Power MOSFET 40 V, 85 A, Single N–Channel, DPAK

Features

- Low R_{DS(on)}
- High Current Capability
- Avalanche Energy Specified
- AEC-Q101 Qualified
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- DC Motor Drive
- Reverse Battery Protection
- Glow Plug

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

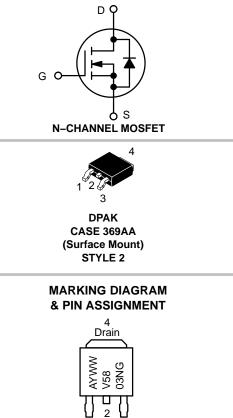
	(3		,		
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	40	V
Gate-to-Source Voltage - Continuous			V _{GS}	±20	V
Continuous Drain		$T_{C} = 25^{\circ}C$	I _D	85	А
Current (R _{θJC}) (Note 1)	Steady	$T_C = 100^{\circ}C$	1	61	
Power Dissipation $(R_{\theta JC})$ (Note 1)	State	$T_{C} = 25^{\circ}C$	P _D	83	W
Pulsed Drain Current	t _p = 10 μs		I _{DM}	228	А
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to 175	°C
Source Current (Body Diode)		I _S	85	А	
Single Pulse Drain–to–Source Avalanche Energy (V _{DD} = 50 V, V _{GS} = 10 V, R _G = 25 Ω , I _{L(pk)} = 40 A, L = 0.3 mH)			E _{AS}	240	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	R_{\thetaJC}	1.8	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	42	

1. Surface-mounted on FR4 board using 1 in sq pad size


(Cu area = 1.127 in sq [1 oz] including traces.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
40 V	5.7 m Ω @ 10 V	85 A	

1 Drain 3 Gate Source

A = Assembly Location* Y = Year WW = Work Week 5803N = Device Code

G = Pb–Free Package

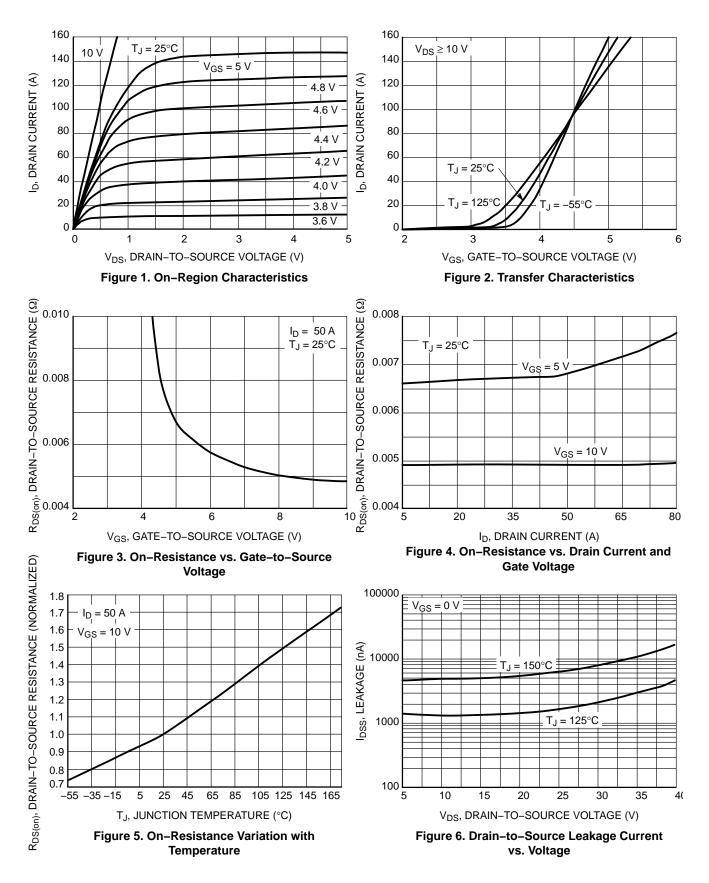
* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

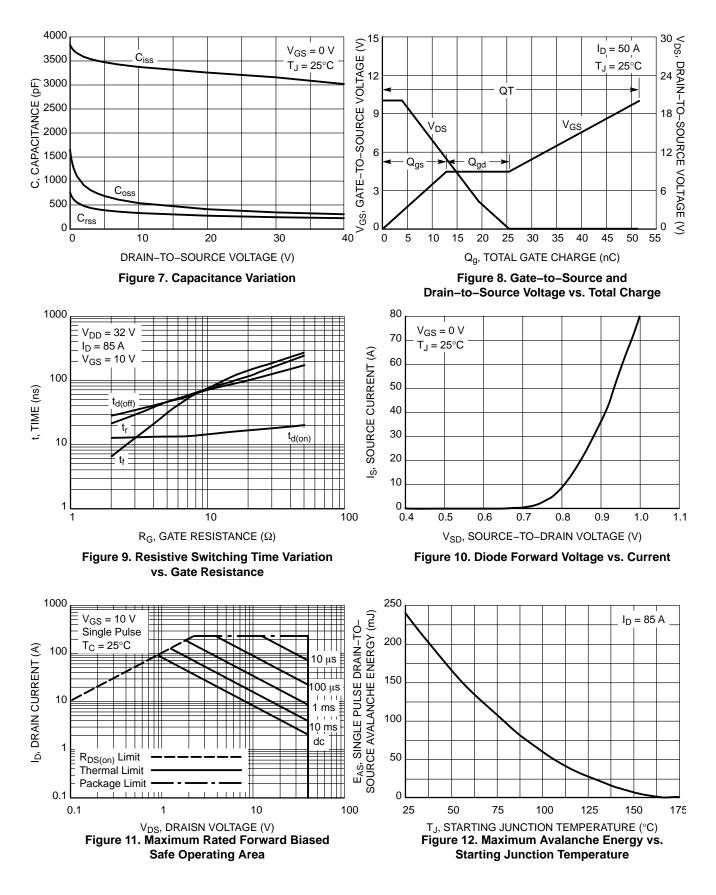
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Мах	Unit	
OFF CHARACTERISTICS	•							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		40			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				40		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V.$	T _J = 25°C			1.0	μA	
		V _{GS} = 0 V, V _{DS} = 40 V	T _J = 150°C			100		
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	_s = ±20 V			±100	nA	
ON CHARACTERISTICS (Note 2)								
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 250 μA	1.5		3.5	V	
Negative Threshold Temperature Co- efficient	V _{GS(TH)} /T _J				-7.4		mV/°C	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _E	₀ = 50 A		4.9	5.7	mΩ	
		V _{GS} = 5.0 V, I _D = 30 A			6.7			
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I _D = 15 A			13.6		S	
CHARGES, CAPACITANCES AND GAT	TE RESISTANCE	S					•	
Input Capacitance	C _{iss}	V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = 25 V			3220		pF	
Output Capacitance	C _{oss}				390			
Reverse Transfer Capacitance	C _{rss}				270			
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 20 V, I _D = 50 A			51		nC	
Threshold Gate Charge	Q _{G(TH)}				3.8			
Gate-to-Source Charge	Q _{GS}				12.7			
Gate-to-Drain Charge	Q _{GD}				12.7			
SWITCHING CHARACTERISTICS (Not	e 3)							
Turn-On Delay Time	t _{d(on)}				12.6		ns	
Rise Time	t _r	V _{GS} = 10 V, V _D	л = 32 V,		21.4			
Turn–Off Delay Time	t _{d(off)}	$I_{\rm D} = 50 \rm A, R_{\rm G}$			28.3			
Fall Time	t _f				6.6			
DRAIN-SOURCE DIODE CHARACTER	ISTICS							
Forward Diode Voltage	V _{SD}	V_{SD} $V_{GS} = 0 V,$	$T_J = 25^{\circ}C$		0.88	1.2	V	
		$I_{\rm S} = 30 {\rm A}$	T _J = 150°C		0.73		7	
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dls/dt = 100 A/μs, I _S = 30 A			27.2		ns	
Charge Time	ta				14		1	
Discharge Time	tb				13.2		1	
Reverse Recovery Charge	Q _{RR}				17		nC	


Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

ORDERING INFORMATION


Order Number	Package	Shipping [†]
NVD5803NT4G	DPAK (Pb–Free)	2500 / Tape & Reel
SVD5803NT4G	DPAK (Pb–Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

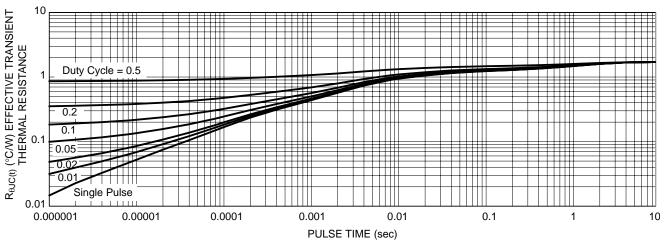
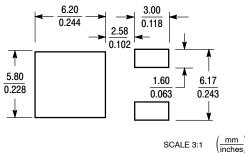



Figure 13. Thermal Response

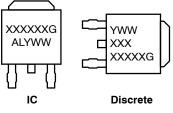
1

L3

L4

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DATE 03 JUN 2010


1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

ON Semiconductor

- 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- THERMAL FAD CONTOR OF FIGURE WITHIN DEMONSIONS b3, L3 and Z.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL
- NOT EXCEED 0.006 INCHES PER SIDE 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM

	INC	HES	MILLIMETERS		
DIM	MIN MAX		MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29 BSC		
Н	0.370	0.410	9.40	10.41	
Г	0.055	0.070	1.40	1.78	
L1	0.108 REF		2.74 REF		
L2	0.020 BSC		0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Ζ	0.155		3.93		

MARKING DIAGRAM*

= Device Code = Assembly Location L = Wafer Lot Y = Year = Work Week WW G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incliental damages. ON Semiconductor does not convey any license under its patent rights nor the				

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales