

Resistive Temperature Detector (RTD) Reference Design

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-63276-347-1

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002 ===

Table of Contents

Preface		5
	Introduction	
	Document Layout	5
	Conventions Used in this Guide	
	Recommended Reading	7
	The Microchip Web Site	
	Customer Support	
	Document Revision History	
Chapter 1.	. Product Overview	
•	1.1 Introduction	g
	1.2 What is the RTD Reference Design?	g
	1.3 What the RTD Reference Design kit includes	g
Chapter 2.	. Installation and Operation	
-	2.1 Introduction	11
	2.2 Features	11
	2.3 Getting Started	12
Appendix	A. Schematic and Layouts	
• •	A.1 Introduction	17
	A.2 Board - Schematic	
	A.3 Board - Top Silk and Pads	19
	A.4 Board - Top Layer	
	A.5 Board - Bottom Silk and Pads	
	A.6 Board - Bottom Layer	
Appendix	B. Bill of Materials	
• •	e Sales and Service	22

RTD Reference Design

NOTES:

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXXA", where "XXXXX" is the document number and "A" is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB[®] IDE on-line help. Select the Help menu, and then Topics to open a list of available online help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the RTD Reference Design. Items discussed in this chapter include:

- · Document Layout
- · Conventions Used in this Guide
- Recommended Reading
- The Microchip Web Site
- Customer Support
- · Document Revision History

DOCUMENT LAYOUT

This document describes how to use the RTD Reference Design as a development tool to emulate and debug firmware on a target board. The manual layout is as follows:

- Chapter 1. "Product Overview" Important information about the RTD Reference Design.
- Chapter 2. "Installation and Operation" This chapter includes a detailed description of each function of the demo board and instructions for how to begin using the board.
- Appendix A. "Schematic and Layouts" Shows the schematic and layout diagrams for the RTD Reference Design.
- Appendix B. "Bill of Materials" Lists the parts used to build the RTD Reference Design.

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description	Represents	Examples	
Arial font:			
Italic characters	Referenced books	MPLAB [®] IDE User's Guide	
	Emphasized text	is the <i>only</i> compiler	
Initial caps	A window	the Output window	
	A dialog	the Settings dialog	
	A menu selection	select Enable Programmer	
Quotes	A field name in a window or dialog	"Save project before build"	
Underlined, italic text with right angle bracket	A menu path	File>Save	
Bold characters	A dialog button	Click OK	
	A tab	Click the Power tab	
N'Rnnnn	A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.	4'b0010, 2'hF1	
Text in angle brackets < >	A key on the keyboard	Press <enter>, <f1></f1></enter>	
Courier New font:	•		
Plain Courier New	Sample source code	#define START	
	Filenames	autoexec.bat	
	File paths	c:\mcc18\h	
	Keywords	_asm, _endasm, static	
	Command-line options	-Opa+, -Opa-	
	Bit values	0, 1	
	Constants	0xFF, 'A'	
Italic Courier New	A variable argument	file.o, where file can be any valid filename	
Square brackets []	Optional arguments	mcc18 [options] file [options]	
Curly brackets and pipe character: { }	Choice of mutually exclusive arguments; an OR selection	errorlevel {0 1}	
Ellipses	Replaces repeated text	<pre>var_name [, var_name]</pre>	
	Represents code supplied by user	<pre>void main (void) { }</pre>	

RECOMMENDED READING

This user's guide describes how to use the RTD Reference Design. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources.

MCP3551 Data Sheet, "Low-Power, Single-Channel 22-Bit Delta-Sigma ADCs" (DS21950)

This data sheet provides detailed information regarding the MCP3551 device.

AN1154 - "Precision RTD Instrumentation for Temperature Sensing" (DS01154)

This application note provides information on the RTD Instrumentation technique for high performance thermal management applications.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com.

DOCUMENT REVISION HISTORY

Revision A (September 2010)

· Initial Release of this Document.

RTD Reference Design

NOTES:

Chapter 1. Product Overview

1.1 INTRODUCTION

The following name and assembly number are found on the RTD Reference Design's Printed Circuit Board (PCB):

• 102-00115

1.2 WHAT IS THE RTD REFERENCE DESIGN?

The RTD Reference Design demonstrates how to implement a Resistive Temperature Detector (RTD) and accurately measure temperature. This solution uses the MCP3551 22-Bit Analog-to-Digital Converter (ADC) to measure voltage across the RTD. The ADC and the RTD are referenced using an on-board reference voltage, and the ADC inputs are directly connected to the RTD terminals. This provides a ratio metric temperature measurement. The solution uses a current limiting resistor to bias the RTD. It provides a reliable and accurate RTD instrumentation without the need for extensive circuit compensation and calibration routines.

In addition, this reference design includes a silicon temperature sensor, MCP9804. This sensor is used for comparison only, it is not needed for the RTD instrumentation circuit. The MCP3551 and MCP9804 outputs are read using a USB PIC® MCU. This controller is also connected to a PC using USB interface. The Thermal Management software is used to plot the RTD temperature data in strip chart format.

1.3 WHAT THE RTD REFERENCE DESIGN KIT INCLUDES

This RTD Reference Design Kit includes:

- RTD Reference Design, 102-00115
- · USB cable
- · Important Information Sheet

RTD Reference Design

NOTES:

Chapter 2. Installation and Operation

2.1 INTRODUCTION

The RTD Reference Design demonstrates Microchip's solution to accurately measure temperature using a 22-bit ADC, MCP3551. This solution eliminates the need for the traditional analog instrumentation system calibration or gain and offset trimming techniques. In addition, the effect of self-heat can be minimized by limiting the RTD biasing current using a single resistor.

This reference design uses the technique described in Application Note AN1154 - "Precision RTD Instrumentation for Temperature Sensing" (DS01154). The RTD Reference Design allows users to evaluate Microchip's solution to accurately measure temperature using an RTD. RTD resistance availability typically ranges from 100Ω to 5000Ω . When biasing an RTD to measure temperature, self-heat due to power dissipation has to be considered. In order to output measurable voltage across the RTD for wide temperature range, the biasing current has to be relatively high. This causes higher power dissipation through heat and skews the temperature reading. This solution uses a ratiometric technique between the RTD resistance and the ADC resolution to achieve high accuracy throughout the entire sensor range.

This solution uses an on-board (local) surface mount RTD and an external RTD. The local and external RTDs are selected using JP2. The MCP9804 temperature sensor is also used to measure local temperature.

The MCP3551 and the MCP9804 serial output lines are connected to a PIC MCU. RTD linearization is computed with the microcontroller. This controller communicates with a PC via the USB interface. The temperature data is then displayed on the PC using the Thermal Management software in strip chart format.

2.2 FEATURES

The RTD Reference Design has the following features:

- Surface mount PT100 RTD
- External RTD connector (not included)
- · Thermal Management GUI
- 22-Bit ADC MCP3551
- ±1°C Maximum accuracy temperature sensor MCP9804
- PIC18F2550 microcontroller
- · USB interface to PC

2.3 GETTING STARTED

This section describes how to quickly configure the RTD Reference Design. A simplified block diagram of the configuration is provided in Figure 2-1.

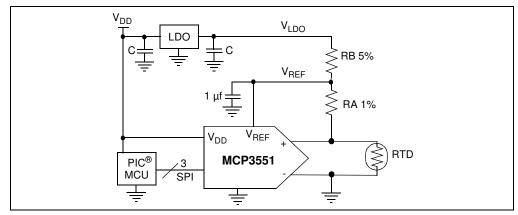


FIGURE 2-1: RTD Reference Design Simplified Block Diagram.

2.3.1 Hardware Setup

- 1. Connect the USB cable to PC
- 2. Select JP2 for Local/External RTD
- 3. Start the Thermal Management software

2.3.2 Software Setup

Once the USB interface is secured, start the Thermal Management Software. When the software starts, if the hardware is successfully detected, the GUI will be displayed (Figure 2-2).

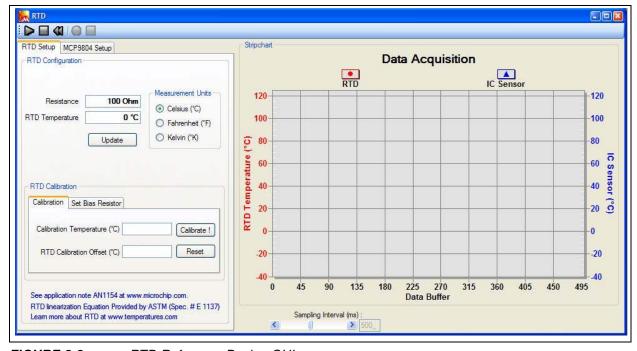


FIGURE 2-2: RTD Reference Design GUI.

This configuration window allows the user to set some parameters, such as measurement unit and calibration temperature.

The **Play**, **Stop**, and **Reset** icons (Figure 2-3) can be used to perform a continuous data-log. The **Record** icon enables the user to data-log to an external file. The logging interval can be adjusted using the Interval Scroll bar from 100 ms to 30s.

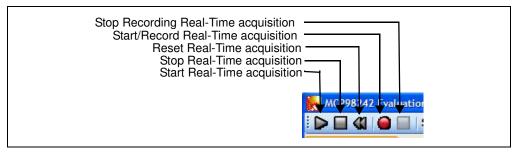


FIGURE 2-3: Real-Time Acquisition.

The RTD temperature is linearized using ASTM specification #E 1137. The linearization is implemented in the PIC MCU.

The Data Acquisition charting tool can be customized by double-clicking the chart, as shown in Figure 2-4. Additional options are available by right-clicking the chart. The user can also zoom into a specific plot range by clicking and dragging the section. The data in the chart can also be exported using the **Export** button.

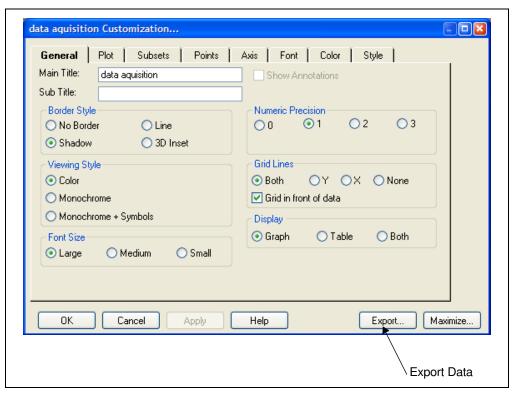


FIGURE 2-4: Chart Setup Options.

2.3.3 Sensor Calibration

2.3.3.1 RTD SETUP

The RTD sensor can be calibrated using the GUI. Once the RTD is exposed to the dies calibration temperature, simply type in the temperature in the Calibration Temperature field and click the **Calibrate** button. When the temperature is calibrated and the calibration offset is stored in the PIC MCU EEPROM, the calibration offset is displayed in the RTD Calibration Offset text box. The **Reset** button resets the calibration offset to "0".

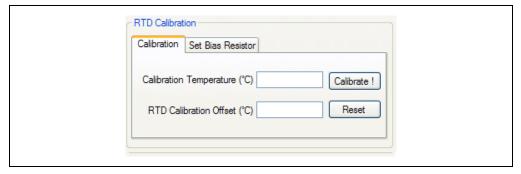


FIGURE 2-5: Sensor Calibration.

The GUI also enables users to set the RTD biasing resistor value, R_9 . If a resistor other than a 100Ω RTD resistor is connected, then replace R_9 (for operation and details refer to the AN1154). The **Reset** button sets R_9 to the default value of 6800Ω .

FIGURE 2-6: Setting RTD Biasing Resistor.

2.3.3.2 MCP9804 SETUP

The MCP9804 is a silicon temperature sensor which measures temperature with $\pm 0.25\,^{\circ}$ C nominal and $\pm 1\,^{\circ}$ C maximum accuracy from -40 $^{\circ}$ C to +125 $^{\circ}$ C. This sensor has multiple user programmable features such as Alert Output limits, output hysteresis and mode (see Figure 2-7). The output mode can be set up as either comparator or interrupt output with an active-high or active-low levels. The temperature measurement resolution can also be set up.

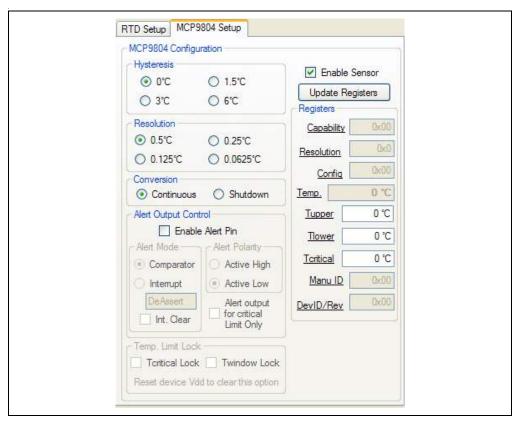
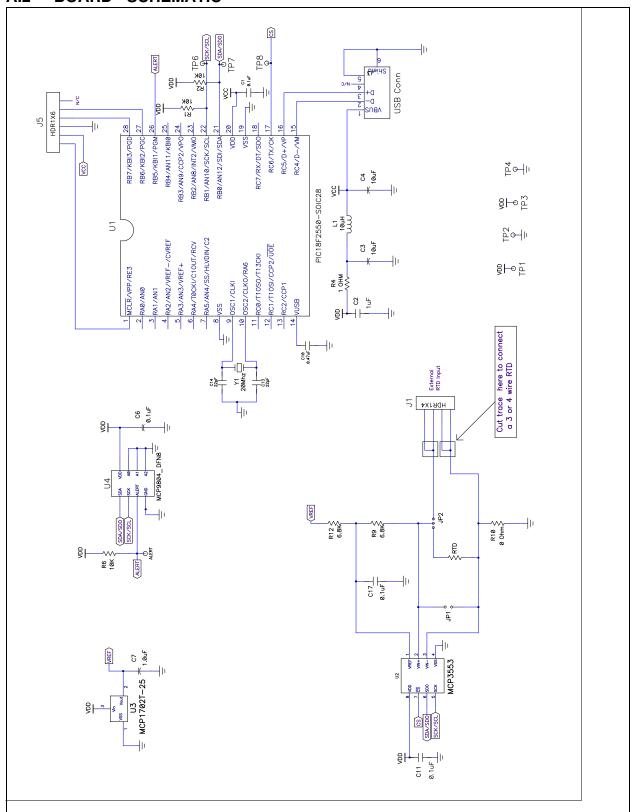


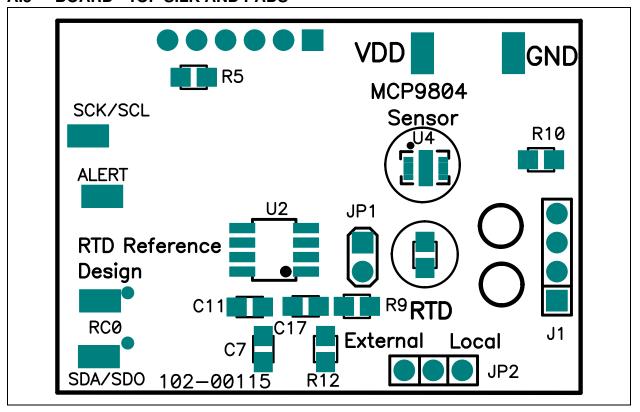
FIGURE 2-7: MCP9804 Setup.

RTD Reference Design

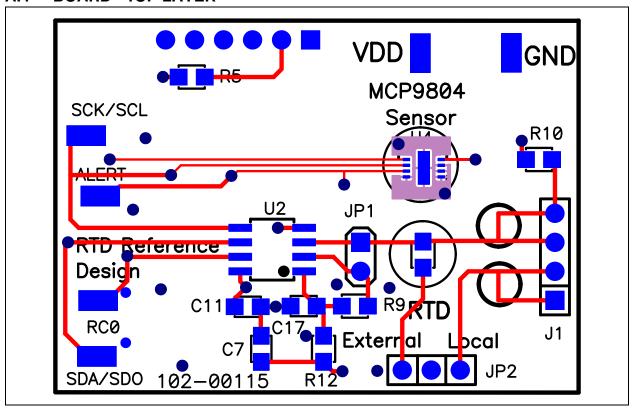
NOTES:

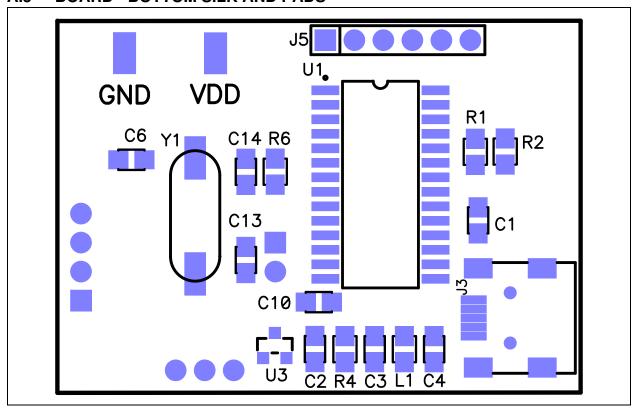

Appendix A. Schematic and Layouts

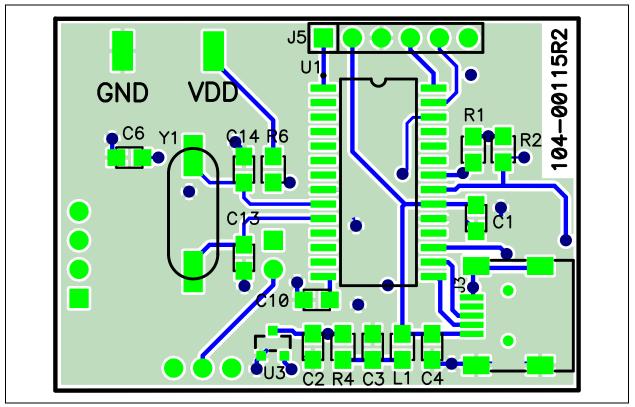
A.1 INTRODUCTION


This appendix contains the following schematics and layouts for the RTD Reference Design:

- Board Schematic
- Board Top Silk and Pads
- · Board Top Layer
- Board Bottom Silk and Pads
- Board Bottom Layer


A.2 BOARD - SCHEMATIC


A.3 BOARD - TOP SILK AND PADS


A.4 BOARD - TOP LAYER

A.5 BOARD - BOTTOM SILK AND PADS

A.6 BOARD - BOTTOM LAYER

Appendix B. Bill of Materials

TABLE B-1: BILL OF MATERIALS

Otre	Referenc	Description	Monufacturer	Dout Number
Qty	е	Description	Manufacturer	Part Number
4	C1, C6,	CAP .1UF 25V CERAMIC X7R 0805	Panasonic® - ECG	ECJ-2VB1E104K
	C11, C17			
2	C2, C7	CAP 1.0UF 16V CERAMIC X7R 0805	Kemet [®] Electronics	C0805C105K4RACTU
2	C3, C4	CAP 10UF 10V CERAMIC F 0805	Panasonic - ECG	ECJ-2FF1A106Z
1	C10	CAP .47UF 16V CERAMIC X7R 0805	Panasonic - ECG	ECJ-2YB1C474K
2	C13, C14	CAP 22PF 50V CERM CHIP 0805 SMD	Panasonic - ECG	ECJ-2VC1H220J
1	J2	CONN TERM BLOCK 2.54MM 4POS	Phoenix Contact	1725672
1	J3	CONN MINI USB RCPT RA TYPE B SMD	Tyco Electronics	1734035-2
1	J5	DO NOT POPULATE HEADER 1X6	_	_
1	JP1	DO NOT POPULATE SHUNT ECONOMY 2POS .100 TIN	Tyco [®] Electronics/Amp	2-382811-1
1	JP1	DO NOT POPULATE CONN HEADER VERT 2POS .100 TIN	Tyco Electronics/Amp	3-644695-2
1	JP2	CONN HEADER VERT 2POS .100 TIN	Tyco Electronics/Amp	3-644695-2
1/16 ²	JP2	3 POS Jumper Switch	ITW [®] Pancon	JSC416G0
1	L1	INDUCTOR 10UH 100MA 0805	Murata Electronics®	LQM21FN100M70L
1	PCB	RoHS Compliant Bare PCB, RTD Reference Board	Microchip Technology Inc.	104-000115
3	R1, R2, R6	RES 10.0K OHM 1/8W 1% 0805 SMD	Panasonic - ECG	ERJ-6ENF1002V
1	R4	RES 1.0 OHM 1/8W 1% 0805 SMD	Panasonic - ECG	ERJ-6RQF1R0V
2	R9, R12	RES 6.8K OHM 1/10W .1% 0805 SMD	Panasonic - ECG	ERA-6YEB682V
1	R10	RES 0.0 OHM 1/8W 5% 0805 SMD	Panasonic - ECG	ERJ-6GEY0R00V
1	R11	PLATINUM RTD CHIP TEMPERATURE SENSOR SMD (RTD)	ENERCORP Instruments Ltd.	PCS 1.1503.1
8	TP1-TP8	TEST POINT PC COMPACT SMT	Keystone Electronics®	5016
1	U1	28/40/44-Pin, High-Performance, Enhanced Flash, USB Microcontrollers with nanoWatt Technology	Microchip Technology Inc.	PIC18F2550-I/SO
1	U2	IC ADC 22 BIT 2.7V 1 CH SPI 8SOIC	Microchip Technology Inc.	MCP3551-E/SN
1	U3	Low Dropout Positive Voltage Regulator	Microchip Technology Inc.	MCP1701T-5002I/CB
1	U4	2-Wire High-Accuracy Temperature Sensor	Microchip Technology Inc.	MCP9804T-E/MC
1	Y1	CRYSTAL 20.0000 MHZ SERIES SMT	CTS [®] Electronic Components	ATS200SM

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.

^{2:} Jumper switch comes in strips of 16 switches. Cut individual jumper switch as needed.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca. IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2401-1200

Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830

Fax: 886-7-330-9305

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 **Denmark - Copenhagen**

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **UK - Wokingham**

Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/04/10