FP0707R High frequency, high current power inductors

Product description

- High current carrying capacity
- Low core loss
- Tight tolerance DCR for sensing circuits
- 7.2 mm x 7.2 mm footprint surface mount package in a 7.0 mm height
- Ferrite core material
- Halogen free, lead free, RoHS compliant

Applications

- Multi-phase and Vcore regulators
- Voltage Regulator Modules (VRMs)
 - Server and desktop
 - Central processing unit (CPU)
 - Graphics processing unit (GPU)
 - Application specific integrated circuit (ASIC)
 - High power density
- Data networking and storage systems
- Graphics cards and battery power systems
- Portable electronics
- Point-of-Load modules
- DCR Sensing circuits

Environmental data

- Storage temperature range (Component): -40 °C to +125 °C
- Operating temperature range: -40 °C to +125 °C (ambient plus self-temperature rise)
- Solder reflow temperature: J-STD-020D compliant

Product specifications

			(nH) minimum	(A)	(A)	(A)	(A)	±5% @ 20 °C	K-factor ⁷
FP0707R1-R110-R 110 79 45 67 55 51	0707R1-R110-R	110	79	45	67	55	51	0.30	542

1. Open Circuit Inductance (OCL) Test Parameters: 100 kHz, 0.1 Vrms, 0.0 Adc, +25 °C

2. Full Load Inductance (FLL) Test Parameters: 100 kHz, 0.1 Vrms, I at 1, +25 °C

3. I ...: DC current for an approximate temperature rise of 40 °C without core loss. Derating is necessary for AC currents. PCB layout, trace thickness and width, air-flow, and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not exceed 125 °C under worst case operating conditions verified in the end application.

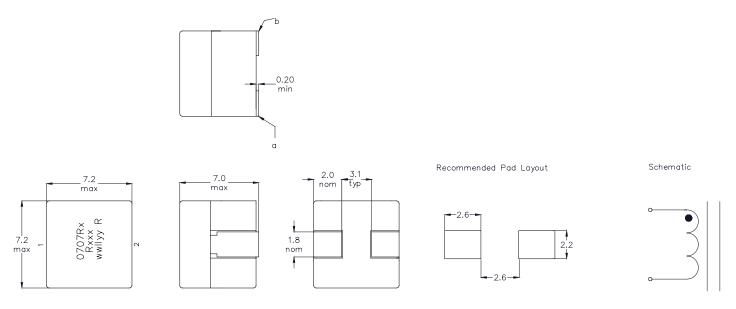
4. I___1: Peak current for approximately 20% rolloff @ +25 °C

5. I sat 2: Peak current for approximately 20% rolloff @ +100 °C

6. | 3: Peak current for approximately 20% rolloff @ +125 °C

7. K-factor: Used to determine B_{no} for core loss (see graph).

$$\begin{split} B_{_{\rm PP}} &= K \,^* \, L \,^* \, \Delta I \,^* \, 10^3. \, B_{_{\rm PP}} (Gauss), \, K: \, (K\text{-factor from table}), \\ L: \, (Inductance in nH), \, \Delta I \, (Peak to peak ripple current in Amps). \end{split}$$


8. Part Number Definition: FP0707Rx-Rxxx-R

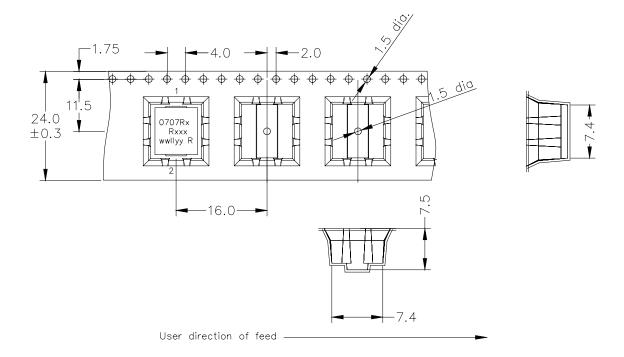
FP0707R= Product code and size

x= Version indicator

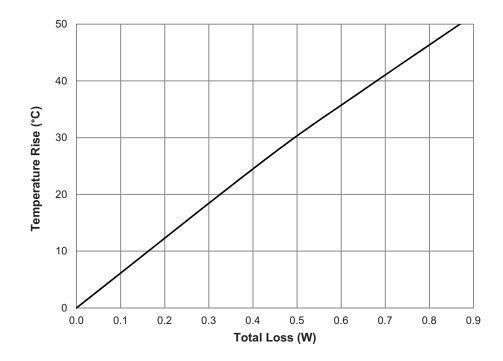
-Rxxx= Inductance value in µH, R= decimal point -R suffix = RoHS compliant

Dimensions (mm)

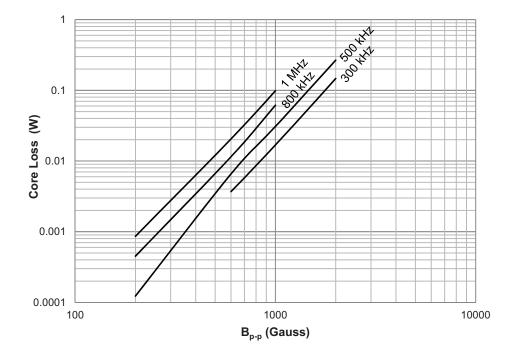
Part marking: 0707Rx (x = Version indicator), Rxxx = Inductance value in uH (R = decimal point), wwllyy = date code, R = revision level Tolerances are ±0.15 millimeters unless stated otherwise.

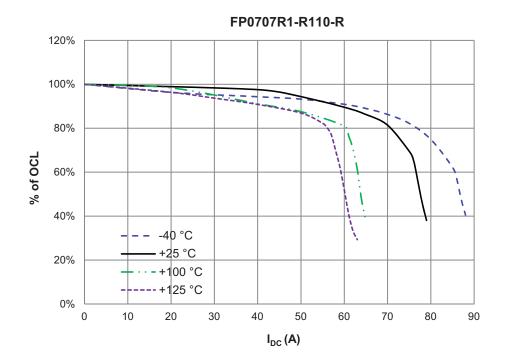

All soldering surfaces to be coplanar within 0.1 millimeter

DCR measured from point "a" to point "b"

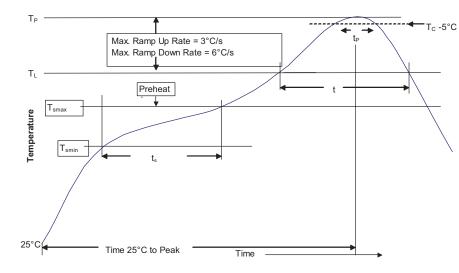

Do not route traces or vias underneath the inductor

Packaging information (mm)


Supplied in tape-and-reel packaging, 550 parts on a 13" diameter reel.


Temperature rise vs. total loss

Core loss vs. B_{p-p}



Inductance characteristics

FP0707R High frequency, high current power inductors

Solder reflow profile

Table 1 - Standard SnPb Solder (T_c)

Package Thickness	Volume mm3 <350	Volume mm3 ≥350
<2.5mm)	235°C	220°C
≥2.5mm	220°C	220°C

Table 2 - Lead (Pb) Free Solder (T_c)

Package Thickness	Volume mm ³ <350	Volume mm ³ 350 - 2000	Volume mm ³ >2000
<1.6mm	260°C	260°C	260°C
1.6 – 2.5mm	260°C	250°C	245°C
>2.5mm	250°C	245°C	245°C

Reference JDEC J-STD-020D

100°C 150°C	150°C
15000	
150 6	200°C
60-120 Seconds	60-120 Seconds
3°C/ Second Max.	3°C/ Second Max.
183°C 60-150 Seconds	217°C 60-150 Seconds
Table 1	Table 2
20 Seconds**	30 Seconds**
6°C/ Second Max.	6°C/ Second Max.
6 Minutes Max.	8 Minutes Max.
	60-120 Seconds 3°C/ Second Max. 183°C 60-150 Seconds Table 1 20 Seconds** 6°C/ Second Max.

* Tolerance for peak profile temperature (T_p) is defined as a supplier minimum and a user maximum.

** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton

Electronics Division 1000 Eaton Boulevard Cleveland, OH 44122 United States www.eaton.com/elx

© 2016 Eaton All Rights Reserved Printed in USA Publication No. 10514 BU-MC16014 March 2016

Eaton is a registered trademark.

All other trademarks are property of their respective owners.