

DATA SHEET

SKY59272-707LF: Sky5[®] 0.6 to 6.0 GHz 4XSPST Shunt MIPI[®] Antenna Tuning Switch

Applications

• Aperture tuning

Features

- Broadband frequency range: 0.6 to 6.0 GHz
- Vpeak: 84 V
- RON: 1.65 ohms
- COFF: 95 fF
- High isolation: +40 dB @ 2.7 GHz
- Supply voltage: 1.8 V
- Control logic: MIPI v2.1
- Small QFN (12-pin, 1.6 x 1.6 x 0.45 mm typical) package (MSL1, 260 °C per JEDEC J-STD-020)

Skyworks GreenTM products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*TM, document number SQ04-0074.

Figure 1. SKY59272-707LF Block Diagram

Description

The SKY59272-707LF is a Quad Flat No-Lead (QFN) 4X singlepole, single-throw (4XSPST) switch designed for antenna tuning applications that require ultra-low ON resistance and low OFF capacitance. Switching is controlled by an integrated Mobile Industry Processor Interface (MIPI) v2.1 controller. The SKY59272-707LF is part of our Sky5[®] product portfolio.

No external DC blocking capacitors are required as long as no DC voltage is applied on any RF path.

The SKY59272-707LF is provided in a compact 12-pin, $1.6 \times 1.6 \times 0.45 \text{ mm}$ (typical) QFN that meets requirements for board-level assembly.

A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

(Top View)

Table 1. SKY59272-707LF Signal Descriptions

Pin	Name	Description	Pin	Name	Description
1	RF1	Single-ended RF port 1	7	VIO	Voltage supply
2	N/C	Not connected	8	USID0	USID select pin
3	GND	GND	9	N/C	Not connected
4	SDATA	MIPI data	10	RF4	Single-ended RF port 4
5	SCLCK	MIPI clock	11	RF3	Single-ended RF port 3
6	USID1	USID select pin	12	RF2	Single-ended RF port 2

Electrical and Mechanical Specifications

The absolute maximum ratings of the SKY59272-707LF are provided in Table 2. The DC electrical specifications are provided in Table 3. RF electrical specifications are shown in Table 4. Harmonic measurement frequencies are provided in Table 5. The state of the SKY59272-707LF is determined by the logic provided in Table 6. Table 7 shows the MIPI register map. The command sequence bit definitions are listed in Table 8. Timing diagrams are shown in Figures 3 and 4. Figure 5 shows the recommended MIPI time sequence diagram.

Table 2. SKY59272-707LF Absolute Maximum Ratings¹

Parameter	Symbol	Condition	Minimum	Maximum	Units
Digital control voltage	Vio	25 °C	-0.5	+2.4	V
RF maximum voltage	Vrf_max	Measured between RF ports to ground with shunt circuit configuration in 25% duty cycle RF power		80	V
Operating case temperature	Тс		-40	+90	°C
Storage temperature	TSTG		-55	+150	°C

¹ Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

ESD HANDLING: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD when handling or transporting. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD handling precautions should be used at all times.

Table 3. SKY59272-707LF DC Electrical Specifications¹ (VIO = 1.8 V, ToP = +25 °C, Characteristic Impedance [Zo] = 50 ohms, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Digital control voltage	Vio		1.65	1.8	1.95	V
Digital control signal voltage: Low High	Vctl_low Vctl_high		0 0.8 × Vio	1.8	0.2 imes VioVio	V V
Static VIO leakage current	lio	Vio = high	45	68	150	uA
Standby supply current	lio	$V_{10} = high$, low-power mode	2	13	15	uA
DC supply turn-on time	ton	Measured from 50% of final VIO supply voltage to final RF power ± 1 dB		14	20	us
RF path switching time	tsw	Measured from 50% of final control voltage to final RF input power \pm 1 dB		6	10	us

Performance is guaranteed only under the conditions listed in this table.

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Switch ON resistance	Ron	DC 617 MHz to 0.96 GHz 0.96 to 2.17 GHz 2.17 to 2.7 GHz 3.3 to 3.8 GHz 4.2 to 5.0 GHz 5.15 to 5.925 GHz		1.65 1.7 1.9 2.1 2.2 2.4 2.8	1.95 2.0 2.5 2.5 2.6 2.72 2.94	ohms ohms ohms ohms ohms ohms ohms
Switch OFF capacitance	Coff	0.96 to 2.17 GHz 2.17 to 2.7 GHz 3.3 to 3.8 GHz 4.2 to 5.0 GHz 5.15 to 5.925 GHz		95 97 97 120 150	116 116 118 141 164	fF fF fF fF
Switch OFF resistance	Roff	DC 617 MHz to 0.96 GHz 0.96 to 2.17 GHz 2.17 to 2.7 GHz 3.3 to 3.8 GHz 4.2 to 5.0 GHz 5.15 to 5.925 GHz	228 15 12.7 11.7 10.9 7.2 6.2	233 17.3 15.2 14.1 12.1 8 7		kohms kohms kohms kohms kohms kohms kohms
Adjacent port isolation, all isolation	ISOL	Isolation mode, all switches OFF: 617 to 960 MHz 960 to 2170 MHz 2170 to 2700 MHz 3300 to 3800 MHz 4200 to 5000 MHz 5150 to 5925 MHz	39 30 30 25 21.5 20	41 33.5 32.5 29.5 26 27.5		dB dB dB dB dB dB
Adjacent port isolation, RF1, RF2, RF3 or RF4 to GND	ISO	Switch ON mode, RF1 to RF4: 617 to 960 MHz 960 to 2170 MHz 2170 to 2700 MHz 3300 to 3800 MHz 4200 to 5000 MHz 5150 to 5925 MHz	42 32 30 22 18.5 19	44 34 32 26 20.5 22.5		dB dB dB dB dB dB
Non- adjacent port isolation, all isolation	ISO	All switches OFF mode, RF1 to RF4: 617 to 960 MHz 960 to 2170 MHz 2170 to 2700 MHz 3300 to 3800 MHz 4200 to 5000 MHz 5150 to 5925 MHz	60 53 53 50 32 41	62 55.5 55 52.5 34 43.5		dB dB dB dB dB dB
Non-adjacent port isolation, RF1, RF2, RF3 or RF4 to GND	ISO	Switch ON mode, RF1 to RF4: 617 to 960 MHz 960 to 2170 MHz 2170 to 2700 MHz 3300 to 3800 MHz 4200 to 5000 MHz 5150 to 5925 MHz	49 40 37 30 21 31	51.5 42 39.5 32.5 23 33		dB dB dB dB dB dB

Table 4. SKY59272-707LF RF Electrical Specifications¹ (VIO = 1.8 V, Top = +25 °C, Characteristic Impedance [Zo] = 50 ohms, Unless Otherwise Noted)

¹ Performance is guaranteed only under the conditions listed in this table.

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
		25% duty cycle, switch OFF state, shunt configuration @ 50 ohms:				
Vpeak RF withstanding voltage ²	VPK	617 to 3800 MHz 4200 to 5000 MHz	80 75	84 77		V V
GSM LB harmonics:		fo = 0.824 to 0.915GHz, PiN = +35 dBm:				
50 ohms		2 nd harmonics 3 rd harmonics		-83 -80	-75 -70	dBm dBm
VSWR = 6.1		2 nd harmonics 3 rd harmonics		-79 -71	-63 -60	dBm dBm
GSM HB harmonics:		fo = 1.710 to 1.910 GHz, PIN = +33 dBm:				
50 ohms		2 nd harmonics 3 rd harmonics		-81 -82	-70 -73	dBm dBm
VSWR = 6:1		2 nd harmonics 3 rd harmonics		-76 -72	-65 -63	dBm dBm
LB harmonics:		fo = 0.617 to 0.960 GHz, PIN = +26 dBm:				
50 ohms		2 nd harmonics 3 rd harmonics		-105 -112	-90 -80	dBm dBm
VSWR = 6:1		2 nd harmonics 3 rd harmonics		-97 -100	-80 -80	dBm dBm
MB harmonics:		fo = 1.427 to 2.17 GHz, PIN = +26 dBm:				
50 ohms		2 nd harmonics 3 rd harmonics		-96 -103	-90 -80	dBm dBm
VSWR = 6:1		2 nd harmonics 3 rd harmonics		-89 -92	-75 -80	dBm dBm
HB harmonics:		fo = 2.3 to 2.69 GHz, $P_{IN} = +29$ dBm:				
50 ohms		2 nd harmonics 3 rd harmonics		-88 -101	-80 -80	dBm dBm
VSWR = 6:1		2 nd harmonics 3 rd harmonics		-80 -93	-66 -68	dBm dBm
UHB harmonics:		fo = 3.3 to 3.8 GHz, PiN = +29 dBm:				
50 ohms		2 nd harmonics 3 rd harmonics		-85 -87	-75 -80	dBm dBm
VSWR = 6:1		2 nd harmonics 3 rd harmonics		-78 -75	-65 -68	dBm dBm
Sub6G 2nd harmonic	2fo	Isolation mode, 50 ohms, $P_{IN} = +26 \text{ dBm}$, 4200 to 5000 MHz, RF1 to		-88	-72	dB
Sub6G 3rd harmonic	3fo	RF4, CW, VIO = 1.65 to 1.95 V		-101	-80	dB
Wi-Fi 2nd harmonic	2fo	Isolation mode. 50 ohms. PiN = $+26$ dBm. 5150 to 5925 MHz. RF1 to		-86	-75	dB
Wi-Fi 3rd harmonic	3fo	RF4, CW, VIO = 1.65 to 1.95 V		-107	-80	dB
Sub6G 2nd harmonic	2fo	Isolation mode, VSWR = 6:1, $PiN = +26$ dBm,		-81	-64	dB
Sub6G 3rd harmonic	3fo	4200 to 5000 MHz, RF1 to RF4, CW, VIO = 1.65 to 1.95 V		-88	-57	dB
Wi-Fi 2nd harmonic	2fo	Isolation mode, VSWR = 6:1, $PiN = +26$ dBm,		-81	-58	dB
Wi-Fi 3rd harmonic	3fo	5150 to 5925 MHz, RF1 to RF4, CW, VIO = 1.65 to 1.95 V		-95	-60	dB

Table 5. SKY59272-707LF Harmonic Measurement Specifications¹ (1 of 2)(VI0 = 1.8 V, Top = +25 °C, Characteristic Impedance [Zo] = 50 ohms, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
2nd order input interception point	IIP2	Isolation mode, B3+n78, RF1, RF2, RF3, RF4, TX bands = B3, blocker = N78, B3 = 1745 MHz, PIN = +23.5 dBm, n78 = 3585 MHz, PIN = +13 dBm at RFx port, CW signals. Measure reverse IMD2 @ 1840 MHz for B3 desense	+147	+153		dBm
3rd order input interception point	IIP3	Isolation mode, B2+n66 TX, +25 dBm/tone, B2 TX1 = 1852.5 MHz, n66 TX2 = 1772.5 MHz. Measure forward IMD3 @ 1932.5 MHz at RFx port	+85	+90		dBm
0.1 dB compression point	P0.1 dB	fo = 0.7 to 1 GHz, switch series ON state, CW	+43	+45		dBm
0.1 dB compression point	P0.1 dB	fo = 1 to 2.7 GHz, switch series ON state, CW	+43	+45		dBm
0.1 dB compression point	P0.1 dB	fo = 3.3 to 4.2 GHz, switch series ON state, CW	+43	+45		dBm
0.1 dB compression point	P0.1 dB	fo = 4.4 to 5 GHz, switch series ON state, CW	+42	+44		dBm
0.1 dB compression point	P0.1 dB	fo = 5 to 5.925 GHz, switch series ON state, CW	+42	+44		dBm

Table 5. SKY59272-707LF Harmonic Measurement Specifications¹ (2 of 2) (VIO = 1.8 V, Top = $+25 \degree$ C, Characteristic Impedance [Zo] = 50 ohms, Unless Otherwise Noted)

¹ Performance is guaranteed only under the conditions listed in this table.

 2 The values are measured in a shunt configuration with the switch in an all ISOLATION state.

Table 6. SKY59272-707LF Truth Table

Register 0									
State	Mode	D7	D6	D5	D4	D3	D2	D1	DO
1	Isolation	х	х	х	х	0	0	0	0
2	RF1 to GND	х	х	х	х	0	0	0	1
3	RF2 to GND	х	х	х	х	0	0	1	0
4	RF3 to GND	х	х	х	х	0	1	0	0
5	RF4 to GND	х	х	х	х	1	0	0	0
6	RF1 and RF2 to GND	х	х	х	х	0	0	1	1
7	RF1 and RF3 to GND	х	х	х	х	0	1	0	1
8	RF1 and RF4 to GND	х	х	х	х	1	0	0	1
9	RF2 and RF3 to GND	х	х	х	х	0	1	1	0
10	RF2 and RF4 to GND	х	х	х	х	1	0	1	0
11	RF3 and RF4 to GND	х	х	х	х	1	1	0	0
12	RF1, RF2, and RF3 to GND	х	х	х	х	0	1	1	1
13	RF1, RF2, and RF4 to GND	х	х	х	х	1	0	1	1
14	RF1, RF3, and RF4 to GND	х	х	х	х	1	1	0	1
15	RF2, RF3, and RF4 to GND	х	х	x	х	1	1	1	0
16	RF1, RF2, RF3, and RF4 to GND	х	х	х	х	1	1	1	1

Register Address	Register Name	Data Bit	Bit Name	Default	R/W	Description			
		7:6	RESERVED	0x0	R/W	Reserved for future use			
0x00	STATE CONTROL	5:4	RESERVED	0x0	R/W	Reserved for future use			
		3:0	STATE CONTROL	0x0	R/W	Described in Table 8			
		7:6	PWR_MODE	0x0		Power Mode Control			
		5	Trigger_Mask_2	0x0		If this bit is set to 1, trigger_2 is disabled			
		4	Trigger_Mask_1	0x0		If this bit is set to 1, trigger_1 is disabled			
0x1C	PM_TRIGGER	3	Trigger_Mask_0	0x0	R/W	If this bit is set to 1, trigger_0 is disabled			
			Trigger_2	0x0		A write of 1 to this bit loads trigger_2's registers			
		1	Trigger_1	0x0		A write of 1 to this bit loads trigger_1's registers			
		0	Trigger_0	0x0		A write of 1 to this bit loads trigger_0's registers			
0x1D	PRODUCT_ID	7:0	PRODUCT_ID[7:0]	0x9	R	Product Identification			
0x1E	MANUFACTURER_ID	7:0	MANUFACTURER_ID[7:0]	0xA5	R	LSB Manufacturing Identification			
		7:6	RESERVED	0x0	R	Reserved for future use			
		5:4	MANUFACTURER_ID[9:8]	0x1	R	MSB Manufacturing Identification			
0x1F	MAN_USID	3:0	USID[3:0]	0x8	R/W	Programmable USID. A write to these bits programsthe USID, selectable via pins 6 and 8:USID1 (Pin 6)USID0 (Pin 8)USIDVI0 or N/C01000VI0 or N/CVI0 or N/C10010001100VI0 or N/C0111			

Table 7. SKY59272-707LF MIPI Register Map

Table 8. SKY59272-707LF Command Sequence Bit Definitions

											Extended	Operation		
Туре	SSC	C11- C8	C7	C6-C5	C4	C3-C0	Parity Bits	BPC	DA7(1)- DA0(1)	Parity Bits	BPC	DA7(n)- DA0(n)	Parity Bits	BPC
Reg0 Write	Y	SA[3:0]	1	Data[6:5]	Data[4]	Data[3:0]	Y	Y	-	-	-	-	-	-
Reg1 Write	Y	SA[3:0]	0	10	Addr[4]	Addr[3:0]	Y	-	Data[7:0]	-	-	-	Y	Y
Reg Read	Y	SA[3:0]	0	11	Addr[4]	Addr[3:0]	Y	Y	Data[7:0]	-	-	-	Y	Y

Legend:

SSC = Sequence start command C = Command frame bits

DA = Data/address frame bits BPC = Bus park cycle

BC = Byte count (# of consecutive addresses)

Figure 4. Register Read Command Timing Diagram

Figure 5. Recommended MIPI Time Sequence Diagram

Evaluation Board Description

The SKY59272-707LF Evaluation Board is used to test the performance of the SKY59272-707LF 4xSPST Switch.

An Evaluation Board schematic diagram is provided in Figure 6. An assembly drawing for the Evaluation Board is shown in Figure 7.

Figure 6. SKY59272-707LF Evaluation Board Schematic

Figure 7. SKY59272-707LF Evaluation Board Assembly Diagram

Package Dimensions

The PCB layout footprint is shown in Figure 8. Typical part markings are shown in Figure 9. Package dimensions for the SKY59272-707LF are shown in Figure 10, and tape and reel dimensions are provided in Figure 11.

Package and Handling Information

Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY59272-707LF is rated to Moisture Sensitivity Level 1 (MSL1) at 260 °C. It can be used for lead or lead-free soldering.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

Figure 8. SKY59272-707LF PCB Layout Footprint

Figure 9. SKY59272-707LF Typical Part Markings (Top View)

Figure 10. SKY59272-707LF Package Dimensions

DATA SHEET • SKY59272-707LF: Sky5® 0.6 to 6.0 GHz 4XSPST Shunt MIPI® Antenna Tuning Switch

Figure 11. SKY59272-707LF Tape and Reel Dimensions

Ordering Information

Part Number	Product Description	Evaluation Board Part Number
SKY59272-707LF	0.6 to 6.0 GHz 4XSPST Shunt MIPI Antenna Tuning Switch	SKY59272-707EK1

Copyright © 2019-2020 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, Skyworks GreenTM, and Sky5[®] are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.