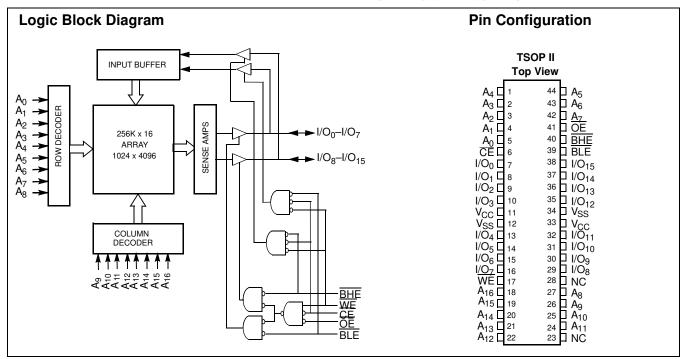


128K x 16 Static RAM

Features

- Pin equivalent to CY7C1011BV33
- High speed
 - $t_{AA} = 10 \text{ ns}$
- · Low active power
 - 360 mW (max.)
- Data Retention at 2.0
- Automatic power-down when deselected
- · Independent control of upper and lower bits
- · Easy memory expansion with CE and OE features
- Available in 44-pin TSOP II, 44-pin TQFP, and 48-ball VFBGA
- Also available in Lead-Free 44-pin TSOP II and 44-pin TQFP packages

Functional Description

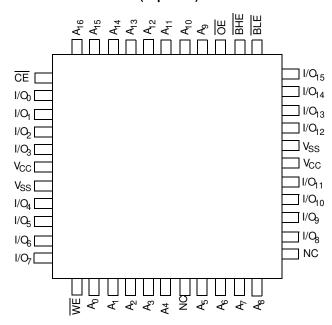

The CY7C1011CV33 is a high-performance CMOS Static RAM organized as 131,072 words by 16 bits.

<u>Writing</u> to the device is <u>acc</u>omplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0$ through I/O₇), is written into the location specified <u>on the</u> address pins $(A_0$ through A_{16}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins $(I/O_8$ through $I/O_{15})$ is written into the location specified on the address pins $(A_0$ through $A_{16})$.

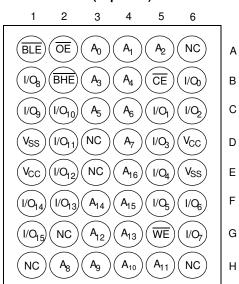
Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O $_0$ through I/O $_{15}$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1011CV33 is available in a standard 44-pin TSOP II package with center power and ground pinout, a 44-pin Thin Plastic Quad Flatpack (TQFP), as well as a 48-ball fine-pitch ball grid array (VFBGA) package.



Selection Guide


		-10	-12	-15	Unit
Maximum Access Time		10	12	15	ns
Maximum Operating Current	Maximum Operating Current Com'l		85	80	mA
	Ind'l	100	95	90	
Maximum CMOS Standby Current	Com'l/Ind'l	10	10	10	mA

Pin Configurations

44-pin TQFP (Top View)

48-ball VFBGA (Top View)

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied55°C to +125°C

Supply Voltage on V_{CC} to Relative $GND^{[2]}$ -0.5V to +4.6V

DC Voltage Applied to Outputs in High-Z State^[2].....-0.5V to V_{CC} + 0.5V

DC Input Voltage ^[2]	–0.5V to V _{CC} + 0.5V
Current into Outputs (LOW)	20 mA

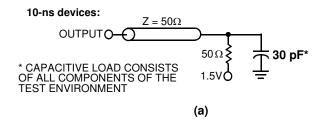
Operating Range

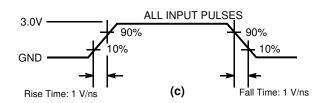
Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	$3.3V\pm0.3V$
Industrial	-40°C to +85°C	

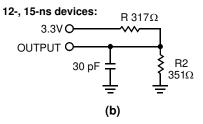
DC Electrical Characteristics Over the Operating Range

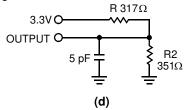
				-1	10	-1	12	-1	15	
Parameter	Description	Test Conditions		Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA		2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4		0.4	V	
V _{IH}	Input HIGH Voltage		2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	V	
V _{IL}	Input LOW Voltage[1]					-0.3	8.0	-0.3	8.0	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	-1	+1	-1	+1	-1	+1	μΑ	
I _{OZ}	Output Leakage Current	GND ≤ V _{OUT} ≤ V _{CC} , Output Disabled	$GND \leq V_{OUT} \leq V_{CC},$ Output Disabled		+1	-1	+1	-1	+1	μА
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		90		85		80	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$ Ind'I			100		95		90	mA
I _{SB1}	Automatic CE Power-down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ &\text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, f = f_{\text{MAX}} \end{aligned}$			40		40		40	mA
I _{SB2}	Automatic CE Power-down Current —CMOS Inputs	$\begin{array}{ll} \underline{\text{Max}}. \ V_{\text{CC}}, \\ \overline{\text{CE}} \geq V_{\text{CC}} - 0.3 \text{V}, \\ V_{\text{IN}} \geq V_{\text{CC}} - 0.3 \text{V}, \\ \text{or } V_{\text{IN}} \leq 0.3 \text{V}, \text{f} = 0 \end{array}$			10		10		10	mA

Capacitance^[2]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz}, V_{CC} = 3.3V$	8	pF
C _{OUT}	I/O Capacitance		8	pF


Notes:

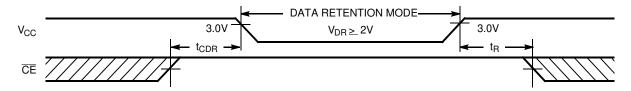

Notes:
 V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
 Tested initially and after any design or process changes that may affect these parameters.


AC Test Loads and Waveforms^[3]

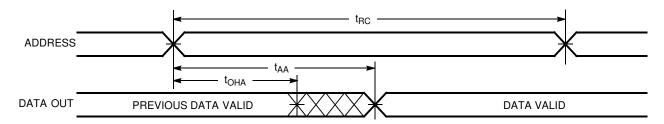
AC Switching Characteristics Over the Operating Range [4]

		-	10		12		15	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle		•	•	•	•	•	•	
t _{power} [5]	V _{CC} (typical) to the first access	1		1		1		μS
t _{RC}	Read Cycle Time	10		12		15		ns
t _{AA}	Address to Data Valid		10		12		15	ns
t _{oha}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		10		12		15	ns
t _{DOE}	OE LOW to Data Valid		5		6		7	ns
t _{LZOE}	OE LOW to Low-Z	0		0		0		ns
t _{HZOE}	OE HIGH to High-Z ^[6, 7]		5		6		7	ns
t _{LZCE}	CE LOW to Low-Z ^[7]	3		3		3		ns
t _{HZCE}	CE HIGH to High-Z ^[6, 7]		5		6		7	ns
t _{PU}	CE LOW to Power-up	0		0		0		ns
t _{PD}	CE HIGH to Power-down		10		12		15	ns
t _{DBE}	Byte Enable to Data Valid		5		6		7	ns
t _{LZBE}	Byte Enable to Low-Z	0		0		0		ns
t _{HZBE}	Byte Disable to High-Z		6		6		7	ns
Write Cycle ^{[8,}	9j	•			•		•	
t _{WC}	Write Cycle Time	10		12		15		ns

- 3. AC characteristics (except High-Z) for all 10-ns parts are tested using the load conditions shown in (a). All other speeds are tested using the Thevenin load shown
- in (b). High-Z characteristics are tested for all speeds using the test load shown in (d).


 4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.
- 5. t_{POWER} gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access is performed.
 6. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (d) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.
- 4. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, and t_{HZCE} is less than t_{LZCE} for any given device.
 The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
 The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

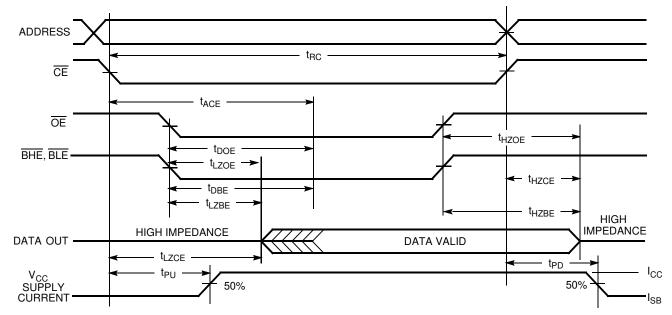
AC Switching Characteristics Over the Operating Range (continued)^[4]


			10	-12		-15			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
t _{SCE}	CE LOW to Write End	7		8		10		ns	
t _{AW}	Address Set-up to Write End	7		8		10		ns	
t _{HA}	Address Hold from Write End	0		0		0		ns	
t _{SA}	Address Set-up to Write Start	0		0		0		ns	
t _{PWE}	WE Pulse Width	7		8		10		ns	
t _{SD}	Data Set-up to Write End	5		6		7		ns	
t _{HD}	Data Hold from Write End	0		0		0		ns	
t _{LZWE}	WE HIGH to Low-Z ^[7]	3		3		3		ns	
t _{HZWE}	WE LOW to High-Z ^[6, 7]		5		6		7	ns	
t _{BW}	Byte Enable to End of Write	7		8		10		ns	

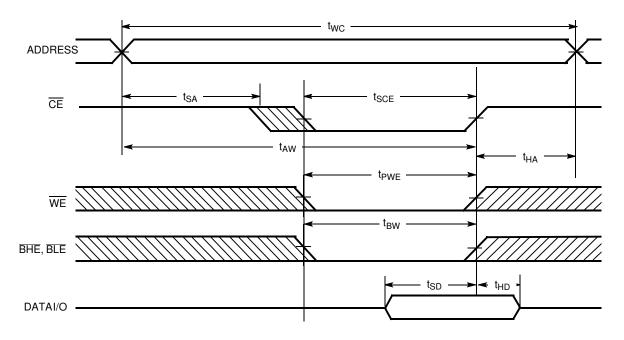
Data Retention Waveform

Switching Waveforms

Read Cycle No. 1^[10, 11]


Notes:

10. <u>Device</u> is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} and/or \overline{BHE} = V_{IL} . 11. \overline{WE} is HIGH for read cycle.



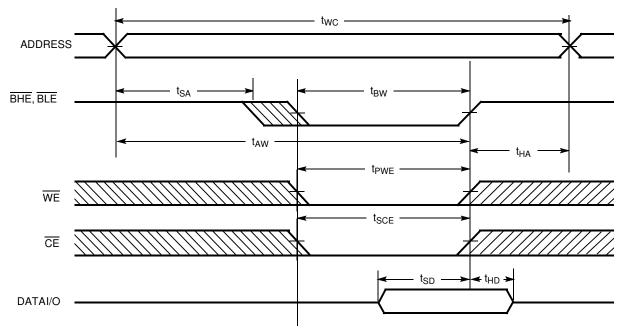
Switching Waveforms (continued)

Read Cycle No. 2 (OE Controlled)[11, 12]

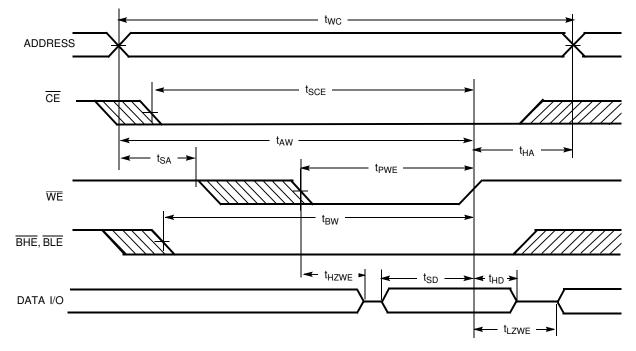
Write Cycle No. 1 (CE Controlled)[13, 14]

Notes:

^{12.} Address valid prior to or coinc<u>ident with CE</u> trans<u>ition</u> LOW.


13. D<u>ata</u> I/O is high-impedance if OE or <u>BHE</u> and/or <u>BLE</u> = V_{IH}.

14. If <u>CE</u> goes HIGH simultaneously with <u>WE</u> going HIGH, the output remains in a high-impedance state.



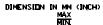
Switching Waveforms (continued)

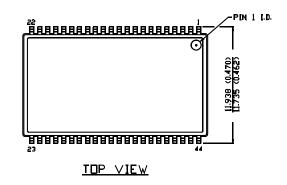
Write Cycle No. 2 (BLE or BHE Controlled)

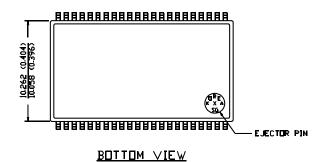
Write Cycle No. 3 (WE Controlled, OE LOW)

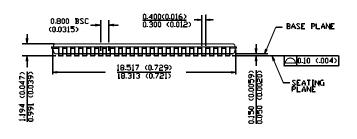
Truth Table

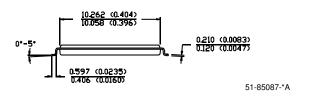
CE	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ –I/O ₁₅	Mode	Power
Н	Χ	Χ	Χ	Х	High-Z	High-Z	Power-down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out Read All Bits		Active (I _{CC})
L	L	Н	L	Н	Data Out	High-Z Read Lower Bits Only		Active (I _{CC})
L	L	Н	Н	L	High-Z	Data Out	Read Upper Bits Only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write All Bits	Active (I _{CC})
L	Χ	L	L	Н	Data In	High-Z	Write Lower Bits Only	Active (I _{CC})
L	Х	L	Н	L	High-Z	Data In	Write Upper Bits Only	Active (I _{CC})
L	Н	Н	Χ	Χ	High-Z	High-Z Selected, Outputs Disabled		Active (I _{CC})

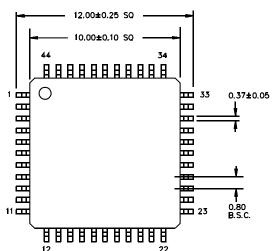

Ordering Information

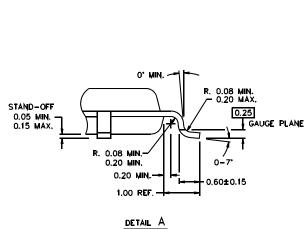

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C1011CV33-10ZC	Z44	44-pin TSOP II	Commercial
	CY7C1011CV33-10ZXC	Z44	44-pin TSOP II (Pb-Free)	Commercial
	CY7C1011CV33-10ZXI	Z44	44-pin TSOP II (Pb-Free)	Industrial
	CY7C1011CV33-10ZI	Z44	44-pin TSOP II	Industrial
	CY7C1011CV33-10BVC	BV48A	48-ball VFBGA	Commercial
	CY7C1011CV33-10BVI	BV48A	48-ball VFBGA	Industrial
12	CY7C1011CV33-12ZC	Z44	44-pin TSOP II	Commercial
	CY7C1011CV33-12ZXC	Z44	44-pin TSOP II (Pb-Free)	Commercial
	CY7C1011CV33-12ZI	Z44	44-pin TSOP II	Industrial
	CY7C1011CV33-12ZXI	Z44	44-pin TSOP II (Pb-Free)	Industrial
	CY7C1011CV33-12AC	A44	44-pin TQFP	Commercial
	CY7C1011CV33-12AI	A44	44-pin TQFP	Industrial
	CY7C1011CV33-12AXI	A44	44-pin TQFP (Pb-Free)	Industrial
	CY7C1011CV33-12BVC	BV48A	48-ball VFBGA	Commercial
	CY7C1011CV33-12BVI	BV48A	48-ball VFBGA	Industrial
15	CY7C1011CV33-15ZC	Z44	44-pin TSOP II	Commercial
	CY7C1011CV33-15ZI	Z44	44-pin TSOP II	Industrial
	CY7C1011CV33-15ZXC	Z44	44-pin TSOP II (Pb-Free)	Commercial
	CY7C1011CV33-15AC	A44	44-pin TQFP	Commercial
	CY7C1011CV33-15AI	A44	44-pin TQFP	Industrial
	CY7C1011CV33-15AXI	A44	44-pin TQFP (Pb-Free)	Industrial
	CY7C1011CV33-15BVC	BV48A	48-ball VFBGA	Commercial
	CY7C1011CV33-15BVI	BV48A	48-ball VFBGA	Industrial

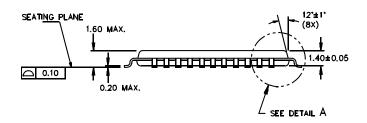



Package Diagrams


44-Pin TSOP II Z44

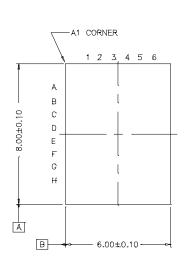


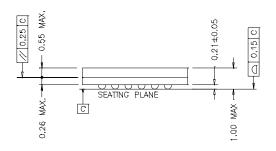


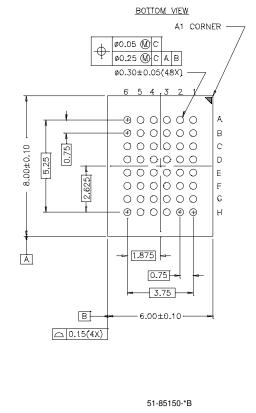


44-Lead Thin Plastic Quad Flat Pack A44

DIMENSIONS ARE IN MILLIMETERS


51-85064-*B




Package Diagrams (continued)

TOP VIEW

48-Lead VFBGA (6 x 8 x 1 mm) BV48A

All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

	Document Title: CY7C1011CV33 128K x 16 Static RAM Document Number: 38-05232								
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change					
**	117132	07/31/02	HGK	New Data Sheet					
*A	118057	08/19/02	HGK	Pin configuration for 48-ball FBGA correction					
*B	119702	10/11/02	DFP	Updated FBGA to VFBGA; updated package code on page 8 to BV48A. Updated address pinouts on page 1 to A0 to A16. Updated CMOS standby current on page 1 from 8 to 10 mA.					
*C	386106	See ECN	PCI	Added lead-free parts in Ordering Information Table					