

PN7150

High performance full NFC Forum-compliant controller with integrated firmware and NCI interface

Rev. 3.3 — 4 July 2016

Product data sheet

1. Introduction

This document describes the functionality and electrical specification of the NFC Controller PN7150.

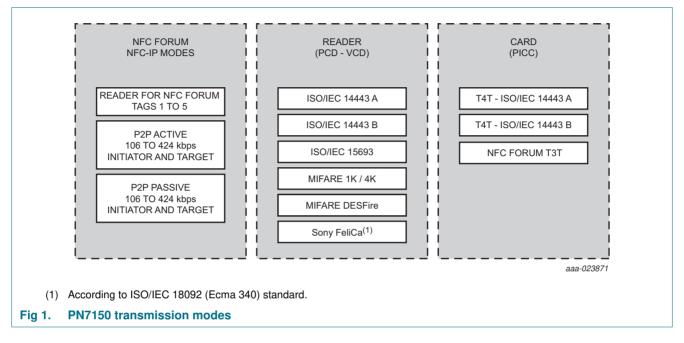
Additional documents describing the product functionality further are available for design-in support. Refer to the references listed in this document to get access to the full for full documentation provided by NXP.

2. General description

Best plug'n play and high-performance full NFC solution PN7150 is a full NFC controller solution with integrated firmware and NCI interface designed for contactless communication at 13.56 MHz. It is compatible with NFC forum requirements.

PN7150 is designed based on learnings from previous NXP NFC device generation. It is the ideal solution for rapidly integrating NFC technology in any application, especially those running O/S environment like Linux and Android, reducing Bill of Material (BOM) size and cost, thanks to:

- Full NFC forum compliancy (see Ref. 1) with small form factor antenna
- Embedded NFC firmware providing all NFC protocols as pre-integrated feature
- Direct connection to the main host or microcontroller, by I²C-bus physical and NCI protocol
- · Ultra-low power consumption in polling loop mode
- Highly efficient integrated power management unit (PMU) allowing direct supply from a battery


PN7150 embeds a new generation RF contactless front-end supporting various transmission modes according to NFCIP-1 and NFCIP-2, ISO/IEC14443, ISO/IEC 15693, MIFARE and FeliCa specifications. It embeds an ARM Cortex-M0 microcontroller core loaded with the integrated firmware supporting the NCI 1.0 host communication. It also allows to provide a higher output power by supplying the transmitter output stage from 3.0 V to 4.75 V.

The contactless front-end design brings a major performance step-up with on one hand a higher sensitivity and on the other hand the capability to work in active load modulation communication enabling the support of small antenna form factor.

Supported transmission modes are listed in <u>Figure 1</u>. For contactless card functionality, the PN7150 can act autonomously if previously configured by the host in such a manner.

PN7150 integrated firmware provides an easy integration and validation cycle as all the NFC real-time constraints, protocols and device discovery (polling loop) are being taken care internally. In few NCI commands, host SW can configure the PN7150 to notify for card or peer detection and start communicating with them.

3. Features and benefits

- Includes NXP ISO/IEC14443-A, Innovatron ISO/IEC14443-B and NXP MIFARE crypto1 intellectual property licensing rights
- ARM Cortex-M0 microcontroller core
- Highly integrated demodulator and decoder
- Buffered output drivers to connect an antenna with minimum number of external components
- Integrated RF level detector
- Integrated Polling Loop for automatic device discovery
- RF protocols supported
 - ◆ NFCIP-1, NFCIP-2 protocol (see <u>Ref. 8</u> and <u>Ref. 11</u>)
 - ISO/IEC 14443A, ISO/IEC 14443B PICC, NFC Forum T4T modes via host interface (see <u>Ref. 3</u>)
 - NFC Forum T3T via host interface
 - ISO/IEC 14443A, ISO/IEC 14443B PCD designed according to NFC Forum digital protocol T4T platform and ISO-DEP (see <u>Ref. 1</u>)
 - FeliCa PCD mode
 - MIFARE PCD encryption mechanism (MIFARE 1K/4K)
 - NFC Forum tag 1 to 5 (MIFARE Ultralight, Jewel, Open FeliCa tag, DESFire) (see <u>Ref. 1</u>)
 - ISO/IEC 15693/ICODE VCD mode (see <u>Ref. 9</u>)
- Supported host interfaces

- NCI protocol interface according to NFC Forum standardization (see Ref. 2)
- ◆ I²C-bus High-speed mode (see Ref. 4)
- Integrated power management unit
 - Direct connection to a battery (2.3 V to 5.5 V voltage supply range)
 - Support different Hard Power-Down/Standby states activated by firmware
 - Autonomous mode when host is shut down
- Automatic wake-up via RF field, internal timer and I²C-bus interface
- Integrated non-volatile memory to store data and executable code for customization

Applications 4.

- All devices requiring NFC functionality especially those running in an Android or Linux environment
- TVs, set-top boxes, Blu-ray decoders, audio devices
- Home automation, gateways, wireless routers
- Home appliances
- Wearables, remote controls, healthcare, fitness
- Printers, IP phones, gaming consoles, accessories

Quick reference data 5.

Symbol Parameter Conditions						Max	Unit
V _{BAT}	battery supply voltage	Card Emulation and Passive Target; $V_{SS} = 0 V$	[1] [2]	Min 2.3	Тур -	5.5	V
		Reader, Active Initiator and Active Target; $V_{SS} = 0 V$	[1] [2]	2.7	-	5.5	V
V _{DD}	supply voltage	internal supply voltage		1.65	1.8	1.95	V
V _{DD(PAD)} V _{DD(PAD)} supply voltage	supply voltage for host interface						
		1.8 V host supply; $V_{SS} = 0 V$	<u>[1]</u>	1.65	1.8	1.95	V
	3 V host supply; V _{SS} = 0 V	[1]	3.0	-	3.6	V	
I _{BAT}	battery supply current	in Hard Power Down state; V _{BAT} = 3.6 V; T = 25 °C	[3]	-	10	14	μA
		in Standby state; V _{BAT} = 3.6 V; T = 25 °C		-	20	-	μA
		in Monitor state; V _{BAT} = 2.75 V; T = 25 °C		-	-	14	μA
		in low-power polling loop; V _{BAT} = 3.6 V; T = 25 °C; loop time = 500 ms	[4]	-	150	-	μA
		PCD mode at typical 3 V	[2]	-	-	190	mA
I _{O(VDDPAD)}	output current on pin $V_{DD(PAD)}$	total current which can be pulled on V _{DD(PAD)} referenced outputs		-	-	15	mA

Table 1. Quick reference datacontinued							
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
I _{th(llim)}	current limit threshold current		-	180	-	mA	
P _{tot}	total power dissipation	Reader; $I_{VDD(TX)} = 100 \text{ mA};$ $V_{BAT} = 5.5 \text{ V}$	-	-	420	mW	
T _{amb}	ambient temperature	JEDEC PCB-0.5	-30	-	+85	°C	

[1] V_{SS} represents $V_{SS(PAD)}$ and $V_{SS(TX)}$.

- [2] The antenna should be tuned not to exceed this current limit (the detuning effect when coupling with another device must be taken into account).
- [3] External clock on NFC_CLK_XTAL1 must be LOW.
- [4] See <u>Ref. 10</u> for computing the power consumption as it depends on several parameters.

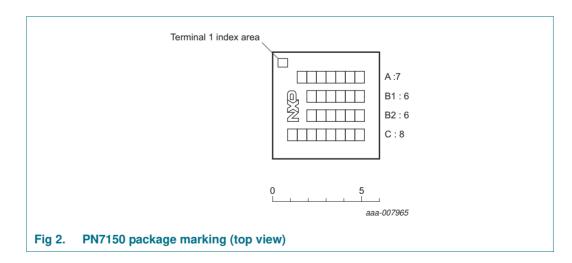
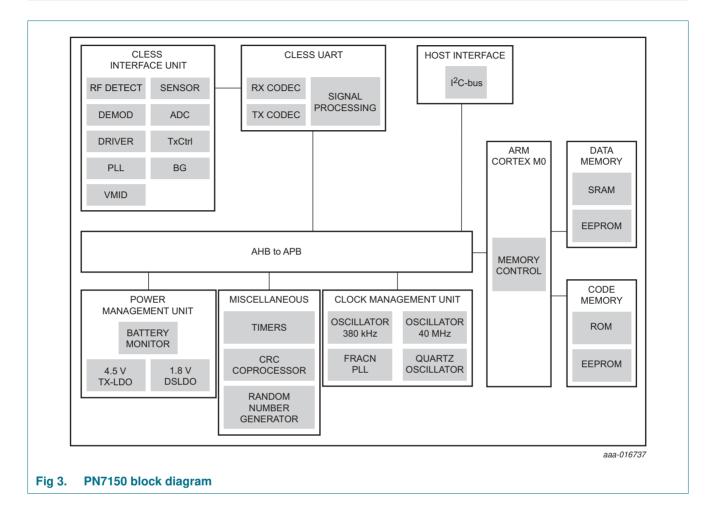

6. Ordering information

Table 2. Ordering information

Type number	Package				
	Name	Description	Version		
PN7150B0HN/C110xx ^[1]	HVQFN40	plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body $6 \times 6 \times 0.85$ mm	SOT618-1		

[1] xx = firmware code variant.

7. Marking


Table 3.Marking codes

Type number	Marking code
	7 characters used: basic type number: PN7150x where x is the FW variant

Type number	Marking code
Line B1	6 characters used: diffusion batch sequence number
Line B2	6 characters used: assembly ID number
Line C	7 characters used: manufacturing code including:
	diffusion center code:
	– Z: SSMC
	– S: Powerchip (PTCT)
	 assembly center code:
	– S: APK
	 RoHS compliancy indicator:
	 D: Dark Green; fully compliant RoHS and no halogen and antimony
	 manufacturing year and week, 3 digits:
	– Y: year
	– WW: week code
	 product life cycle status code:
	 X: means not qualified product
	 nothing means released product

 Table 3.
 Marking codes ...continued

8. Block diagram

9. Pinning information

NFC_CLK_XTAL2 NFC_CLK_XTAL1 CLK_REQ terminal 1 n.c. n.c n.c. n.c. n.c. ij ij index area 31 33 40 37 36 35 39 38 34 (30 I2CADR0 1 VDDD 2) (29 i.c. V_{DD} (28 I2CADR1 3) VDDA (27 Vss V_{SS(PAD)} 4) (26 I2CSDA 5 VBAT **PN7150** (25 VDD(PAD) 6 i.c. I2CSCL 7) (24 i.c. IRQ 8) (23 i.c. (22 V_{DD(TX IN)} V_{SS} 9) VSS **VEN** 10) (21 TX1 티민 (2) (4) 12 (9) **B** VBAT2 VBAT1 VDD(TX) RXN RXP Vss(TX) VDD(MID) <u>.</u>. TX2 n.c. Transparent top view aaa-016738 Fig 4. Pinning

9.1 Pinning

Table 4.Pin description

Symbol	Pin	Type ^[1]	Refer	Description
I2CADR0	1	I	V _{DD(PAD)}	I ² C-bus address 0
i.c.	2	-	-	internally connected; must be connected to GND
I2CADR1	3	I	V _{DD(PAD)}	I ² C-bus address 1
V _{SS(PAD)}	4	G	n/a	pad ground
I2CSDA	5	I/O	V _{DD(PAD)}	I ² C-bus data line
V _{DD(PAD)}	6	Р	n/a	pad supply voltage
I2CSCL	7	I	V _{DD(PAD)}	I ² C-bus clock line
IRQ	8	0	V _{DD(PAD)}	interrupt request output
V _{SS}	9	G	n/a	ground
VEN	10	I	V _{BAT}	reset pin. Set the device in Hard Power Down
i.c.	11	-	-	internally connected; leave open
V _{BAT2}	12	Р	n/a	battery supply voltage; must be connected to V_{BAT}
V _{BAT1}	13	Ρ	n/a	battery supply voltage; must be connected to V_{BAT}
V _{DD(TX)}	14	Р	n/a	transmitter supply voltage

Table 4. Pin descrip				Description
Symbol	Pin	Type ^[1]	Refer	Description
RXN	15	I	V _{DD}	negative receiver input
RXP	16	I	V _{DD}	positive receiver input
V _{DD(MID)}	17	Р	n/a	receiver reference input supply voltage
TX2	18	0	$V_{DD(TX)}$	antenna driver output
V _{SS(TX)}	19	G	n/a	contactless transmitter ground
n.c.	20	-	-	not connected
TX1	21	0	$V_{DD(TX)}$	antenna driver output
$V_{DD(TX_IN)}$	22	Р	n/a	transmitter input supply voltage; must be connected to $V_{\text{DD}(\text{TX})}$
i.c.	23	-	-	internally connected; leave open
i.c.	24	-	-	internally connected; leave open
i.c.	25	-	-	internally connected; leave open
V _{BAT}	26	Р	n/a	battery supply voltage
V _{SS}	27	G	n/a	ground
V _{DDA}	28	Ρ	n/a	analog supply voltage; must be connected to V_{DD}
V _{DD}	29	Р	n/a	supply voltage
V _{DDD}	30	Ρ	n/a	digital supply voltage; must be connected to V_{DD}
n.c.	31	-	-	not connected
n.c.	32	-	-	not connected
n.c.	33	-	-	not connected
n.c.	34	-	-	not connected
n.c.	35	-	-	not connected
NFC_CLK_XTAL1	36	I	V _{DD}	oscillator input/PLL input
NFC_CLK_XTAL2	37	0	V _{DD}	oscillator output
i.c.	38	-	-	internally connected; leave open
i.c.	39	-	-	internally connected; leave open
CLK_REQ	40	0	V _{DD(PAD)}	clock request pin
		1	. ,	

Table 4. Pin descriptioncol	ntinued
-----------------------------	---------

[1] P = power supply; G = ground; I = input, O = output; I/O = input/output.

10. Functional description

PN7150 can be connected on a host controller through l^2 C-bus. The logical interface towards the host baseband is NCI-compliant <u>Ref. 2</u> with additional command set for NXP-specific product features. This IC is fully user controllable by the firmware interface described in <u>Ref. 5</u>.

Moreover, PN7150 provides flexible and integrated power management unit in order to preserve energy supporting Power Off mode.

In the following chapters you will find also more details about PN7150 with references to very useful application note such as:

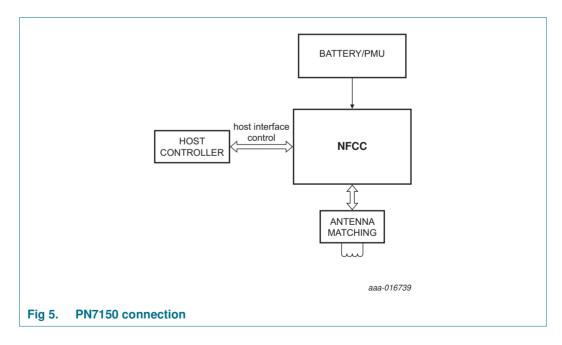
• PN7150 User Manual (Ref. 5):

User Manual describes the software interfaces (API) based on the NFC forum NCI standard. It does give full description of all the NXP NCI extensions coming in addition to NCI standard (<u>Ref. 2</u>).

• PN7150 Hardware Design Guide (Ref. 6):

Hardware Design Guide provides an overview on the different hardware design options offered by the IC and provides guidelines on how to select the most appropriate ones for a given implementation. In particular, this document highlights the different chip power states and how to operate them in order to minimize the average NFC-related power consumption so to enhance the battery lifetime.

• PN7150 Antenna and Tuning Design Guide (<u>Ref. 7</u>):


Antenna and Tuning Design Guide provides some guidelines regarding the way to design an NFC antenna for the PN7150 chip.

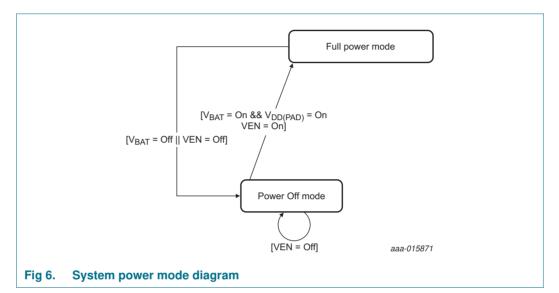
It also explains how to determine the tuning/matching network to place between this antenna and the PN7150.

Standalone antenna performances evaluation and final RF system validation (PN7150 + tuning/matching network + NFC antenna within its final environment) are also covered by this document.

• PN7150 Low-Power Mode Configuration (<u>Ref. 10</u>):

Low-Power Mode Configuration documentation provides guidance on how PN7150 can be configured in order to reduce current consumption by using Low-power polling mode.

10.1 System modes


10.1.1 System power modes

PN7150 is designed in order to enable the different power modes from the system.

2 power modes are specified: Full power mode and Power Off mode.

Table 5.	System	power modes	description
----------	--------	-------------	-------------

System power mode	Description				
	the main supply (V_{BAT}) as well as the host interface supply (V_{DD(PAD)}) is available, all use cases can be executed				
Power Off mode	the system is kept Hard Power Down (HPD)				

<u>Table 6</u> summarizes the system power mode of the PN7150 depending on the status of the external supplies available in the system:

Table 6. System power modes configuration

V _{BAT}	VEN	Power mode
Off	Х	Power Off mode
On	Off	Power Off mode
On	On	Full power mode

Depending on power modes, some application states are limited:

Table 7.System power modes description

System power mode	Allowed communication modes
Power Off mode	no communication mode available
Full power mode	Reader/Writer, Card Emulation, P2P modes

10.1.2 PN7150 power states

Next to system power modes defined by the status of the power supplies, the power states include the logical status of the system thus extend the power modes.

4 power states are specified: Monitor, Hard Power Down (HPD), Standby, Active.

Table 8.	PN7150 power states	
----------	---------------------	--

Power state name	Description
Monitor	The PN7150 is supplied by V_{BAT} which voltage is below its programmable critical level, VEN voltage > 1.1 V and the Monitor state is enabled. The system power mode is Power Off mode.
Hard Power Down	The PN7150 is supplied by V_{BAT} which voltage is above its programmable critical level when Monitor state is enabled and PN7150 is kept in Hard Power Down (VEN voltage is kept low by host or SW programming) to have the minimum power consumption. The system power mode is in Power Off.
Standby	The PN7150 is supplied by V_{BAT} which voltage is above its programmable critical level when the Monitor state is enabled, VEN voltage is high (by host or SW programming) and minimum part of PN7150 is kept supplied to enable configured wake-up sources which allow to switch to Active state; RF field, Host interface. The system power mode is Full power mode.
Active	The PN7150 is supplied by V_{BAT} which voltage is above its programmable critical level when Monitor state is enabled, VEN voltage is high (by host or SW programming) and the PN7150 internal blocks are supplied. 3 functional modes are defined: Idle, Target and Initiator. The system power mode is Full power mode.

At application level, the PN7150 will continuously switch between different states to optimize the current consumption (polling loop mode). Refer to <u>Table 1</u> for targeted current consumption in here described states.

The PN7150 is designed to allow the host controller to have full control over its functional states, thus of the power consumption of the PN7150 based NFC solution and possibility to restrict parts of the PN7150 functionality.

10.1.2.1 Monitor state

In Monitor state, the PN7150 will exit it only if the battery voltage recovers over the critical level. Battery voltage monitor thresholds show hysteresis behavior as defined in Table 27.

10.1.2.2 Hard Power Down (HPD) state

The Hard Power Down state is entered when $V_{DD(PAD)}$ and V_{BAT} are high by setting VEN voltage < 0.4 V. As these signals are under host control, the PN7150 has no influence on entering or exiting this state.

10.1.2.3 Standby state

Active state is PN7150's default state after boot sequence in order to allow a quick configuration of PN7150. It is recommended to change the default state to Standby state after first boot in order to save power. PN7150 can switch to Standby state autonomously (if configured by host).

In this state, PN7150 most blocks including CPU are no more supplied. Number of wake-up sources exist to put PN7150 into Active state:

- I²C-bus interface wake-up event
- Antenna RF level detector
- Internal timer event when using polling loop (380 kHz Low-power oscillator is enabled)

If wake-up event occurs, PN7150 will switch to Active state. Any further operation depends on software configuration and/or wake-up source.

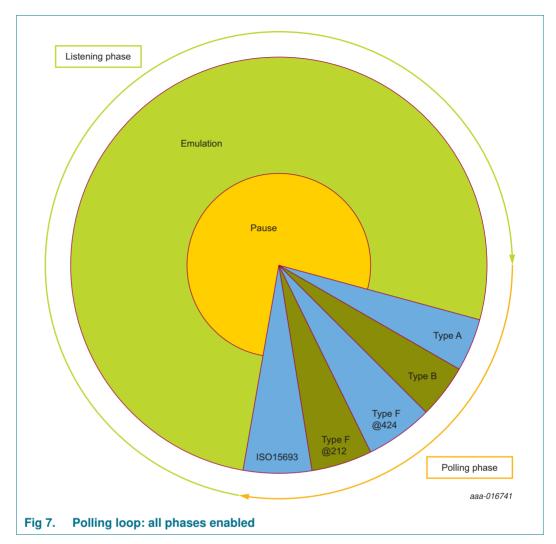
10.1.2.4 Active state

Within the Active state, the system is acting as an NFC device. The device can be in 3 different functional modes: Idle, Poller and Target.

Table 9. Functional modes in active state

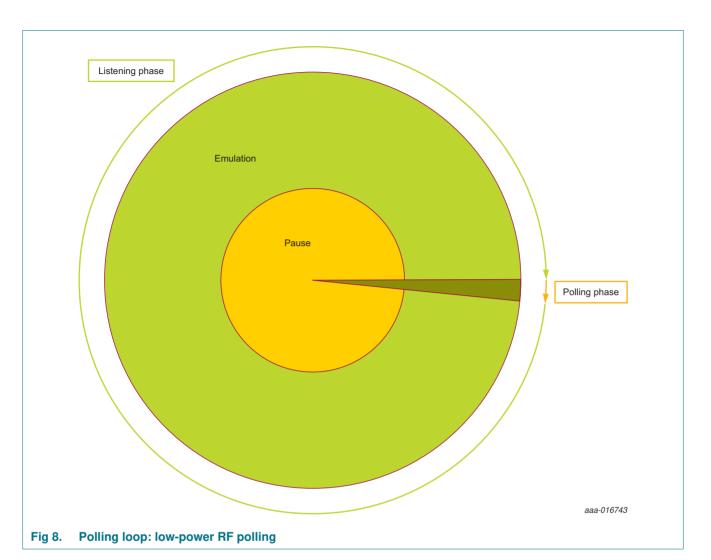
Functional modes	Description
Idle	the PN7150 is active and allows host interface communication. The RF interface is not activated.
Listener	the PN7150 is active and is configured for listening to external device.
Poller	the PN7150 is active and is configured in Poller mode. It polls external device

Poller mode: In this mode, PN7150 is acting as Reader/Writer or NFC Initiator, searching for or communicating with passive tags or NFC target. Once RF communication has ended, PN7150 will switch to active battery mode (that is, switch off RF transmitter) to save energy. Poller mode shall be used with 2.7 V < V_{BAT} < 5.5 V and VEN voltage > 1.1 V. Poller mode shall not be used with V_{BAT} < 2.7 V. V_{DD(PAD)} is within its operational range (see Table 1).


Listener mode: In this mode, PN7150 is acting as a card or as an NFC Target. Listener mode shall be used with 2.3 V < V_{BAT} < 5.5 V and VEN voltage > 1.1 V.

10.1.2.5 Polling loop

The polling loop will sequentially set PN7150 in different power states (Active or Standby). All RF technologies supported by PN7150 can be independently enabled within this polling loop.


There are 2 main phases in the polling loop:

- Listening phase. The PN7150 can be in Standby power state or Listener mode
- · Polling phase. The PN7150 is in Poller mode

Listening phase uses Standby power state (when no RF field) and PN7150 goes to Listener mode when RF field is detected. When in Polling phase, PN7150 goes to Poller mode.

To further decrease the power consumption when running the polling loop, PN7150 features a low-power RF polling. When PN7150 is in Polling phase instead of sending regularly RF command, PN7150 senses with a short RF field duration if there is any NFC Target or card/tag present. If yes, then it goes back to standard polling loop. With 500 ms (configurable duration, see <u>Ref. 5</u>) listening phase duration, the average power consumption is around 150 μ A.

Detailed description of polling loop configuration options is given in Ref. 5.

10.2 Microcontroller

PN7150 is controlled via an embedded ARM Cortex-M0 microcontroller core.

PN7150 features integrated in firmware are referenced in Ref. 5.

10.3 Host interface

PN7150 provides the support of an I²C-bus Slave Interface, up to 3.4 MBaud.

The host interface is waken-up on I²C-bus address.

To enable and ensure data flow control between PN7150 and host controller, additionally a dedicated interrupt line IRQ is provided which Active state is programmable. See <u>Ref. 5</u> for more information.

10.3.1 I²C-bus interface

The I²C-bus interface implements a slave I²C-bus interface with integrated shift register, shift timing generation and slave address recognition.

I²C-bus Standard mode (100 kHz SCL), Fast mode (400 kHz SCL) and High-speed mode (3.4 MHz SCL) are supported.

The mains hardware characteristics of the I²C-bus module are:

- Support slave I²C-bus
- Standard, Fast and High-speed modes supported
- · Wake-up of PN7150 on its address only
- Serial clock synchronization can be used by PN7150 as a handshake mechanism to suspend and resume serial transfer (clock stretching)

The I²C-bus interface module meets the I²C-bus specification $\underline{\text{Ref. 4}}$ except General call, 10-bit addressing and Fast mode Plus (Fm+).

10.3.1.1 I²C-bus configuration

The l²C-bus interface shares four pins with l²C-bus interface also supported by PN7150. When l²C-bus is configured in EEPROM settings, functionality of interface pins changes to one described in Table 10.

Table 10. Functionality for I²C-bus interface

Pin name	Functionality
I2CADR0	I ² C-bus address 0
I2CADR1	I ² C-bus address 1
I2CSCL ^[1]	I ² C-bus clock line
I2CSDA ^[1]	I ² C-bus data line

 I2CSCL and I2CSDA are not fail-safe and V_{DD(pad)} shall always be available when using the SCL and SDA lines connected to these pins.

PN7150 supports 7-bit addressing mode. Selection of the I²C-bus address is done by 2-pin configurations on top of a fixed binary header: 0, 1, 0, 1, 0, I2CADR1, I2CADR0, R/W.

Table 11.	² C-bus	interface	addressing
-----------	--------------------	-----------	------------

I2CADR1	I2CADR0	I ² C-bus address (R/W = 0, write)	I ² C-bus address (R/W = 1, read)
0	0	0x50	0x51
0	1	0x52	0x53
1	0	0x54	0x55
1	1	0x56	0x57

10.4 PN7150 clock concept

There are 4 different clock sources in PN7150:

- 27.12 MHz clock coming either/or from:
 - Internal oscillator for 27.12 MHz crystal connection

- Integrated PLL unit which includes a 1 GHz VCO, taking is reference clock on pin NFC CLK XTAL1
- 13.56 MHz RF clock recovered from RF field
- Low-power oscillator 40 MHz
- Low-power oscillator 380 kHz

10.4.1 27.12 MHz quartz oscillator

When enabled, the 27.12 MHz guartz oscillator applied to PN7150 is the time reference for the RF front end when PN7150 is behaving in Reader mode or NFCIP-1 initiator.

Therefore stability of the clock frequency is an important factor for reliable operation. It is recommended to adopt the circuit shown in Figure 9.

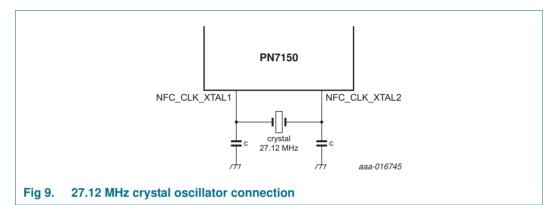
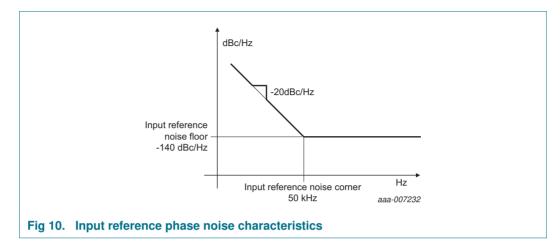


Table 12 describes the levels of accuracy and stability required on the crystal.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{xtal}	crystal frequency	ISO/IEC and FCC compliancy		-	27.12	-	MHz
Δf_{xtal}	crystal frequency accuracy	full operating range	[1]	-100	-	+100	ppm
		all V _{BAT} range; T = 20 °C	[1]	-50	-	+50	ppm
		all temperature range; V _{BAT} = 3.6 V	[1]	-50	-	+50	ppm
ESR	equivalent series resistance			-	50	100	Ω
CL	load capacitance			-	10	-	pF
P _{xtal}	crystal power dissipation			-	-	100	μW

Table 12. Crystal requirements


[1] This requirement is according to FCC regulations requirements. To meet only ISO/IEC 14443 and ISO/IEC 18092, then ± 14 kHz apply.

10.4.2 Integrated PLL to make use of external clock

When enabled, the PLL is designed to generate a low noise 27.12 MHz for an input clock 13 MHz, 19.2 MHz, 24 MHz, 26 MHz, 38.4 MHz and 52 MHz.

The 27.12 MHz of the PLL is used as the time reference for the RF front end when PN7150 is behaving in Reader mode or ISO/IEC 18092 Initiator as well as in Target when configured in Active Communication mode.

The input clock on NFC_CLK_XTAL1 shall comply with the following phase noise requirements for the following input frequency: 13 MHz, 19.2 MHz, 24 MHz, 26 MHz, 38.4 MHz and 52 MHz:

This phase noise is equivalent to an RMS jitter of 6.23 ps from 10 Hz to 1 MHz. For configuration of input frequency, refer to <u>Ref. 9</u>. There are 6 pre-programmed and validated frequencies for the PLL: 13 MHz, 19.2 MHz, 24 MHz, 26 MHz, 38.4 MHz and 52 MHz.

Table 13. PLL input requirements Coupling: single-ended, AC coupling;

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{clk}	clock frequency	ISO/IEC and FCC		-	13	-	MHz
		compliancy	compliancy			-	MHz
			-	24	-	MHz	
			-	26	-	MHz	
				-	38.4	-	MHz
				-	52	-	MHz
f _{i(ref)acc}	reference input frequency accuracy	full operating range; frequencies typical values: 13 MHz, 26 MHz and 52 MHz	[1]	-25	-	+25	ppm
		full operating range; frequencies typical values: 19.2 MHz, 24 MHz and 38.4 MHz	[1]	-50	-	+50	ppm
φn	phase noise	input noise floor at 50 kHz		-140	-	-	dB/ Hz
Sinusoid	lal shape				1		
V _{i(p-p)}	peak-to-peak input voltage			0.2	-	1.8	V
V _{i(clk)}	clock input voltage			0	-	1.8	V
Square s	hape			1	1		1
V _{i(clk)}	clock input voltage			0	-	$1.8\pm10~\%$	V

[1] This requirement is according to FCC regulations requirements. To meet only ISO/IEC 14443 and ISO/IEC 18092, then \pm 400 ppm limits apply.

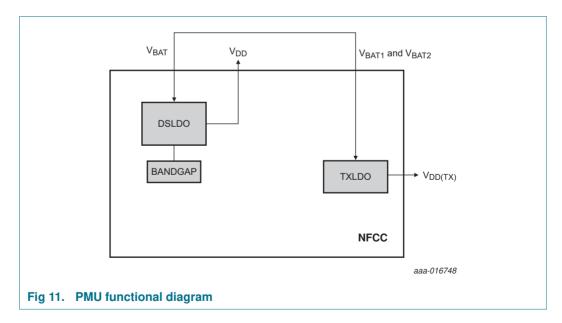
For detailed description of clock request mechanisms, refer to Ref. 5 and Ref. 6.

10.4.3 Low-power 40 MHz \pm 2.5 % oscillator

Low-power OSC generates a 40 MHz internal clock. This frequency is divided by two to make the system clock.

10.4.4 Low-power 380 kHz oscillator

A Low Frequency Oscillator (LFO) is implemented to drive a counter (WUC) waking-up PN7150 from Standby state. This allows implementation of low-power reader polling loop at application level. Moreover, this 380 kHz is used as the reference clock for write access to EEPROM memory.


10.5 Power concept

10.5.1 PMU functional description

The Power Management Unit of PN7150 generates internal supplies required by PN7150 out of V_{BAT} input supply voltage:

- V_{DD}: internal supply voltage
- V_{DD(TX)}: output supply voltage for the RF transmitter

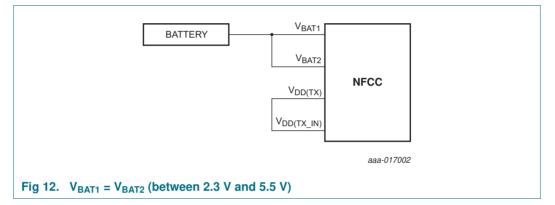
The Figure 11 describes the main blocks available in PMU:

10.5.2 DSLDO: Dual Supply LDO

The input pin of the DSLDO is $\ensuremath{\mathsf{V}_{\mathsf{BAT}}}$.

The Low drop-out regulator provides V_{DD} required in PN7150.

10.5.3 TXLDO


Transmitter voltage can be generated by internal LDO ($V_{DD(TX)}$) or come from an external supply source $V_{DD(TX)}$.

The regulator has been designed to work in 2 configurations:

10.5.3.1 Configuration 1: supply connection in case the battery is used to generate RF field

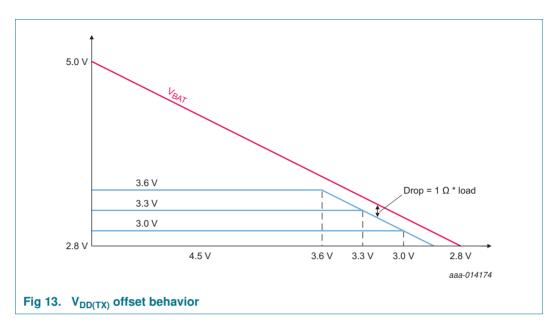
The Low drop Out Regulator has been designed to generate a 3.0 V, 3.3 V or 3.6 V supply voltage to a transmitter with a current load up to 180 mA.

The output is called $V_{DD(TX)}$. The input supply voltage of this regulator is a battery voltage connected to V_{BAT1} pin.

 $V_{\text{DD}(\text{TX})}$ value shall be chosen according to the minimum targeted V_{BAT} value for which reader mode shall work.

If V_{BAT} is above 3.0 V plus the regulator voltage dropout, then $V_{DD(TX)} = 3.0$ V shall be chosen:

$$\begin{split} V_{BAT} &\geq (3.0V + 1\Omega \times load) \Rightarrow V_{DD(TX)} = 3.0V \\ 3.0V &\geq V_{BAT} \geq 2.3V \Rightarrow V_{DD(TX)} = V_{BAT} - 1\Omega \times load \end{split}$$


If V_{BAT} is above 3.3 V plus the regulator voltage dropout, then $V_{DD(TX)} = 3.3$ V shall be chosen:

$$V_{BAT} \ge (3.3V + 1\Omega \times load) \Rightarrow V_{DD(TX)} = 3.3V$$

$$3.3V \ge V_{BAT} \ge 2.3V \Longrightarrow V_{DD(TX)} = V_{BAT} - 1\Omega \times load$$

If V_{BAT} is above 3.6 V plus the regulator voltage dropout, then $V_{DD(TX)} = 3.6$ V shall be chosen:

$$V_{BAT} \ge (3.6V + 1\Omega \times load) \Rightarrow V_{DD(TX)} = 3.6V$$

$$3.6V \ge V_{BAT} \ge 2.3V \Rightarrow V_{DD(TX)} = V_{BAT} - 1\Omega \times load$$

<u>Figure 13</u> shows $V_{DD(TX)}$ offset disabled behavior for both cases of $V_{DD(TX)}$ programmed for 3.0 V, 3.3 V or 3.6 V.

In Standby state, whenever $V_{DD(TX)}$ is configured for 3.0 V, 3.3 V or 3.6 V, $V_{DD(TX)}$ is regulated at 2.5 V.

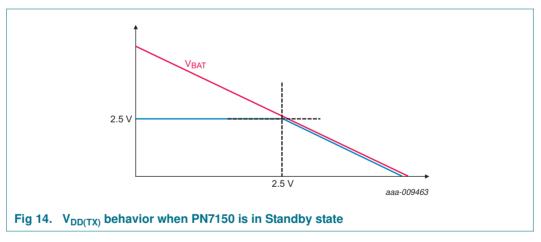
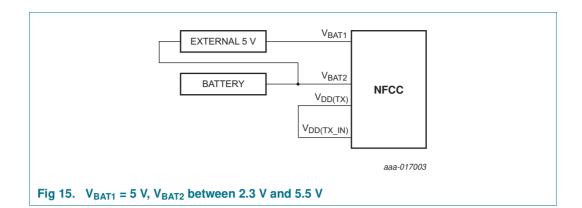



Figure 14 shows the case where the PN7150 is in standby state.

10.5.3.2 Configuration 2: supply connection in case a 5 V supply is used to generate RF field with the use of TXLDO

TXLDO has also the possibility to generate 4.75 V or 4.5 V supply in case the supply of this regulator is an external 5 V supply.

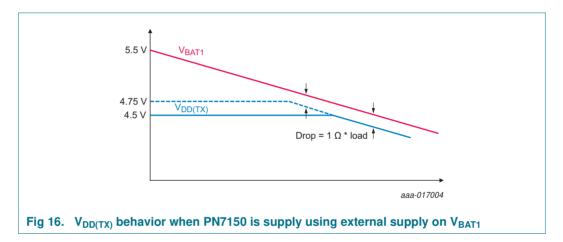
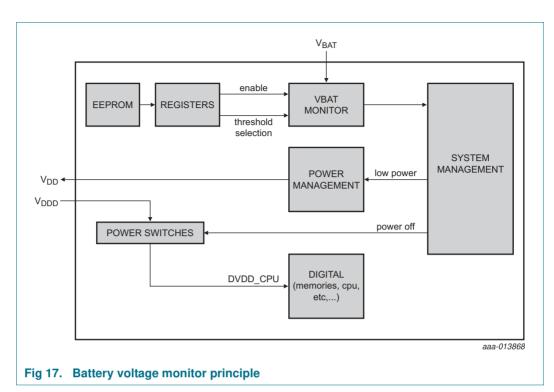


Figure 16 shows the behavior of $V_{DD(TX)}$ depending on V_{BAT1} value.

10.5.3.3 TXLDO limiter

The TXLDO includes a current limiter to avoid too high current within TX1, TX2 when in reader or initiator modes.


The current limiter block compares an image of the TXLDO output current to a reference. Once the reference is reached, the output current gets limited which is equivalent to a typical output current of 220 mA whatever V_{BAT} or V_{BAT1} value in the range of 2.3 V to 5.5 V.

10.5.4 Battery voltage monitor

The PN7150 features low-power V_{BAT} voltage monitor which protects mobile device battery from being discharged below critical levels. When V_{BAT} voltage goes below V_{BATcritical} threshold, then the PN7150 goes in Monitor state. Refer to Figure 17 for principle schematic of the battery monitor.

The battery voltage monitor is enabled via an EEPROM setting.

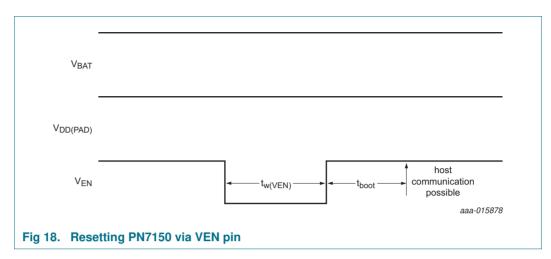
At the first start-up, V_{BAT} voltage monitor functionality is OFF and then enabled if properly configured in EEPROM. The PN7150 monitors battery voltage continuously.

The value of the critical level can be configured to 2.3 V or 2.75 V by an EEPROM setting. This value has a typical hysteresis around 150 mV.

10.6 Reset concept

10.6.1 Resetting PN7150

To enter reset, there are 2 ways:


- Pulling VEN voltage low (Hard Power Down state)
- if V_{BAT} monitor is enabled: lowering V_{BAT} below the monitor threshold (Monitor state, if VEN voltage is kept above 1.1 V)

Reset means resetting the embedded FW execution and the registers values to their default values. Part of these default values is defined from EEPROM data loaded values, others are hardware defined. See <u>Ref. 5</u> to know which ones are accessible to tune PN7150 to the application environment.

To get out of reset:

• Pulling VEN voltage high with V_{BAT} above V_{BAT} monitor threshold if enabled

Figure 18 shows reset done via VEN pin.

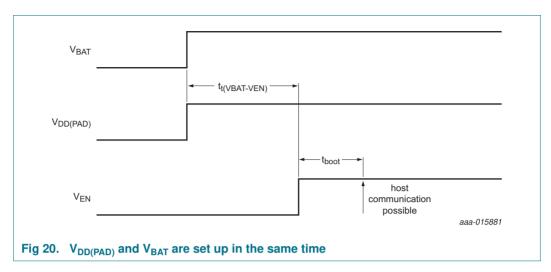
See <u>Section 14.2.2</u> for the timings values.


10.6.2 Power-up sequences

There are 2 different supplies for PN7150. PN7150 allows these supplies to be set up independently, therefore different power-up sequences have to be considered.

10.6.2.1 V_{BAT} is set up before V_{DD(PAD)}

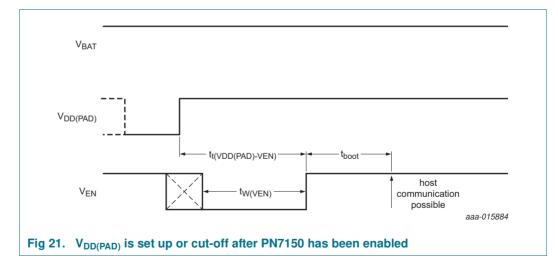
This is at least the case when V_{BAT} pin is directly connected to the battery and when PN7150 V_{BAT} is always supplied as soon the system is supplied.


As VEN pin is referred to V_{BAT} pin, VEN voltage shall go high after V_{BAT} has been set.

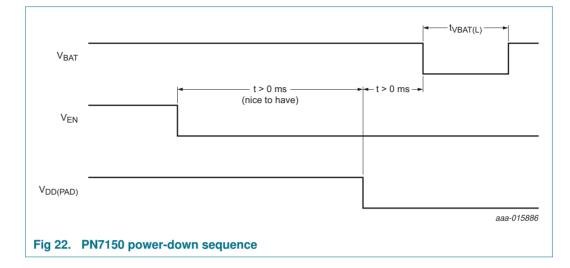
See <u>Section 14.2.3</u> for the timings values.

10.6.2.2 $V_{DD(PAD)}$ and V_{BAT} are set up in the same time

It is at least the case when V_{BAT} pin is connected to a PMU/regulator which also supply $V_{\text{DD}(\text{PAD})}.$



See Section 14.2.3 for the timings values.


10.6.2.3 PN7150 has been enabled before $V_{DD(PAD)}$ is set up or before $V_{DD(PAD)}$ has been cut off

This can be the case when V_{BAT} pin is directly connected to the battery and when $V_{DD(PAD)}$ is generated from a PMU. When the battery voltage is too low, then the PMU might no more be able to generate $V_{DD(PAD)}$. When the device gets charged again, then $V_{DD(PAD)}$ is set up again.

As the pins to select the interface are biased from $V_{DD(PAD)}$, when $V_{DD(PAD)}$ disappears the pins might not be correctly biased internally and the information might be lost. Therefore it is required to make the IC boot after $V_{DD(PAD)}$ is set up again.

See Section 14.2.3 for the timings values.

10.6.3 Power-down sequence

10.7 Contactless Interface Unit

PN7150 supports various communication modes at different transfer speeds and modulation schemes. The following chapters give more detailed overview of selected communication modes.

Remark: all indicated modulation index and modes in this chapter are system parameters. This means that beside the IC settings a suitable antenna tuning is required to achieve the optimum performance.

10.7.1 Reader/Writer communication modes

Generally 5 Reader/Writer communication modes are supported:

- PCD Reader/Writer for ISO/IEC 14443A/MIFARE
- PCD Reader/Writer for Jewel/Topaz tags
- PCD Reader/Writer for FeliCa cards
- PCD Reader/Writer for ISO/IEC 14443B
- VCD Reader/Writer for ISO/IEC 15693/ICODE

10.7.1.1 ISO/IEC 14443A/MIFARE and Jewel/Topaz PCD communication mode

The ISO/IEC 14443A/MIFARE PCD communication mode is the general reader to card communication scheme according to the ISO/IEC 14443A specification. This modulation scheme is as well used for communications with Jewel/Topaz cards.

Figure 23 describes the communication on a physical level, the communication table describes the physical parameters (the numbers take the antenna effect on modulation depth for higher data rates).

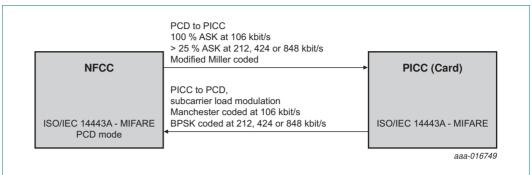
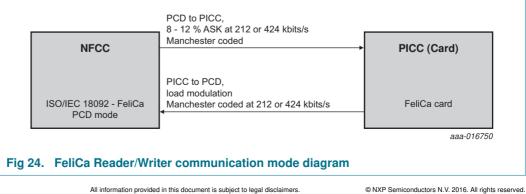


Fig 23. ISO/IEC 14443A/MIFARE Reader/Writer communication mode diagram


Table 14. Overview for ISO/IEC 14443A/MIFARE Reader/Writer communication mode

Communication direction		ISO/IEC 14443A/ MIFARE/ Jewel/ Topaz	ISO/IEC 14443A	higher transfer s	beeds	
	Transfer speed	106 kbit/s	212 kbit/s	424 kbit/s	848 kbit/s	
	Bit length	(128/13.56) μs	(64/13.56) μs	(32/13.56) μs	(16/13.56) μs	
$PN7150 \rightarrow PICC$	1	- I	1			
(data sent by PN7150 to a card)	modulation on PN7150 side	100 % ASK	> 25 % ASK	> 25 % ASK	> 25 % ASK	
	bit coding	Modified Miller	Modified Miller	Modified Miller	Modified Miller	
PICC → PN7150			I.			
(data received by PN7150 from a card)	modulation on PICC side	subcarrier load modulation	subcarrier load modulation	subcarrier load modulation	subcarrier load modulation	
	subcarrier frequency	13.56 MHz/16	13.56 MHz/16	13.56 MHz/16	13.56 MHz/16	
	bit coding	Manchester	BPSK	BPSK	BPSK	

The contactless coprocessor and the on-chip CPU of PN7150 handle the complete ISO/IEC 14443A/MIFARE RF-protocol, nevertheless a dedicated external host has to handle the application layer communication.

10.7.1.2 FeliCa PCD communication mode

The FeliCa communication mode is the general Reader/Writer to card communication scheme according to the FeliCa specification. Figure 24 describes the communication on a physical level, the communication overview describes the physical parameters.

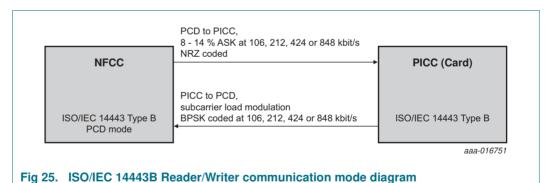

Communication direction		FeliCa	FeliCa higher transfer speeds
	Transfer speed	212 kbit/s	424 kbit/s
	Bit length	(64/13.56) μs	(32/13.56) μs
$PN7150 \rightarrow PICC$			
(data sent by PN7150 to a card)	modulation on PN7150 side	8 % – 12 % ASK	8 % – 12 % ASK
	bit coding	Manchester	Manchester
$PICC \rightarrow PN7150$			
(data received by PN7150 from a card)	modulation on PICC side	load modulation	load modulation
	subcarrier frequency	no subcarrier	no subcarrier
	bit coding	Manchester	Manchester

Table 15. Overview for FeliCa Reader/Writer communication mode

The contactless coprocessor of PN7150 and the on-chip CPU handle the FeliCa protocol. Nevertheless a dedicated external host has to handle the application layer communication.

10.7.1.3 ISO/IEC 14443B PCD communication mode

The ISO/IEC 14443B PCD communication mode is the general reader to card communication scheme according to the ISO/IEC 14443B specification.<u>Figure 25</u> describes the communication on a physical level, the communication table describes the physical parameters.

Table 16. Overview for ISO/IEC 14443B Reader/Writer communication mode

Communication		ISO/IEC 14443B	ISO/IEC 14443B higher transfer speeds			
direction	Transfer speed	106 kbit/s	212 kbit/s	424 kbit/s	848 kbit/s	
	Bit length	(128/13.56) μs	(64/13.56) μs	(32/13.56) μs	(16/13.56) μs	
$PN7150 \rightarrow PICC$	1		1	1	1	
(data sent by PN7150 to a card)	modulation on PN7150 side	8 % – 14 % ASK	8 % – 14 % ASK	8 % – 14 % ASK	8 % – 14 % ASK	
	bit coding	NRZ	NRZ	NRZ	NRZ	

Communication		ISO/IEC 14443B	ISO/IEC 14443B higher transfer speeds			
direction	Transfer speed	106 kbit/s	212 kbit/s	424 kbit/s	848 kbit/s	
	Bit length	(128/13.56) μs	(64/13.56) μs	(32/13.56) μs	(16/13.56) μs	
(data received by PN7150 from a card)	modulation on PICC side	subcarrier load modulation	subcarrier load modulation	subcarrier load modulation	subcarrier load modulation	
	subcarrier frequency	13.56 MHz/16	13.56 MHz/16	13.56 MHz/16	13.56 MHz/16	
	bit coding	BPSK	BPSK	BPSK	BPSK	

Table 16. Overview for ISO/IEC 14443B Reader/Writer communication mode ... continued

The contactless coprocessor and the on-chip CPU of PN7150 handles the complete ISO/IEC 14443B RF-protocol, nevertheless a dedicated external host has to handle the application layer communication.

10.7.1.4 R/W mode for NFC forum Type 5 Tag

The R/W mode for NFC forum Type 5 Tag (T5T) is the general reader to card communication scheme according to the ISO/IEC 15693 specification. PN7150 will communicate with VICC (Type 5 Tag) using only the 26.48 kbit/s with single subcarrier data rate of the VICC.

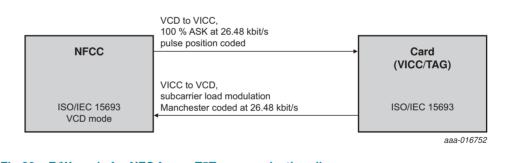


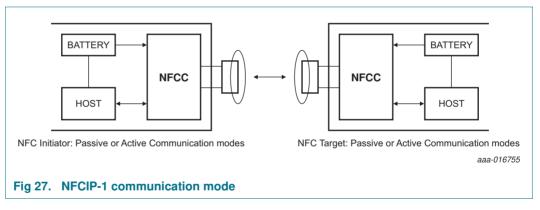
Fig 26. R/W mode for NFC forum T5T communication diagram

Figure 26 and Table 17 show the communication schemes used.

Table 17. Communication overview for NFC forum T5T R/W mode

Communication direction		
$PN7150 \rightarrow VICC$		
(data sent by PN7150 to a tag)	transfer speed	26.48 kbit/s
	bit length	(512/13.56) μs
	modulation on PN7150 side	10 % – 30 % or 100 % ASK
	bit coding	pulse position modulation 1 out of 4 mode
VICC \rightarrow PN7150		
(data received by PN7150 from a tag)	transfer speed	26.48 kbit/s
	bit length	(512/13.56) μs
	modulation on VICC side	subcarrier load modulation
	subcarrier frequency	single subcarrier
	bit coding	Manchester

10.7.2 ISO/IEC 18092, Ecma 340 NFCIP-1 communication modes

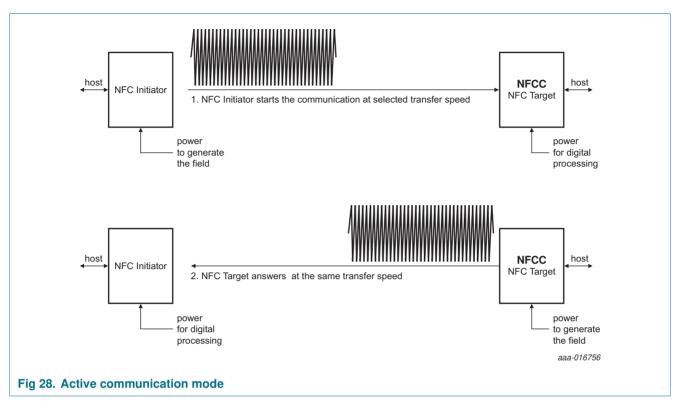

An NFCIP-1 communication takes place between 2 devices:

- NFC Initiator: generates RF field at 13.56 MHz and starts the NFCIP-1 communication.
- NFC Target: responds to NFC Initiator command either in a load modulation scheme in Passive communication mode or using a self-generated and self-modulated RF field for Active communication mode.

The NFCIP-1 communication differentiates between Active and Passive communication modes.

- Active communication mode means both the NFC Initiator and the NFC Target are
 using their own RF field to transmit data
- Passive communication mode means that the NFC Target answers to an NFC Initiator command in a load modulation scheme. The NFC Initiator is active in terms of generating the RF field.

PN7150 supports the Active Target, Active Initiator, Passive Target and Passive Initiator communication modes at the transfer speeds 106 kbit/s, 212 kbit/s and 424 kbit/s as defined in the NFCIP-1 standard.



Nevertheless a dedicated external host has to handle the application layer communication.

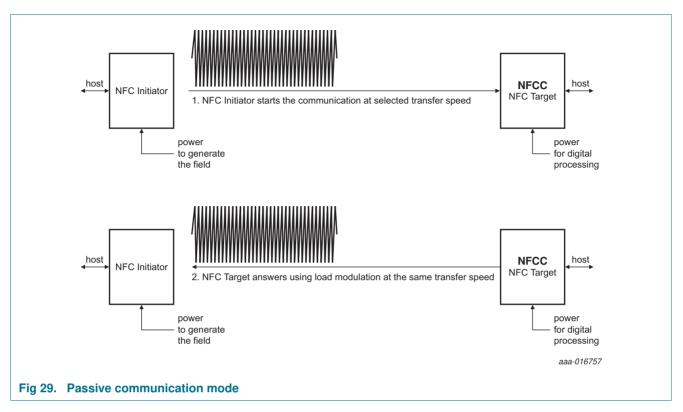
10.7.2.1 ACTIVE communication mode

Active communication mode means both the NFC Initiator and the NFC Target are using their own RF field to transmit data.

PN7150

The following table gives an overview of the Active communication modes:

Table 18. Overview for Active communication mode


Communication direction		ISO/IEC 18092, Ed	ISO/IEC 18092, Ecma 340, NFCIP-1				
	Baud rate	106 kbit/s	212 kbit/s	424 kbit/s			
	Bit length	(128/13.56) μs	(64/13.56) μs	(32/13.56) μs			
NFC Initiator to NFC Target	1						
	modulation	100 % ASK	8 % – 30 % ASK[1]	8 % – 30 % ASK[1]			
	bit coding	Modified Miller	Manchester	Manchester			
NFC Target to NFC Initiator							
	modulation	100 % ASK	8 % – 30 % ASK[1]	8 % – 30 % ASK[1]			
	bit coding	Miller	Manchester	Manchester			

[1] This modulation index range is according to NFCIP-1 standard. It might be that some NFC forum type 3 cards does not withstand the full range as based on FeliCa range which is narrow (8 % to 14 % ASK). To adjust the index, see <u>Ref. 7</u>.

10.7.2.2 Passive communication mode

Passive communication mode means that the NFC Target answers to an NFC Initiator command in a load modulation scheme.

PN7150

Table 19 gives an overview of the Passive communication modes:

Table 19. Overview for Passive communication mode

Communication direction		ISO/IEC 18092, Ecma 340, NFCIP-1					
	Baud rate	106 kbit/s	212 kbit/s	424 kbit/s			
	Bit length	(128/13.56) μs	(64/13.56) μs	(32/13.56) μs			
NFC Initiator to NFC Target							
	modulation	100 % ASK	8 % – 30 % ASK[1]	8 % - 30 % ASK ^[1]			
	bit coding	Modified Miller	Manchester	Manchester			
NFC Target to NFC Initiator							
	modulation	subcarrier load modulation	load modulation	load modulation			
	subcarrier frequency	13.56 MHz/16	no subcarrier	no subcarrier			
	bit coding	Manchester	Manchester	Manchester			

[1] This modulation index range is according to NFCIP-1 standard. It might be that some NFC forum type 3 cards does not withstand the full range as based on FeliCa range which is narrow (8 % to 14 % ASK). To adjust the index, see <u>Ref. 7</u>.

10.7.2.3 NFCIP-1 framing and coding

The NFCIP-1 framing and coding in Active and Passive communication modes are defined in the NFCIP-1 standard: ISO/IEC 18092 or Ecma 340.

10.7.2.4 NFCIP-1 protocol support

The NFCIP-1 protocol is not completely described in this document. For detailed explanation of the protocol, refer to the ISO/IEC 18092 or Ecma 340 NFCIP-1 standard. However the datalink layer is according to the following policy:

- Transaction includes initialization, anticollision methods and data transfer. This sequence must not be interrupted by another transaction
- PSL shall be used to change the speed between the target selection and the data transfer, but the speed should not be changed during a data transfer

10.7.3 Card communication modes

PN7150 can be addressed as NFC forum T3T and T4T tags. This means that PN7150 can generate an answer in a load modulation scheme according to the ISO/IEC 14443A, ISO/IEC 14443B and the Sony FeliCa interface description.

Remark: PN7150 does not support a complete card protocol. This has to be handled by the host controller.

Table 20, Table 21 and Table 22 describe the physical parameters.

10.7.3.1 NFC forum T4T, ISO/IEC 14443Acard mode

Table 20. Overview for NFC forum T4T, ISO/IEC 14443A card mode

Communication		ISO/IEC 14443A	ISO/IEC 14443A higher transfer spe		
direction	Transfer speed	106 kbit/s	212 kbit/s	424 kbit/s	
	Bit length	(128/13.56) μs	(64/13.56) μs	(32/13.56) μs	
$PCD \rightarrow PN7150$		1		I	
(data received by PN7150 from a card)	modulation on PCD side	100 % ASK	> 25 % ASK	> 25 % ASK	
	bit coding	Modified Miller	Modified Miller	Modified Miller	
PN7150 → PCD	L				
(data sent by PN7150 to a card)	modulation on PN7150 side	subcarrier load modulation	subcarrier load modulation	subcarrier load modulation	
	subcarrier frequency	13.56 MHz/16	13.56 MHz/16	13.56 MHz/16	
	bit coding	Manchester	BPSK	BPSK	

10.7.3.2 NC forum T4T, ISO/IEC 14443B card mode

Table 21. Overview for NFC forum T4T, ISO/IEC 14443B card mode

Communication		ISO/IEC 14443B	ISO/IEC 14443B hig	her transfer speeds
direction	Transfer speed	106 kbit/s	212 kbit/s	424 kbit/s
	Bit length	(128/13.56) μs	(64/13.56) μs	(32/13.56) μs
PCD → PN7150				
(data received by PN7150 from a Reader)	modulation on PCD side	8 % – 14 % ASK	8 % – 14 % ASK	8 % – 14 % ASK
	bit coding	NRZ	NRZ	NRZ
$PN7150 \rightarrow PCD$				
(data sent by PN7150 to a Reader)	modulation on PN7150 side	subcarrier load modulation	subcarrier load modulation	subcarrier load modulation
	subcarrier frequency	13.56 MHz/16	13.56 MHz/16	13.56 MHz/16
	bit coding	BPSK	BPSK	BPSK

10.7.3.3 NFC forum T3T, Sony FeliCa card mode

Table 22. Overview for NFC forum T3T, Sony FeliCa card mode

Communication direction		FeliCa	FeliCa higher transfer speeds
	Transfer speed	212 kbit/s	424 kbit/s
	Bit length	(64/13.56) μs	(32/13.56) μs
$PCD \rightarrow PN7150$			
(data received by PN7150 from a Reader)	modulation on PN7150 side	8 % – 12 % ASK	8 % – 12 % ASK
	bit coding	Manchester	Manchester
$PN7150 \rightarrow PCD$.1		
(data sent by PN7150 to a Reader)	modulation on PICC side	load modulation	load modulation
	subcarrier frequency	no subcarrier	no subcarrier
	bit coding	Manchester	Manchester

10.7.4 Frequency interoperability

When in communication, PN7150 is generating some RF frequencies. PN7150 is also sensitive to some RF signals as it is looking from data in the field.

In order to avoid interference with others RF communication, it is required to tune the antenna and design the board according to <u>Ref. 6</u>.

Although ISO/IEC 14443 and ISO/IEC 18092/Ecma 340 allows an RF frequency of 13.56 MHz \pm 7 kHz, FCC regulation does not allow this wide spread and limits the dispersion to \pm 50 ppm, which is in line with PN7150 capability.

11. Limiting values

Table 23. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD(PAD)}	$V_{DD(PAD)}$ supply voltage	supply voltage for host interface	-	4.35	V
V _{BAT}	battery supply voltage		-	6	V
V _{ESD}	electrostatic discharge voltage	HBM; 1500 Ω, 100 pF; EIA/JESD22-A114-D	-	1.5	kV
		CDM; field induced model; EIA/JESC22-C101-C	-	500	V
T _{stg}	storage temperature		-55	+150	°C
P _{tot}	total power dissipation	all modes	<u>[1]</u> _	600	mW
V _{RXN(i)}	RXN input voltage		0	2.5	V
V _{RXP(i)}	RXP input voltage		0	2.5	V

The design of the solution shall be done so that for the different use cases targeted the power to be [1] dissipated from the field or generated by PN7150 does not exceed this value.

12. Recommended operating conditions

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
T _{amb}	ambient temperature	JEDEC PCB-0.5		-30	+25	+85	°C
V _{BAT}	battery supply voltage	battery monitor enabled; $V_{SS} = 0 V$	-	5.5	V		
		Card Emulation and Passive Target; $V_{SS} = 0 V$	[1] [2]	2.3	-	5.5	V
		Reader, Active Initiator and Active Target; $V_{SS} = 0 V$	[1] [2]	2.7	-	5.5	V
V _{DD(PAD)}	$V_{DD(PAD)}$ supply voltage	supply voltage for host interface					
		1.8 V host supply; V _{SS} = 0 V	<u>[1]</u>	1.65	1.8	1.95	V
		3 V host supply; V _{SS} = 0 V	[1]	3.0	-	3.6	V
P _{tot}	total power dissipation	Reader; $I_{VDD(TX)} = 100 \text{ mA};$ $V_{BAT} = 5.5 \text{ V}$		-	-	420	mW

-

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I _{BAT}	battery supply current	in Hard Power Down state; $V_{BAT} = 3.6 V$; T = 25 °C	[3]	-	10	14	μA
	in Standby state; V _{BAT} = 3.6 V; T = 25 °C		-	20	-	μA	
		in Monitor state; V _{BAT} = 2.75 V; T = 25 °C		-	-	14	μA
		in low-power polling loop; V _{BAT} = 3.6 V; T = 25 °C; loop time = 500 ms	[4]	-	150	-	μΑ
		PCD mode at typical 3 V	[5]	-	-	190	mA
I _{th(Ilim)}	current limit threshold current	current limiter on $V_{DD(TX)}$ pin; $V_{DD(TX)} = 3.3 V$	[5]	-	180	-	mA

Table 24. Operating conditions ... continued

[1] V_{SS} represents $V_{SS(PAD)}$ and $V_{SS(TX)}$.

[2] The antenna should be tuned not to exceed this current limit (the detuning effect when coupling with another device must be taken into account).

- [3] External clock on NFC_CLK_XTAL1 must be LOW.
- [4] See <u>Ref. 10</u> for computing the power consumption as it depends on several parameters.
- [5] The antenna shall be tuned not to exceed the maximum of I_{BAT}.

13. Thermal characteristics

Table 25. Thermal characteristics							
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air with exposed pad soldered on a 4 layer JEDEC PCB		-	40	-	K/W

14. Characteristics

14.1 Current consumption characteristics

Table 26.	Current consumpti	on characteristics f	or operating	ambient tem	perature range
	ourront concumpt	011 011a1 a0to110t100 1	or operating		por attaito rango

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{BAT}		in Hard Power Down state; V _{BAT} = 3.6 V; VEN voltage = 0 V	-	10	20	μA
		in Standby state; [1] $V_{BAT} = 3.6 V;$	-	20	35	μA
		in Idle and Listener modes; V _{BAT} = 3.6 V	-	4.55	-	mA
		in Poller mode; V _{BAT} = 3.6 V	-	150	-	mA
		in Monitor state; [2] V _{BAT} = 2.75 V	-	10	20	μA

- [1] Refer to <u>Section 10.1.2</u> for the description of the power modes.
- [2] This is the same value for V_{BAT} = 2.3 V when the monitor threshold is set to 2.3 V.

14.2 Functional block electrical characteristics

14.2.1 Battery voltage monitor characteristics

Table 27. Battery voltage monitor characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{th}	threshold voltage	set to 2.3 V	2.15	2.3	2.45	V
		set to 2.75 V	2.6	2.75	2.9	V
V _{hys}	hysteresis voltage		100	150	200	mV

14.2.2 Reset via VEN

Table 28. Reset timing

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{W(VEN)}	VEN pulse width	to reset	10	-	-	μs
t _{boot}	boot time		-	-	2.5	ms

14.2.3 Power-up timings

Table 29. Power-up timings

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$t_{t(VBAT-VEN)}$	transition time from pin V _{BAT} to pin VEN	V _{BAT} , VEN voltage = HIGH	0	0.5	-	ms
t _t (vddpad-ven)	transition time from pin $V_{DD(PAD)}$ to pin VEN	V _{DD(PAD)} , VEN voltage = HIGH	0	0.5	-	ms
t _{t(VBAT-VDDPAD)}	$\begin{array}{c} \mbox{transition time from pin } V_{BAT} \\ \mbox{to pin } V_{DD(PAD)} \end{array}$	V _{BAT} , V _{DD(PAD)} = HIGH	0	0.5	-	ms

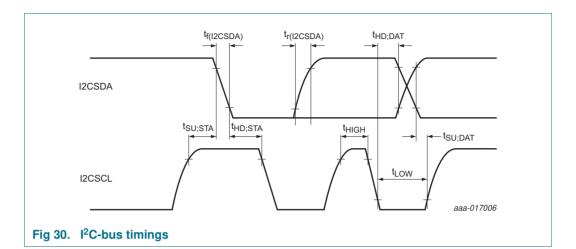

14.2.4 Power-down timings

Table 30. Power-down timings

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{VBAT(L)}	time V _{BAT} LOW		20	-	-	ms

14.2.5 I²C-bus timings

Here below are timings and frequency specifications.

Table 31. High-speed mode I²C-bus timings specification

Symbol	Parameter	Conditions	Min	Max	Unit
f _{clk(I2CSCL)}	clock frequency on pin I2CSCL	I^2 C-bus SCL; C _b < 100 pF	0	3.4	MHz
t _{su;sta}	set-up time for a repeated START condition	C _b < 100 pF	160	-	ns
t _{HD;STA}	hold time (repeated) START condition	C _b < 100 pF	160	-	ns
t _{LOW}	LOW period of the SCL clock	C _b < 100 pF	160	-	ns
t _{HIGH}	HIGH period of the SCL clock	C _b < 100 pF	60	-	ns
t _{SU;DAT}	data set-up time	C _b < 100 pF	10	-	ns
t _{HD;DAT}	data hold time	C _b < 100 pF	0	-	ns
t _{r(I2CSDA)}	rise time on pin I2CSDA	I ² C-bus SDA; C _b < 100 pF	10	80	ns
t _{f(I2CSDA)}	fall time on pin I2CSDA	I ² C-bus SDA; C _b < 100 pF	10	80	ns
V _{hys}	hysteresis voltage	Schmitt trigger inputs; C _b < 100 pF	$0.1V_{DD(PAD)}$	-	V

Table 32. Fast mode I²C-bus timings specification

Symbol	Parameter	Conditions	Min	Max	Unit
f _{clk(I2CSCL})	clock frequency on pin I2CSCL	I ² C-bus SCL; C _b < 400 pF	0	400	kHz
t _{SU;STA}	set-up time for a repeated START condition	C _b < 400 pF	600	-	ns
t _{HD;STA}	hold time (repeated) START condition	C _b < 400 pF	600	-	ns
t _{LOW}	LOW period of the SCL clock	C _b < 400 pF	1.3	-	μS
t _{HIGH}	HIGH period of the SCL clock	C _b < 400 pF	600	-	ns
t _{SU;DAT}	data set-up time	C _b < 400 pF	100	-	ns
t _{HD;DAT}	data hold time	C _b < 400 pF	0	900	ns
V _{hys}	hysteresis voltage	Schmitt trigger inputs; C _b < 400 pF	0.1V _{DD(PAD)}	-	V

14.3 Pin characteristics

14.3.1 NFC_CLK_XTAL1 and NFC_CLK_XTAL2 pins characteristics

Table 33. Input clock characteristics on NFC_CLK_XTAL1 when using PLL

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{i(p-p)}	peak-to-peak input voltage		0.2	-	1.8	V
δ	duty cycle		35	-	65	%

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{IH}	HIGH-level input current	$V_I = V_{DD}$	-1	-	+1	μA
IIL	LOW-level input current	$V_I = 0 V$	-1	-	+1	μA
Vi	input voltage		-	-	V_{DD}	V
V _{i(clk)(p-p)}	peak-to-peak clock input voltage		200	-	-	mV
Ci	input capacitance	all power modes	-	2	-	pF

Table 34. Pin characteristics for NFC_CLK_XTAL1 when PLL input

Table 35. Pin characteristics for 27.12 MHz crystal oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$C_{i(NFC_CLK_XTAL1)}$	NFC_CLK_XTAL1 input capacitance	V _{DD} = 1.8 V	-	2	-	pF
$c_{i(NFC_CLK_XTAL2)}$	NFC_CLK_XTAL2 input capacitance		-	2	-	pF

Table 36. PLL accuracy

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{o(acc)}	output frequency accuracy	deviation added to NFC_CLK_XTAL1 frequency on RF frequency generated; worst case whatever input frequency	-50	-	+50	ppm

14.3.2 VEN input pin characteristics

Table 37. VEN input pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	HIGH-level input voltage		1.1	-	V_{BAT}	V
V _{IL}	LOW-level input voltage		0	-	0.4	V
I _{IH}	HIGH-level input current	VEN voltage = V _{BAT}	-1	-	+1	μA
IIL	LOW-level input current	VEN voltage = 0 V	-1	-	+1	μA
Ci	input capacitance		-	5	-	pF

14.3.3 Pin characteristics for IRQ and CLK_REQ

Table 38. pin characteristics for IRQ and CLK_REQ

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	I _{OH} < 3 mA	$V_{DD(\text{PAD})}-0.4$	-	V _{DD(PAD)}	V
V _{OL}	LOW-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
CL	load capacitance		-	-	20	pF
t _f	fall time	C _L = 12 pF max				
		high speed	1	-	3.5	ns
		slow speed	2	-	10	ns
t _r	rise time	C _L = 12 pF max				
		high speed	1	-	3.5	ns
		slow speed	2	-	10	ns
R _{pd}	pull-down resistance	[1]	0.35	-	0.85	MΩ

[1] Activated in HPD and Monitor states.

14.3.4 Input pin characteristics for RXN and RXP

Table 39. Input pin characteristics for RXN and RXP

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{RXN(i)}	RXN input voltage		0	-	V_{DD}	V
V _{RXP(i)}	RXP input voltage		0	-	V_{DD}	V
C _{i(RXN)}	RXN input capacitance		-	12	-	pF
C _{i(RXP)}	RXP input capacitance		-	12	-	pF
Z _{i(RXN-VDDMI} D)	input impedance between RXN and $V_{DD(MID)}$	Reader, Card and P2P modes	0	-	15	kΩ
Z _{i(RXP-VDDMID})	input impedance between RXP and $V_{DD(MID)}$	Reader, Card and P2P modes	0	-	15	kΩ
V _{i(dyn)(RXN)}	RXN dynamic input voltage	Miller coded				
		106 kbit/s	-	150	200	mV(p-p)
		212 kbit/s to 424 kbit/s	-	150	200	mV(p-p)
V _{i(dyn)(RXP)}	RXP dynamic input voltage	Miller coded				
		106 kbit/s	-	150	200	mV(p-p)
		212 kbit/s to 424 kbit/s	-	150	200	mV(p-p)
V _{i(dyn)(RXN)}	RXN dynamic input voltage	Manchester, NRZ or BPSK coded; 106 kbit/s to 848 kbit/s	-	150	200	mV(p-p)
V _{i(dyn)(RXP)}	RXP dynamic input voltage	Manchester, NRZ or BPSK coded; 106 kbit/s to 848 kbit/s	-	150	200	mV(p-p)

PN7150 Product data sheet

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{i(dyn)(RXN)}	RXN dynamic input voltage	All data coding; 106 kbit/s to 848 kbit/s	V _{DD}	-	-	V(p-p)
V _{i(dyn)(RXP)}	RXP dynamic input voltage	All data coding; 106 kbit/s to 848 kbit/s	V _{DD}	-	-	V(p-p)
V _{i(RF)}	RF input voltage	RF input voltage detected; Initiator modes		100	-	mV(p-p)

 Table 39.
 Input pin characteristics for RXN and RXP ...continued

14.3.5 Output pin characteristics for TX1 and TX2

Table 40. Output pin characteristics for TX1 and TX2

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	$V_{DD(TX)} = 3.3 V$ and $I_{OH} = 30 mA$; PMOS driver fully on	$V_{DD(TX)} - 150$	-	-	mV
V _{OL}	LOW-level output voltage	$V_{DD(TX)} = 3.3 V$ and $I_{OL} = 30 mA;$ NMOS driver fully on	-	-	200	mV

Table 41.Output resistance for TX1 and TX2

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{OL}	LOW-level output resistance	$V_{DD(TX)} - 100 \text{ mV};$ CWGsN = 01h	-	-	85	Ω
R _{OL}	LOW-level output resistance	$V_{DD(TX)} - 100 \text{ mV};$ CWGsN = 0Fh	-	-	5	Ω
R _{OH}	HIGH-level output resistance	$V_{DD(TX)} - 100 \text{ mV}$	-	-	4	Ω

14.3.6 Input pin characteristics for I2CADR0 and I2CADR1

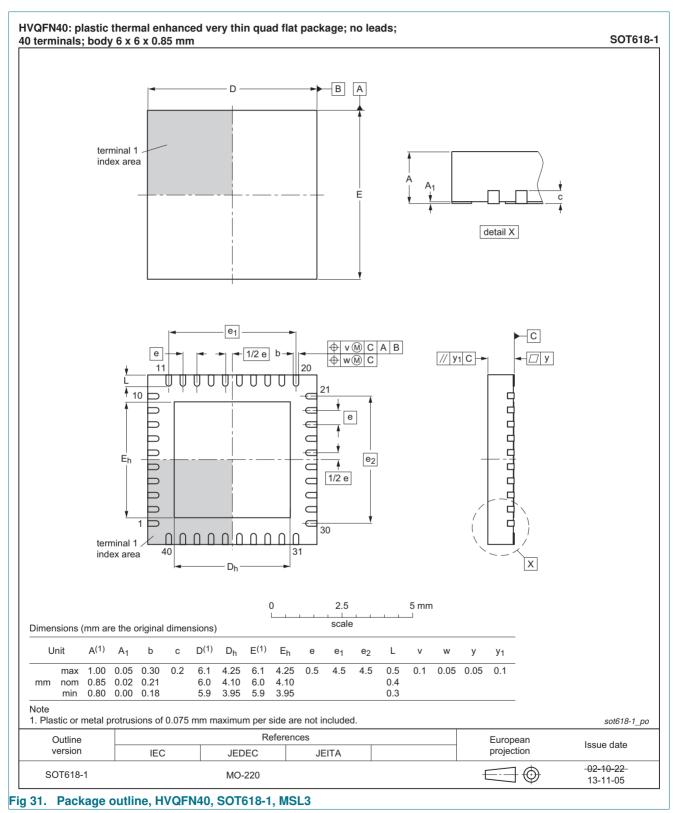
Table 42. Input pin characteristics for I2CADR0 and I2CADR1

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	HIGH-level input voltage		0.65V _{DD(PAD)}	-	V _{DD(PAD)}	V
V _{IL}	LOW-level input voltage		0	-	0.35V _{DD(PAD)}	V
I _{IH}	HIGH-level input current	$V_{I} = V_{DD(PAD)}$	-1	-	+1	μA
I _{IL}	LOW-level input current	$V_{I} = 0 V$	-1	-	+1	μA
Ci	input capacitance		-	5	-	pF

14.3.7 Pin characteristics for I2CSDA and I2CSCL

Table 43. Pin characteristics for I2CSDA and I2CSCL

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{OL}	LOW-level output voltage	I _{OL} < 3 mA	[1]	0	-	0.4	V
CL	load capacitance			-	-	10	pF
t _f	fall time	$C_L = 100 \text{ pF};$ [1] Rpull-up = 2 k Ω ; Standard and Fast mode		30	-	250	ns
t _f	fall time	$\begin{array}{llllllllllllllllllllllllllllllllllll$		80	-	110	ns
t _r	rise time	$C_L = 100 \text{ pF};$ Rpull-up = 2 k Ω ; Standard and Fast mode	[1]	30	-	250	ns
		C _L = 100 pF;	[1]	10	-	100	ns
		Rpull-up = 1 k Ω ;					
		High-speed mode					
V _{IH}	HIGH-level input voltage	•		0.7V _{DD(PAD)}	-	V _{DD(PAD)}	V
V _{IL}	LOW-level input voltage			0	-	0.3V _{DD(PAD)}	V
I _{IH}	HIGH-level input current	$V_{I} = V_{DD(PAD)};$ high impedance		-1	-	+1	μA
I _{IL}	LOW-level input current	V _I = 0 V; high impedance		-1	-	+1	μA
Ci	input capacitance			-	5	-	pF


[1] Only for pin I2CSDA as I2CSCL is only used as input.

14.3.8 V_{DD} pin characteristic

Table 44. Electrical characteristic of V_{DD}

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD}	V _{DD} supply voltage	$V_{SS} = 0V$	1.65	1.8	1.95	V

15. Package outline

PN7150

16. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

16.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

16.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- Package placement
- · Inspection and repair
- Lead-free soldering versus SnPb soldering

16.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

PN7150

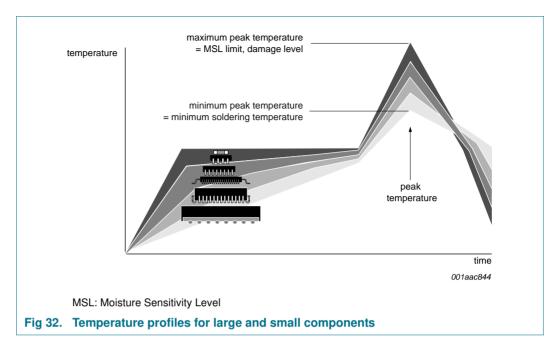
16.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 32</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 45 and 46

Table 45.	SnPb eutectic	process ((from J-STD-020D)	

Package thickness (mm)	Package reflow temperature (°C)		
	Volume (mm ³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	


Table 46. Lead-free process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)				
	Volume (mm ³)				
	< 350	350 to 2000	> 2000		
< 1.6	260	260	260		
1.6 to 2.5	260	250	245		
> 2.5	250	245	245		

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 32.

PN7150

For further information on temperature profiles, refer to Application Note *AN10365 "Surface mount reflow soldering description"*.

17. Abbreviations

Table 47. Abbrev	viations		
Acronym	Description		
API	Application Programming Interface		
ASK	Amplitude Shift keying		
ASK modulation index	The ASK modulation index is defined as the voltage ratio (Vmax - Vmin)/ (Vmax + Vmin) \times 100%		
Automatic device discovery	Detect and recognize any NFC peer devices (initiator or target) like: NFC initiator or target, ISO/IEC 14443-3, -4 Type A&B PICC, MIFARE Standar and Ultralight PICC, ISO/IEC 15693 VICC		
BPSK	Bit Phase Shift Keying		
Card Emulation	The IC is capable of handling a PICC emulation on the RF interface including part of the protocol management. The application handling is done by the host controller		
DEP	Data Exchange Protocol		
DSLDO	Dual Supplied LDO		
FW	FirmWare		
HPD	Hard Power Down		
LDO	Low Drop Out		
LFO	Low Frequency Oscillator		
MOSFET	Metal Oxide Semiconductor Field Effect Transistor		
MSL	Moisture Sensitivity Level		
NCI	NFC Controller Interface		
NFC	Near Field Communication		
NFCC	NFC Controller, PN7150 in this data sheet		
NFC Initiator	Initiator as defined in ISO/IEC 18092 or ECma 340: NFCIP-1 communication		
NFCIP	NFC Interface and Protocol		
NFC Target	Target as defined in ISO/IEC 18092 or ECma 340: NFCIP-1 communication		
NRZ	Non-Return to Zero		
P2P	Peer to Peer		
PCD	Proximity Coupling Device. Definition for a Card reader/writer device according to the ISO/IEC 14443 specification or MIFARE		
PCD -> PICC	Communication flow between a PCD and a PICC according to the ISO/IEC 14443 specification or MIFARE		
PICC	Proximity Interface Coupling Card. Definition for a contactless Smart Card according to the ISO/IEC 14443 specification or MIFARE		
PICC-> PCD	Communication flow between a PICC and a PCD according to the ISO/IEC 14443 specification or MIFARE		
PMOS	P-channel MOSFET		
PMU	Power Management Unit		
PSL	Parameter SeLection		
TXLDO	Transmitter LDO		
UM	User Manual		

Table 47. Abbreviationscontinued				
Acronym	Description			
VCD	Vicinity Coupling Device. Definition for a reader/writer device according to the ISO/IEC 15693 specification			
VCO	Voltage Controlled Oscillator			
VICC	Vicinity Integrated Circuit Card			
WUC	Wake-Up Counter			

18. References

- [1] NFC Forum Device Requirements V1.3
- [2] NFC Controller Interface (NCI) Technical Specification V1.0
- [3] ISO/IEC 14443 parts 2: 2001 COR 1 2007 (01/11/2007), part 3: 2001 COR 1 2006 (01/09/2006) and part 4: 2nd edition 2008 (15/07/2008)
- [4] I²C Specification I²C Specification, UM10204 rev4 (13/02/2012)
- [5] PN7150 User Manual UM10936 PN7150 User Manual
- [6] **PN7150 Hardware Design Guide** AN11756 PN7150 Hardware Design Guide
- [7] PN7150 Antenna design and matching guide AN11755 PN7150 Antenna design and matching guide
- [8] ISO/IEC 18092 (NFCIP-1) edition, 15/032013. This is similar to Ecma 340.
- [9] ISO/IEC15693 part 2: 2nd edition (15/12/2006), part 3: 1st edition (01/04/2001)
- [10] PN7150 Low-Power Mode Configuration AN11757 PN7150 Low-Power Mode Configuration
- [11] ISO/IEC 21481 (NFCIP-2) edition, 01/07/2012. This is similar to Ecma 352.

19. Revision history

Table 48.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PN7150 v3.3	20160704	Product data sheet	-	PN7150 v3.2
Modifications:	• Figure 1: upd	ated.	I	
	• Section 10.7.	<u>1.4</u> : updated.		
	• Section 10.7.	<u>3</u> : updated.		
PN7150 v3.2	201600525	Product data sheet	-	PN7150 v3.1
PN7150 v3.1	20160511	Product data sheet	-	PN7150 v3.0
PN7150 v3.0	20151209	Product data sheet	-	PN7150 v2.1
PN7150 v2.1	20151127	Preliminary data sheet	-	PN7150 v2.0
PN7150 v2.0	20150701	Preliminary data sheet	-	PN7150 v1.2
PN7150 v1.2	20150625	Objective data sheet	-	PN7150 v1.1
PN7150 v1.1	20150212	Objective data sheet	-	PN7150 v1.0
PN7150 v1.0	20150129	Objective data sheet	-	-
Modifications:	Initial version		1	

20. Legal information

20.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

20.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

20.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Product data sheet

All information provided in this document is subject to legal disclaimers.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

20.4 Licenses

Purchase of NXP ICs with ISO/IEC 14443 type B functionality

This NXP Semiconductors IC is ISO/IEC 14443 Type B software enabled and is licensed under Innovatron's Contactless Card patents license for ISO/IEC 14443 B. The license includes the right to use the IC in systems and/or end-user equipment.

RATP/Innovatron Technology

Purchase of NXP ICs with NFC technology

Purchase of an NXP Semiconductors IC that complies with one of the Near Field Communication (NFC) standards ISO/IEC 18092 and ISO/IEC 21481 does not convey an implied license under any patent right infringed by implementation of any of those standards. Purchase of NXP Semiconductors IC does not include a license to any NXP patent (or other IP right) covering combinations of those products with other products, whether hardware or software.

20.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

DESFire — is a trademark of NXP Semiconductors N.V.

MIFARE - is a trademark of NXP B.V.

MIFARE Classic - is a trademark of NXP B.V.

MIFARE Ultralight - is a trademark of NXP B.V.

ICODE and I-CODE — are trademarks of NXP B.V.

21. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Product data sheet

22. Tables

Table 1. Table 2.	Quick reference data
Table 3.	Marking codes4
Table 4.	Pin description
Table 5.	System power modes description
Table 6.	System power modes configuration
Table 7.	System power modes description10
Table 8.	PN7150 power states11
Table 9.	Functional modes in active state
Table 10.	Functionality for I ² C-bus interface15
Table 11.	I ² C-bus interface addressing15
Table 12.	Crystal requirements
Table 13.	PLL input requirements
Table 14.	Overview for ISO/IEC 14443A/MIFARE
	Reader/Writer communication mode
Table 15.	
	Reader/Writer communication mode
Table 16.	
14010 10.	communication mode
Table 17.	
	R/W mode
Table 18.	
Table 19.	Overview for Passive communication mode31
Table 20.	Overview for NFC forum T4T, ISO/IEC 14443A
	card mode
Table 21.	
	card mode
Table 22.	
	mode
Table 23.	Limiting values
Table 24.	Operating conditions
Table 25.	Thermal characteristics
Table 26.	Current consumption characteristics for operating
	ambient temperature range
Table 27.	Battery voltage monitor characteristics
Table 28.	Reset timing
Table 29.	Power-up timings
Table 30.	Power-down timings
Table 31.	High-speed mode I ² C-bus timings
	specification
Table 32.	Fast mode I ² C-bus timings specification37
Table 33.	Input clock characteristics on NFC_CLK_XTAL1
	when using PLL
Table 34.	Pin characteristics for NFC_CLK_XTAL1
	when PLL input
Table 35.	Pin characteristics for 27.12 MHz crystal
	oscillator
Table 36.	PLL accuracy
Table 37.	VEN input pin characteristics
Table 38.	pin characteristics for IRQ and CLK_REQ39
Table 39.	Input pin characteristics for RXN and RXP39
Table 40.	Output pin characteristics for TX1 and TX2 40
Table 41.	1
Table 42.	Input pin characteristics for I2CADR0 and
	I2CADR1
Table 43.	Pin characteristics for I2CSDA and I2CSCL41

Electrical characteristic of V _{DD} 41
SnPb eutectic process (from J-STD-020D) 44
Lead-free process (from J-STD-020D) 44
Abbreviations
Revision history

23. Figures

Fig 1.	PN7150 transmission modes2
Fig 2.	PN7150 package marking (top view)4
Fig 3.	PN7150 block diagram6
Fig 4.	Pinning
Fig 5.	PN7150 connection
Fig 6.	System power mode diagram10
Fig 7.	Polling loop: all phases enabled
Fig 8.	Polling loop: low-power RF polling
Fig 9.	27.12 MHz crystal oscillator connection 16
Fig 10.	Input reference phase noise characteristics17
Fig 11.	PMU functional diagram18
Fig 12.	$V_{BAT1} = V_{BAT2}$ (between 2.3 V and 5.5 V) 19
Fig 13.	V _{DD(TX)} offset behavior20
Fig 14.	$V_{DD(TX)}$ behavior when PN7150 is in Standby
	state
Fig 15.	$V_{BAT1} = 5 V$, V_{BAT2} between 2.3 V and 5.5 V 21
Fig 16.	$V_{DD(TX)}$ behavior when PN7150 is supply using
	external supply on V _{BAT1}
Fig 17.	Battery voltage monitor principle
Fig 18.	Resetting PN7150 via VEN pin23
Fig 19.	V_{BAT} is set up before $V_{DD(PAD)}$
Fig 20.	$V_{\text{DD}(\text{PAD})}$ and V_{BAT} are set up in the same time24
Fig 21.	$V_{DD(PAD)}$ is set up or cut-off after PN7150 has
	been enabled
Fig 22.	PN7150 power-down sequence
Fig 23.	ISO/IEC 14443A/MIFARE Reader/Writer
E: 04	communication mode diagram26
Fig 24.	FeliCa Reader/Writer communication mode
E : OE	diagram
Fig 25.	ISO/IEC 14443B Reader/Writer communication
	mode diagram
Fig 26.	R/W mode for NFC forum T5T communication diagram
Fig 27.	NFCIP-1 communication mode
Fig 28.	Active communication mode
Fig 29.	Passive communication mode
Fig 30.	I ² C-bus timings
Fig 31.	Package outline, HVQFN40, SOT618-1, MSL342
Fig 32.	Temperature profiles for large and small
. 19 OL.	components

PN7150

24. Contents

1	Introduction 1
2	General description 1
3	Features and benefits 2
4	Applications 3
5	Quick reference data
6	Ordering information 4
7	Marking 4
8	Block diagram
9	Pinning information
9 .1	Pinning
10	Functional description
10.1	-
10.1.1	System modes
10.1.2	PN7150 power states
10.1.2	Monitor state
10.1.2.2	
10.1.2.3	
10.1.2.4	
10.1.2.5	
10.2	Microcontroller 14
10.3	Host interface 14
10.3.1	I ² C-bus interface 15
10.3.1.1	I ² C-bus configuration 15
10.4	PN7150 clock concept 15
10.4.1	27.12 MHz quartz oscillator 16
10.4.2	Integrated PLL to make use of external clock 16
10.4.3	Low-power 40 MHz ± 2.5 % oscillator 18
10.4.4	Low-power 380 kHz oscillator
10.5	Power concept
10.5.1	PMU functional description
10.5.2	DSLDO: Dual Supply LDO 18
10.5.3 10.5.3.1	TXLDO
10.5.3.1	Configuration 1: supply connection in case the battery is used to generate RF field
10.5.3.2	
10.3.3.2	a 5 V supply is used to generate RF field
	with the use of TXLDO
10.5.3.3	
10.5.4	Battery voltage monitor
10.6	Reset concept
10.6.1	Resetting PN7150 22
10.6.2	Power-up sequences 23
10.6.2.1	V _{BAT} is set up before V _{DD(PAD)} 23
10.6.2.2	$V_{DD(PAD)}$ and V_{BAT} are set up in the same time 23
10.6.2.3	BB(ITIB)
	up or before $V_{DD(PAD)}$ has been cut off 24

10.6.3	Power-down sequence	25
10.7	Contactless Interface Unit	25
10.7.1	Reader/Writer communication modes	25
10.7.1.1	ISO/IEC 14443A/MIFARE and Jewel/Topaz P	CD
	communication mode	25
10.7.1.2	2 FeliCa PCD communication mode	26
10.7.1.3	ISO/IEC 14443B PCD communication mode.	27
10.7.1.4	R/W mode for NFC forum Type 5 Tag	28
10.7.2	ISO/IEC 18092, Ecma 340 NFCIP-1	
	communication modes	29
10.7.2.1	ACTIVE communication mode	29
10.7.2.2	2 Passive communication mode	30
10.7.2.3	3 NFCIP-1 framing and coding	31
10.7.2.4	NFCIP-1 protocol support	31
10.7.3	Card communication modes	32
10.7.3.1		32
10.7.3.2	,	32
10.7.3.3	· · · · · · · · · · · · · · · · · · ·	33
10.7.4	Frequency interoperability	33
11	Limiting values	34
12	Recommended operating conditions	34
13	Thermal characteristics	35
14	Characteristics	35
14.1	Current consumption characteristics	35
14.2	Functional block electrical characteristics	36
14.2.1	Battery voltage monitor characteristics	36
14.2.2	Reset via VEN	36
14.2.3	Power-up timings	36
14.2.4	Power-down timings	36
14.2.5	I ² C-bus timings	36
14.3	Pin characteristics	38
14.3.1	NFC_CLK_XTAL1 and NFC_CLK_XTAL2 pin	s
	characteristics	38
14.3.2	VEN input pin characteristics	38
14.3.3	Pin characteristics for IRQ and CLK_REQ .	39
14.3.4	Input pin characteristics for RXN and RXP	39
14.3.5	Output pin characteristics for TX1 and TX2	40
14.3.6	Input pin characteristics for I2CADR0 and	
	I2CADR1	40
14.3.7	Pin characteristics for I2CSDA and I2CSCL .	41
14.3.8	V _{DD} pin characteristic	41
15	Package outline	42
16	Soldering of SMD packages	43
16.1	Introduction to soldering	43
16.2	Wave and reflow soldering	43
16.3	Wave soldering	43
16.4	Reflow soldering	44

continued >>

PN7150

17	Abbreviations	46
18	References	48
19	Revision history	49
20	Legal information	50
20.1	Data sheet status	50
20.2	Definitions	50
20.3	Disclaimers	50
20.4	Licenses	51
20.5	Trademarks	51
21	Contact information	51
22	Tables	52
23	Figures	53
24	Contents	54

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2016.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 4 July 2016 Document identifier: PN7150