after 2 hours recovery time. All samples fully operable. All acoustical parameters ac- cording specification with toler- ances increased by 50 %.


5.5.1.2. Heat storage test


Parameter	Test Method and Con- ditions	Duration	Evaluation Standard
Dry Heat Storage (Ref. EN 60068-2-2)	+85°C rel. humidity not con- trolled	168h	Measurements after 2 hours recovery time. All samples fully operable. All acoustical parameters ac- cording specification with toler- ances increased by 50 %.

5.5.1.3. Temperature cycle test

Parameter	Test Method and Con- ditions	Duration	Evaluation Standard	
Change of Temperature (Ref. EN 60068-2-14)	-40°C/+85°C Transition time <3 min. See Figure 4-1 below	5 cycles >2h for each temperature	Measurements after 2 hours recovery time. All samples fully operable. All acoustical parameters ac- cording specification with toler- ances increased by 50 %.	

5.5.1.4. Temperature/humidity cycle test

Parameter	Test Method and Con- ditions	Duration	Evaluation Standard
Damp heat, cyclic (Ref. IEC 60068-2-30)	+25°C/+55°C 90% to 95% RH. Temp. change time <3h See Figure 4-2 below <u>Caution:</u> no condensed water on products!	6 cycles. 12h at each temperature	Measurements after 2 hours recovery time. All samples fully operable. All acoustical parameters ac- cording specification with toler- ances increased by 50 %.

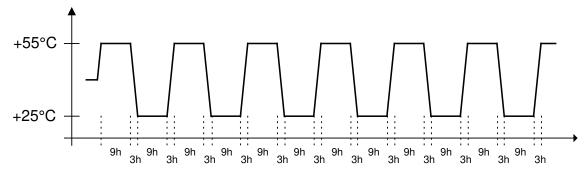


Figure 4-2: Temperature / Relative Humidity Cycle Test

5.5.2. Operating tests

5.5.2.1. Cold operat	ion test	KNOWLES		
Parameter	Test Method and Con- ditions	Duration	Evaluation Standard	
Cold Operation Test (Ref. EN 60068-2-1)	-20°C rel. humidity not con- trolled signal acc. chapter 3.3	72h	Measurements after 2 hours recovery time. All samples fully operable. THD may be increased after test. All other acoustical pa- rameters according specifica- tion with tolerances increased by 50 %.	

5.5.2.2. Heat operation test

Parameter	Test Method and Con- ditions	Duration	Evaluation Standard
Dry Heat Operation (Ref. EN 60068-2-2)	+70°C rel. humidity not con- trolled signal acc. chapter 3.3	500h	Measurements after 2 hours recovery time. All samples fully operable. The allowable change in sensi- tivity shall not be greater than 3 dB. All other acoustical parame- ters according specification with tolerances increased by 50 %.

5.5.3. Salt mist test

Parameter	Test Method and Con- ditions	Duration	Evaluation Standard
Salt Mist (Ref. IEC60068-2-52, Kb / Severity 2	The part must be sub- jected to 2 hours spray of 5% NaCl salt mist, at 35°C then be left at 40°C and 95% RH for 22h.	3 cycles	The samples shall be washed after the test with distilled water and dried at T< 50°C. Component may have reduced performance, but must still function properly. The allowable sensitivity difference shall not be greater than ±3dB from initial sensitivity.

5.5.4. Guided free fall test - protected product

Parameter	Test Method and Con-	Conditions /	Evaluation Standard
	ditions	Sample size	
Mechanical shock (Ref. IEC60068-2-32 Ed), Procedure 1	Speaker in drop test box or representative mechanics from a height of 1.5m onto concrete floor.	30 units Two drops on each side (2x6) One drop on each edge (1x12) Two drops on each corner (2x8) (40 drops in total)	Component may have reduced performance, but must still function properly. The allowable sensitivity difference shall not be greater than ±3dB from initial sensitivity.

5.5.5. Random free fall test (tumble test) – protected product

Parameter	Test Method and Condi- tions	Conditions / Sample size	Evaluation Standard
Impact durability (in a Tumble Tester) (Ref. IEC60068-2-32 Ed) (SPR a7.1.1)	Speaker <i>in drop test box</i> <i>or</i> representative me- chanics. Random drops on steel base.	30 units 180 drops, 1m DUT power off	Component may have reduced performance, but must still function properly. The allowa- ble sensitivity difference shall not be greater than ±3 dB from initial sensitivity.

5.5.6. Resistance to electrostatic discharge

Parameter	Test Method and Condi- tions	Conditions / Sample size	Evaluation Standard
Resistance to ESD IEC61000-4-2 Level 4 (SPR c 2.5.1)	One pole is grounded and the ESD pulse is applied to the other pole. The speaker must be stressed first with one polarisation and then with the other polarisation. DUT must be discharged between each ESD exposure. Level 4: contact +/- 8kV, air +/- 15kV	10 exposures on each polarity / 5 units DUT Power off	All samples fully operable. All acoustical parameters according specification with tolerances increased by 50%.

6. Related Documents

IEC 268-5	Sound System equipment
	Part 5: Loudspeaker
IEC 68-2	Environmental testing
EN 60068-2	Environmental testing
ISO 2859 - 1	Sampling procedures for inspection by attributes
	Part 1: Sampling plans indexed by acceptable quality level (AQL) for lot-by-lot inspection
ISO 3951	Sampling procedures and charts for inspection by variables for percent defec- tives.
ETS 300 019-2-1	Specification of environmental test: Storage
	Test spec. T 1.2: Weather protected, not temperature controlled storage loca- tions
ETS 300 019-2-2	Specification of environmental test: Transportation
	Test spec. T 2.3: Public Transportation
ETS 300 019-2-5	Specification of environmental test: Ground vehicle installations
	Test spec. T 5.1: Protected installation
ETS 300 019-2-7	Specification of environmental test: Portable and non-stationary use
	Test spec. T 7.3E: Partly weather protected and non-weather protected loca-
	tions

7. Change History

KNOWLES

Status	Version	Date	ECR	Comment / Changes	Initials of owner
Release	А	05.08.13	4015	First release	BW/CP/ZG/EP/SG

8. Disclaimer

Stresses above the Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. The device may not function when operated at these or any other conditions beyond those indicated under "Electrical and Acoustical Specifications". Exposure beyond those indicated under "Electrical Specifications" for extended periods may affect device reliability.

This product is not qualified for use in automotive applications

Frequency range in telecom application: 300 Hz – 3.4 kHz

The information contained in this literature is based on our experience to date and is believed to be reliable and it is subject to change without notice. It is intended as a guide for use by persons having technical skill at their own discretion and risk. We do not guarantee favorable results or assume any liability in connection with its use. Dimensions contained herein are for reference purposes only. For specific dimensional requirements consult factory. This publication is not to be taken as a license to operate under, or recommendation to infringe any exiting patents. This supersedes and voids all previous literature.