

Oscillator JTS75HC(V) · (VC)TCXO

- temp. compensated crystal oscillator, 7.0 x 5.0 mm
- low jitter Stratum 3 compliant TCXO / VCTCXO
- temperature range -40°C ~ +105°C available
- frequency stability of ± 50 ppb available
- ask for customized options

RoHS compliant Pb free

Conflict

compliant

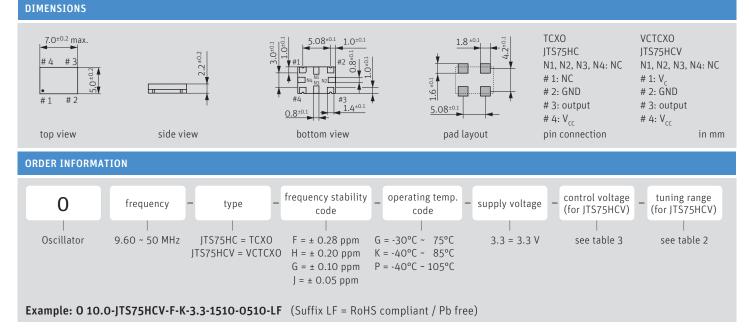
mineral free

Ph

GENERAL DATA

ТҮРЕ		JTS75HC / JTS75HCV (HCMOS output)		
frequency range		9.60 ~ 50.0 MHz (see table 4 on next page)		
frequency tolerance / stability	at +25 °C (*1)	± 1.0 ppm max.		
	after 2x reflow (*2)	± 0.5 ppm max.		
	temperature (*3)	see table 1		
	supply voltage (*4)	± 0.1 ppm max. (at V _{DC} ± 5%)		
	load change (*5)	± 0.1 ppm max. (at nom load ± 5%)		
	aging first year (*6)	± 1.0 ppm max. (at +25 °C)		
	aging per day (*7)	± 10.0 ppb max.		
	short term (ADEV)	0.2 ppb max. / 0.1 ppb typ. with τ = 1 sec		
holdover stability (*8)		± 0.37 ppm max.		
free run frequency stability (*9)		± 4.6 ppm max.		
current consumption max.		10.0 mA		
supply volta	age V _{DC}	3.3V (all ± 5%)		
tempera-	operating	see table 1		
ture	operable	-40 °C ~ +105 °C		
	storage	-55 °C ~ +105 °C		
output	rise/fall time max.	8ns (10% <-> 90% of VDC)		
	nominal load	15 pF		
	low level max.	0.4V		
	high level min.	V _{DC} - 0.4V		
start-up time max.		3.0 ms		

TABLE 1: FREQUENCY STABILITY CODE


frequency stability		F	Н	G	J
temperature code		± 0.28 ppm	± 0.20 ppm	± 0.10 ppm	± 0.05 ppm
-30 °C ~ +75 °C	G	0	0	0	0
-40 °C ~ +85 °C	К	0	0	0	0
-40 °C ~ +105 °C	Р	0	0	0	0

O available

TABLE 2: VC DEPENDENT FREQUENCY TUNING RANGE CODING METHOD						
V_{c} frequency tuning range	code	minimal	maximal			
of JTS75HCV	05X0	± 5.0 ppm	undefined			
table shows examples,	08X0	± 8.0 ppm	undefined			
ask for more options	0510	± 5.0 ppm	± 10.0 ppm			
	1015	± 10.0 ppm	± 15.0 ppm			

TABLE 3: VC CODING METHOD (EXAMPLES)					
V_c center voltage and V_c range	code	center of V _c	range of V _c		
	1616	1.65 V	± 1.65 V	1.65 V	± 1.65 V at V _{DC} = 3.3 V
	1610	1.65 V	± 1.00 V	1.65 V \pm 1.00 V at V $_{\rm DC}$ = 3.3 V	
	1515	1.50 V	± 1.50 V	1.50 V \pm 1.50 V at V $_{\rm DC}$ = 3.3 V	
	1510	1.50 V	± 1.00 V	1.50 V	1.50 V \pm 1.00 V at V $_{\rm DC}$ = 3.3 V
V _c properties	input impedance of V_c min.			100 k0hm	
	V _c frequency tuning linearity max.			10 %	

For (*1) ~ (*9) please refer to definitions shown on the 2nd page of this datasheet

Oscillator JTS75HC(V) · Stratum 3 TCXO & VCTCXO

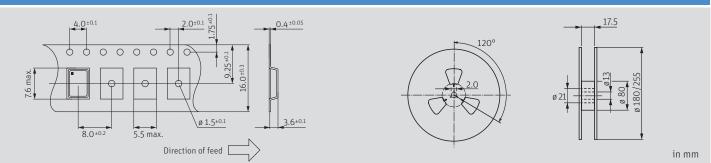
PHASE NOISE INFORMATION					
phase noise at f0 19.2 MHz, V _{DC} = 3.3 V @ +25 °C	at 10 Hz	-93 dBc/Hz typ.			
	at 100 Hz	-120 dBc/Hz typ.			
	at 1 KHz	-145 dBc/Hz typ.			
	at 10 KHz	-157 dBc/Hz typ.			
	at 100 KHz	-159 dBc/Hz typ.			

PACKAGING NOTE

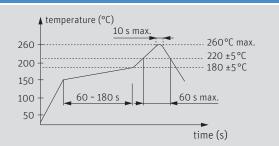
non-multiple packing units are only supplied taped / bulk
moisture sensitivity: MSL 2

DEVELOPED FREQUENCIES					
all frequencies	10.0	12.80	13.0	16.320	16.3840
in MHz:	18.4320	19.20	19.440	20.0	25.0
	30.720	32.7680	38.880	40.0	50.0

NOTE


 for best supply noise rejection, connect a capacitor of 100nF and a second capacitor of 10μF closely to the supply voltage pins
a separate voltage supply rail ensures best phase noise

- keep digital or high frequency signals as far away from V_c pin as possible


DEFINITIONS

- *1: Measured frequency observed with $T_A = +25^{\circ}$ C and $C_L = 15pF$, at nominal V_{DC} and nominal center V_C (if applicable) within 30 days after ex-factory. The measured frequency is referenced to the specified nominal frequency.
- *2: At specified reflow soldering profile, tested with T_{A} =+25 °C and C_L =15pF, at nominal V_{DC} and nominal center V_C (if applicable). At least 4 hours of static placement at room temperature is necessary after completion of 2 times reflow.
- *3: T_A varied in the specified operating temperature range, frequency variation is normalized to the middle point of whole frequency excursion, at nominal V_{DC} and nominal center V_C (if applicable), and at nominal output load, temperature variable speed less than 2°C per minute.
- *4: Frequency variation if V_{DC} is varied by ± 5% of nominal V_{DC} , frequency variation is normalized to frequency observed at nominal V_{DC} , nominal center V_{C} (if applicable), T_{A} =+25 °C and nominal load.
- *5: Frequency variation if the load is varied by ± 5% of nominal load, frequency variation is normalized to frequency observed at nominal V_{DC}, nominal center V_c (if applicable), T_A=+25 °C and nominal load.
- *6: The maximum 1st-year frequency deviation from the ex-factory status. $T_A = +25$ °C, at nominal V_{DC} , nominal center V_C (if applicable), $T_A = +25$ °C and nominal load. Normally, the largest frequency deviation occurs within the 1st year.
- *7: The maximum frequency deviation within 24 hours in a steady state. The initial status acquired at $T_A = +25$ °C, at nominal V_{DC} , nominal center V_C (if applicable), nominal load and after 1h of continuous operation.
- *8: The maximum frequency deviation within 24 hours including temperature variation. The initial status acquired at T_A=+25°C, at nominal V_{DC}, nominal center V_c (if applicable), nominal load and after 1h of continuous operation.
- *9: The maximum frequency deviation including stability vs. temperature, tolerance ex. factory, aging over 20 years, supply and load variation.

TAPING SPECIFICATION

REFLOW SOLDERING PROFILE

note: parts are also suitable for soldering systems with lead (Pb) content

MARKING

internal code (optional) / frequency dot / internal code (optional) / date code (WWYY)

date code: two digits for week and two digits for year