

PST-360: Instructions for use

HOW TO ORDER: PST360G2-1S-C0000-ERA360-05K OUTPUT TYPE: Simple - SPI Protocol SIGNAL OUTPUT 10% to 90% SPI Protocol (360º ERA)

ROTOR: 14mm OUTPUT FUNCTION: Curve 0000 SUPPLY VOLTAGE: 5V ± 10% TEMPERATURE: -40 °C to +125 °C

Connections scheme:

Wire color	Connection	Recommended connections							
Brown	Power supply Vdd: 5V ± 10%	SIPI Master OND							
Blue	Ground								
Black	MOSI								
White	/SS								
Grey	SCLK	÷ (3109)							
A WARNING -In order to minimize the possibility of short circuits, we recommend to connect the power supply at the end									

Signal output:

Reference position:

Rotor is shown at zero position

To get more information about our full Legal Disclaimer and Limitation of Liability please visit www.piher.net/disclaimer_hollow_shaft.pdf. Users acknowledge that they have read this legal disclaimer and agree to abide by its terms. Piher Sensors & Controls SA *** confidential ***

Polígono Industrial Municipal, Vial T2, No 22, 31500 Tudela, Navarra, Spain

Piher is an Amphenol[™] company. RM Navarra Tomo 551, Folio 7, Hoja 5.580 CIF/VAT ESA31169907

Tel: +34 948 820 450 Fax: +34 948 824 050 www.piher.net

SPI Protocol information

The PST-360 features a digital Serial protocol mode. The PST-360 is considered as a Slave node. The serial protocol of the PST-360 is a three wires protocol (/SS, SCLK, MOSI-MISO):

- /SS pin is a 5V tolerant digital input.
- SCLK pin is a 5V tolerant digital input.
- MOSI-MISO pin is a 5V tolerant open drain digital input/output.

1. Timing

To synchronize communication, the master deactives /SS high for at least t5 (1.5 ms). In this case, the Slave will be ready to receive a new frame. The master can re-synchronize at any time, even in the middle of a byte transfer.

Timings	Min ⁽¹⁾	Мах	Remarks							
t1	6.9 μs	-	No capacitive load on MISO. t1 is the minimum clock period for any bits within a byte.							
t2	37.5 μs	-	t2 the minimum time between any other byte.							
t4	6.9 µs	-	Time between last clock and /SS=high=chip de selection.							
t5	1500 μs	-	Minimum /SS=Hi time where it's guaranteed that a frame re-synchronizations will be started.							
t5	0 µs	-	Maximum /SS=Hi time where it's guaranteed that NO frame re-synchronizations will be started.							
t6	6.9 µs	-	The time t6 defines the minimum time between /SS=Lo and the first clock edge.							
t7	45 μs	-	t7 is the minimum time between the StartByte and the Byte0.							
t9	-	< 1 µs	Maximum time between /SS=Hi and MISO Bus High-Impedance.							
T _{StartUp}	-	< 16 µs	Minimum time between reset-inactive and any master signal change.							

(1) Timings shown for oscillator base frequency of 7MHz (Slow mode)

2. Slave Reset

On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard failures the Slave resets itself. In that case, the Serial protocol will not come up. The serial protocol link is enabled only after the completion of the first synchronization (the Master deactivates /SS for at least 15).

3. Slave Start-Up

The Slave start-up (after power-up or an internal failure) takes 16 ms. Within this time /SS and SCLK is ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-Impedance) until the Slave is selected by its /SS input. MTS-360 will cope with any signal from the Master while starting up.

To get more information about our full Legal Disclaimer and Limitation of Liability please visit www.piher.net/disclaimer_hollow_shaft.pdf. Users acknowledge that they have read this legal disclaimer and agree to abide by its terms. Piher Sensors & Controls SA *** confidential *** Polígono Industrial Municipal, Vial T2, No 22, 31500 Tudela, Navarra, Spain Tel: +34 948 820 450 Piher is an Amphenol[™] company

RM Navarra Tomo 551, Folio 7, Hoja 5.580 CIF/VAT ESA31169907

Fax: +34 948 824 050 www.piher.net

SPI Protocol information

4. Frame Layer

4.1. Command Device Mechanism

Before each transmission of a data frame, the Master should send a byte AAh to enable a frame transfer. The latch point for the angle measurement is at the last clock before the first data frame byte.

4.2. Data Frame Structure

A data frame consists of 10 bytes:

2 start bytes (AAh followed by FFh)

- 2 data bytes (DATA16 most significant byte first)
- 2 inverted data bytes (/DATA16 most significant byte first)
- · 4 all-Hi bytes

The Master should send AAh (55h in case of inverting transistor) followed by 9 bytes FFh. The Slave will answer with two bytes FFh followed by 4 data bytes and 4 bytes FFh.

4.3. Timing

There are no timing limits for frames: a frame transmission could be initiated at any time. There is no inter-frame time defined.

4.4. Data structure

The DATA16 could be a valid angle, or an error condition. The two meanings are distinguished by the LSB.

DATA	16: Ar	ngle A	[13:0]	with (A	ngle S	Span)/2	14										
Most Significant Byt							e Less Significant Byte										
T N	ISB							LSB	MSB			- g				LSB	
1	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	0	1	
DATA16: Error																	
	Most Significant By					Byte	te Less Significant Byte								- 111-21-1		
N	ISB							LSE	MSE							LSB	
E	E15	E14	E13	E12	E11	E10	E9	E8	E7	E6	E5	E4	E3	E2	E1	E0	
	BIT	NA	NAME														
	E0	0															
	E1	1															
	E2	F_	F_ADCMONITOR				ADC Failure										
	E3	F_	F_ADCSATURA				ADC Saturation (Electrical failure or field too strong)										
	E4	F_	F_RGTOOLOW				Analog Gain Below Trimmed Threshold (Likely reason : field too weak)										
	E5	F	MAGT	OOLC	W	Mag	Magnetic Field Too Weak										
	E6	F	F MAGTOOHIGH				Magnetic Field Too Strong										
	E7	F_	F_RGTOOHIGH				Analog Gain Above Trimmed Threshold (Likely reason : field too strong)										
	E8	F	F FGCLAMP				Never occurring in serial protocol										
	E9	F	FROCLAMP				Analog Chain Rough Offset Compensation : Clipping										
	E10	F	F MT7V				Device Supply VDD Greater than 7V										
	E11	-	-														
	E12	-															
	E13	-															
	E14	F	DACN	IONITO	DR	Nev	er og	currin	g in se	rial pr	otocol						
	E A F																

4.5. Angle Calculation

All communication timing is independent (asynchronous) of the angle data processing. The angle is calculated continuously by the Slave:

· Slow mode: every 1.5 ms at most.

The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by the Slave, because any internal failure of the Slave will lead to a soft reset.

4.6. Error handling

In case of any errors listed in the previous table, the Serial protocol will be initialized and the error condition can be read by the master. The Slave will perform a soft reset once the error frame is sent.

In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog error ...) the Slave's serial protocol is not initialized. The MOSI/MISO pin will stay Hi-impedant (no error frames are sent).

Information contained in and/or attached to this document may be subject to export control regulations of the European Community, USA, or other countries. Each recipient of this document is responsible to ensure that usage and/or transfer of any information contained in this document complies with all relevant export control regulations. If you are in any doubt about the export control restrictions that apply to this information, please contact the sender immediately. For any Piher Sensors & Controls SA Exports, Note: All products / technologies are EAR99 Classified commodities. Exports from the United States are in accordance with the Export Administration Regulations. Diversion contrary to US law is prohibited. To get more information about our full Legal Disclaimer and Limitation of Liability please visit www.piher.net/disclaimer hollow shaft.pdf Users acknowledge that they have read this legal disclaimer and agree to abide by its terms. *** confidential *** Tel: +34 948 820 450 Piher Sensors & Controls SA Fax: +34 948 824 050 Polígono Industrial Municipal, Vial T2, No 22, 31500 Tudela, Navarra, Spain www.piher.net

Piher is an Amphenol[™] company. RM Navarra Tomo 551, Folio 7, Hoja 5.580 CIF/VAT ESA31169907