

CMPA2060035F

35 W, 2.0 - 6.0 GHz, GaN MMIC Power Amplifier

Description

Wolfspeed's CMPA2060035F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC contains a two-stage reactively matched amplifier enabling very wide bandwidths to be achieved in a small footprint screw-down package featuring a Copper-Tungsten heat-sink.

PN : CMPA2060035F Package Type : 440219

Typical Performance Over 2.0-6.0 GHz, 28 V (T_c = 25°C)

Parameter	2.0 GHz	4.0 GHz	6.0 GHz	Units
Small Signal Gain	24.8	26.5	25.0	dB
Output Power ¹	30.0	44.7	32.5	W
Power Gain ¹	17.7	19.5	18.1	dB
Power Added Efficiency ¹	43	47	36	%

Note:

 1 V_{DD} = 28 V, I_{DQ} = 1.2 A, P_{IN} = 27 dBm. All data tested CW

Features

- 28 dB Small Signal Gain
- 35 W Typical P_{SAT}
- Operation up to 28 V
- High Breakdown Voltage
- High Temperature Operation

Applications

- Ultra Broadband Amplifiers
- Fiber Drivers
- Test Instrumentation
- EMC Amplifier Drivers

Rev. 1.0, 2022-8-26

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	84	N	
Gate-Source Voltage	V _{GS}	-10, +2	V _{DC}	
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225		
Forward Gate Current	I _G	16	mA	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case	R _{θJC}	2.06	°C/W	85°C, P _{DISS} = 65 W, CW
Case Operating Temperature	T _c	-40, +150	°C	

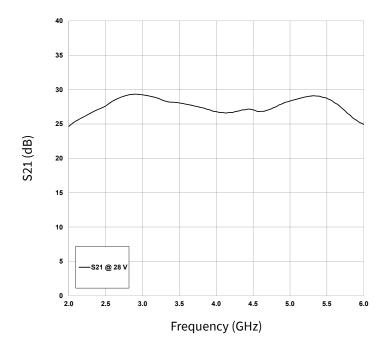
Electrical Characteristics (Frequency = 2.0 GHz to 6.0 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

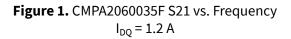
Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ^{1,2}						
Gate Quiescent Voltage	V _{(GS)TH}	-3.4	-3.0	-2.7	V	V _{DS} = 10 V, I _D = 16.5 mA
Gate Quiescent Voltage	V _{(GS)Q}	_	-2.6	_	V _{DC}	V _{DD} = 28 V, I _D = 1.2 A
Saturated Drain Current ¹	I _{DS}	11.9	16.5	_	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BD}	84	_	_	V	V _{GS} = -8 V, I _{DS} = 16.5 mA
RF Characteristics ^{3,4,5}						
Small Signal Gain	S21	22.2	26.5	_		
Input Return Loss	S11	_	-11	4	dB	
Output Return Loss	S22	_	-11.6	-4		
Output Power at 2.0 GHz		23.7	30.0	_		
Output Power at 4.0 GHz	Pout	34.3	44.7	_	w	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.2 \text{ A}$
Output Power at 6.0 GHz		23.7	32.5	_]	
Power Added Efficiency at 2.0 GHz		34.5	43	_		
Power Added Efficiency at 4.0 GHz	PAE	37	47	_	%	
Power Added Efficiency at 6.0 GHz		23	36	_	1	
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}$, $I_{DQ} = 1.2 \text{ A}$, $P_{IN} = 27 \text{ dBm}$

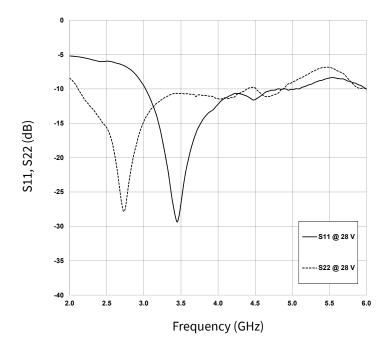
Notes:

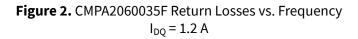
¹ Measured on-wafer prior to packaging

² Scaled from PCM data


³ Measured in CMPA2060035F-AMP


 4 Measured at P_{IN} = 27 dBm


⁵ Tested CW


Rev. 1.0, 2022-8-26

Typical Performance

Rev. 1.0, 2022-8-26

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

3

Typical Performance

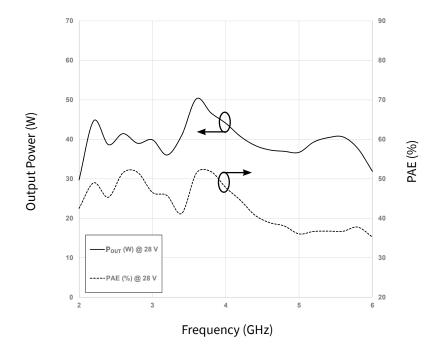
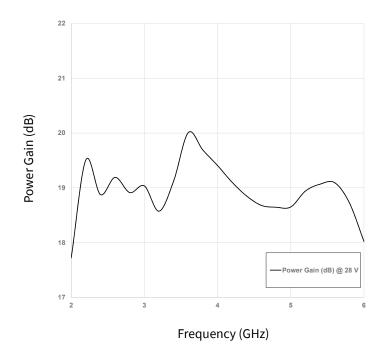
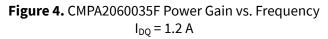




Figure 3. CMPA2060035F Output Power and Power Added Efficiency vs. Frequency $I_{DO} = 1.2$ A, Case Temperature = 25°C, Power Input = 27 dBm

Rev. 1.0, 2022-8-26

Typical Performance

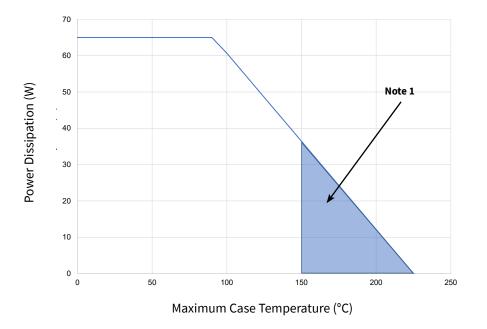
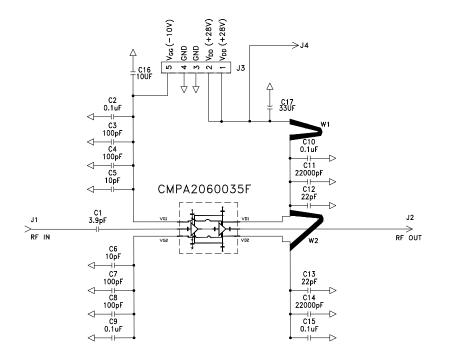
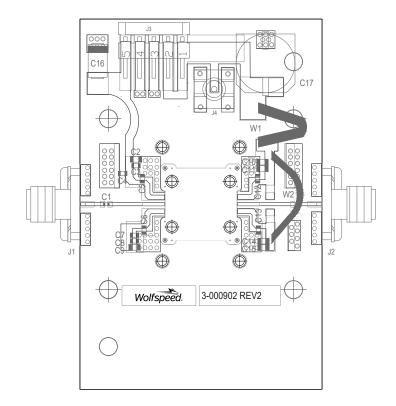


Figure 5. CMPA2060035F CW Power Dissipation De-rating Curve

Notes:


¹ Area exceeds Maximum Case Operating Temperature (See Page 2).

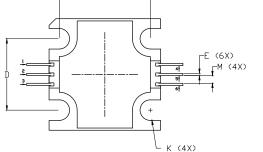
Electrostatic Discharge (ESD) Classifications

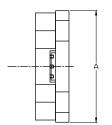

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	1A	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	С3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

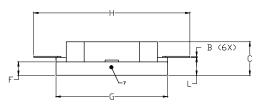
CMPA2060035F-AMP Demonstration Amplifier Circuit Schematic

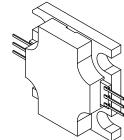
CMPA2060035F-AMP Demonstration Amplifier Circuit Outline

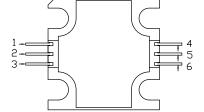
Rev. 1.0, 2022-8-26




CMPA2060035F-AMP Demonstration Amplifier Circuit Bill of Materials


Designator	Description	Qty
	PCB	1
Q1	CMPA2060035F, 2.0-6.0GHz, GaN MMIC	1
C1	CAP, 3.9pF, +/-0.1pF, 0402, ATC	1
C2, C9, C10, C15	CAP CER 0.1µF 100V 10% X7R 0805	4
C3, C4, C7, C8	CAP, 100.0pF, +/-5%, 0603, ATC	4
C5, C6	CAP, 10.0pF, +/-5%, 0603, ATC	2
C11, C14	CAP CER 22,000pF 100V 10% X7R 0805	2
C12, C13	CAP, 22pF,+/-5%, 0603, ATC	2
C16	CAP 10µF 16V TANTALUM, 2312	1
C17	CAP, 33µF, 20%, G CASE	1
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	HEADER RT>PLZ .1CEN LK 5POS	1
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
W1, W2	WIRE, BLACK, 22 AWG	2
	WIRE ASSEMBLY, 5-PIN, MMIC HPA FIXTURES	1
	CLAMP, DELRIN	2
	2-56 SOC HD SCREW 3/16 SS	4
	2-56 SOC HD SCREW 1/2 SS	4
	PREFORM, INDIUM, 2 X 2 X 0.003" THK, WITH 0.0002" THK AL CLAD ON ONE SIDE	1
	TEST FIXTURE INSTRUCTIONS	1


Rev. 1.0, 2022-8-26


Product Dimensions CMPA2060035F (Package Type – 440219)

NOT	TO	SCALE

Ē		
 E		1
]	I.
~	\sim	

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
A	0.495	0.505	12.57	12.82
В	0.003	0.005	0.076	0.127
С	0.140	0.160	3.56	4.06
D	0.315	0.325	8.00	8.25
E	0.008	0.012	0.204	0.304
F	0.055	0.065	1.40	1.65
G	0.495	0.505	12.57	12.82
н	0.695	0.705	17.65	17.91
J	0.403	0.413	10.24	10.49
к	ø.(092	2.3	34
L	0.075	0.085	1.905	2.159

0.032

0.040

0.82

1.02

2. CONTROLLING DIMENSION: INCH.

5. ALL PLATED SURFACES ARE NI/AU

М

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID. 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

NOTES:

PIN	Function
1	Gate 1
2	RF _{IN}
3	Gate 2
4	Drain 1
5	RF _{OUT}
6	Drain 2
7	Ground

Rev. 1.0, 2022-8-26

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA2060035F	GaN MMIC	Each	Current Contraction
CMPA2060035F-AMP	Test board with GaN MMIC installed	Each	

Rev. 1.0, 2022-8-26

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

© 2019-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.

Rev. 1.0, 2022-8-26