

HIGH-SPEED 8K x 8 DUAL-PORT STATIC RAM

7005S/L


Features

- True Dual-Ported memory cells which allow simultaneous reads of the same memory location
- High-speed access
 - Commercial:15/17/20/25/35ns(max.)

Functional Block Diagram

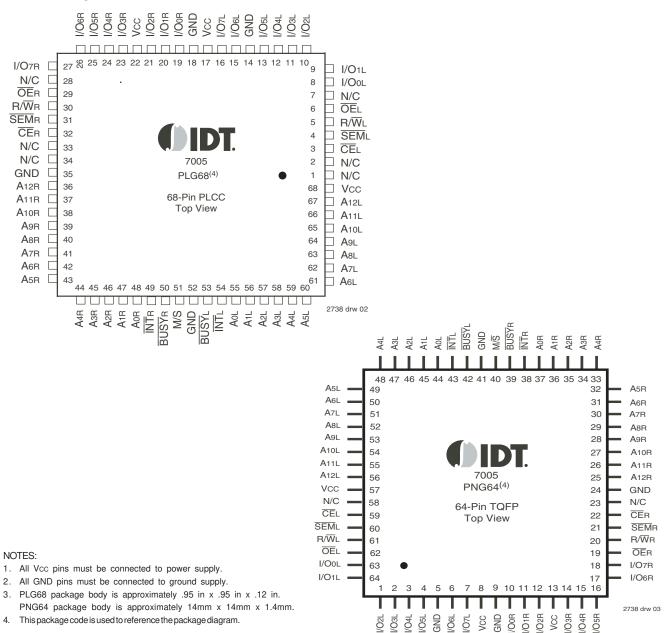
- Industrial: 20ns (max.)
- Military: 20/25/35/55/70ns (max.)
- Low-power operation
 - IDT7005S
 Active: 750mW (typ.)
 Standby: 5mW (typ.)
 - IDT7005L
 Active: 700mW (typ.)
 - Standby: 1mW (typ.)
- IDT7005 easily expands data bus width to 16 bits or more using the Master/Slave select when cascading more than one device

- M/S = H for BUSY output flag on Master, M/S = L for BUSY input on Slave
- Interrupt Flag
- On-chip port arbitration logic
- Full on-chip hardware support of semaphore signaling between ports
- Fully asynchronous operation from either port
- Devices are capable of withstanding greater than 2001V electrostatic discharge
- Battery backup operation—2V data retention
- TTL-compatible, single 5V (±10%) power supply
- Available in 68-pin PGA, PLCC and a 64-pin thin quad flatpack
- Industrial temperature range (-40°C to +85°C) is available for selected speeds
- Green parts available, see ordering information

NOTES:

1. (MASTER): $\overline{\text{BUSY}}$ is output; (SLAVE): $\overline{\text{BUSY}}$ is input.

2. BUSY outputs and INT outputs are non-tri-stated push-pull.



Description

The IDT7005 is a high-speed 8K x 8 Dual-Port Static RAM. The IDT7005 is designed to be used as a stand-alone 64K-bit Dual-Port RAM or as a combination MASTER/SLAVE Dual-Port RAM for 16-bit-or-more word systems. Using the IDT MASTER/SLAVE Dual-Port RAM approach in 16-bit or wider memory system applications results in full-speed, error-free operation without the need for additional discrete logic.

This device provides two independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. An automatic power down feature controlled by CE permits the on-chip circuitry of each port to enter a very low standby power mode. Fabricated using CMOS high-performance technology, these devices typically operate on only 750mW of power. Low-power (L) versions offer battery backup data retention capability with typical power consumption of 500μ W from a 2V battery.

The IDT7005 is packaged in a ceramic 68-pin PGA, 68-pin PLCC and a 64-pin thin quad flatpack, (TQFP). Military grade product is manufactured in compliance with MIL-PRF-38535 QML making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

Pin Configurations^(1,2,3)

Pin Configurations^(1,2,3) (con't.)

11		51 A5L	50 A4L	48 A2L	46 AoL	44 BUSYL	42 M/S	40 INTR	38 A1R	36 A3R	
10	53 A7L	52 A6L	49 A3L	47 A1L	45 ĪNTL	43 GND	41 BUSYR	39 Aor	37 A2R	35 A4R	34 A5R
09	55 A9L	54 A8L								32 A7R	33 A6R
08	57 A11L	56 A10L								30 A9R	31 A8R
07	59 Vcc	58 A12L				7005				28 A11R	29 A10R
06	61 N/C	60 N/C			(GU68 ⁽	4,5)			26 GND	27 A12R
05	63 SEML	62 CEL								24 N/C	25 N/C
04	65 OEL	64 R/WL								22 SEMR	23 CER
03	67 I/Ool	66 N/C								20 OEr	21 R/WR
02	68 I/O1L	1 I/O2L	3 I/O4L	5 GND	7 I/O7L	9 GND	11 I/O1R	13 VCC	15 I/O4R	18 I/O7R	19 N/C
01	ו	2 I/O3L	4 I/O5L	6 I/O6L	8 Vcc	10 I/O0R	12 I/O2R	14 I/O3R	16 I/O5R	17 I/O6R	
	A	В	С	D	E	F	G	Н	J	K	L

NOTES:

- 1. All Vcc pins must be connected to power supply.
- 2. All GND pins must be connected to ground supply.
- 3. Package body is approximately 1.18in x 1.18in x .16in.
- 4. This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of the actual part-marking

Pin Names

Left Port	Right Port	Names		
<u>CE</u>	CE R	Chip Enable		
R/WL	R/WR	Read/Write Enable		
OEL	OE r	Output Enable		
Aol - A12L Aor - A12R		Address		
I/O0L - I/O7L	I/O0r - I/O7r	Data Input/Output		
SEML	SEM R	Semaphore Enable		
ĪNT∟	ĪNTr	Interrupt Flag		
BUSYL	BUSY R	Busy Flag		
М	/ S	Master or Slave Select		
V	сс	Power		
G	ND	Ground		

2738 drw 04

Truth Table I: Non-Contention Read/Write Control

	Inpu	ıts ⁽¹⁾		Outputs	
CE	R∕ ₩	ŌĒ	SEM	I/O0-7	Mode
н	х	Х	н	High-Z	Deselected: Power-Down
L	L	Х	н	DATAℕ	Write to Memory
L	н	L	н	DATAOUT	Read Memory
х	х	Н	х	High-Z	Outputs Disabled

NOTE:

1. AoL - A12L is not equal to AoR - A12R

Truth Table II: Semaphore Read/Write Control⁽¹⁾

	Inpu	ıts ⁽¹⁾		Outputs	
ĈĒ	R∕ ₩	ŌĒ	SEM	I/O0-7	Mode
н	н	L	L	DATAOUT	Read in Semaphore Flag Data Out
н	Ŷ	х	L	DATAℕ	Write I/Oo into Semaphore Flag
L	х	Х	L		Not Allowed

NOTE:

1. There are eight semaphore flags written to via I/O0 and read from I/O0 - I/O7. These eight semaphores are addressed by Ao - A2.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Commercial & Industrial	Military	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Тѕтс	Storage Temperature	-65 to +150	-65 to +150	°C
Ιουτ	DC Output Current	50	50	mA

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

 VTERM must not exceed Vcc+10% for more than 25% of the cycle time or 10% maximum, and is limited to ≤20mA for the period of VTERM≥Vcc+10%.

Capacitance⁽¹⁾ (TA = +25°C, f = 1.0MHz)

Symbol	Parameter	Conditions ⁽²⁾	Max.	Unit
C⊪	Input Capacitance	VIN = 3dV	9	pF
Соит	Output Capacitance	Vout = 3dV	10	pF
-				2738 tbl 07

NOTES:

1. These parameters are determined by device characterization but are not production tested (TQFP Package only).

 3dV references the interpolated capacitance when the input and output signals switch from 0V to 3V or from 3V to 0V.

Maximum Operating Temperature and Supply Voltage^(1,2)

Grade	Ambient Temperature	GND	Vcc
Military	-55°C to+125°C	0V	5.0V <u>+</u> 10%
Commercial	0°C to +70°C	0V	5.0V <u>+</u> 10%
Industrial	-40°C to +85°C	OV	5.0V <u>+</u> 10%
			2738 tbl 05

NOTES:

2738 tbl 04

1. This is the parameter TA. This is the "instant on" case temperature.

2 Industrial temperature: for specific speeds, packages and powers contact your sales office.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Ground	0	0	0	V
Vн	Input High Voltage	2.2		6.0 ⁽²⁾	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾		0.8	V

NOTES:

1. VIL \geq -1.5V for pulse width less than 10ns.

2. VTERM must not exceed Vcc + 10%.

2738 tbl 02

2738 tbl 03

2738 tbl 06

Feb.14.20

Military, Industrial and Commercial Temperature Range

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (Vcc = 5.0V ± 10%)

			7005S		70		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
ILI	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, VIN = 0V to Vcc		10		5	μA
llo	Output Leakage Current	\overline{CE} = VIH, VOUT = 0V to VCC		10		5	μA
Vol	Output Low Voltage	IOL = +4mA		0.4		0.4	V
Vон	Output High Voltage	IOH = -4mA	2.4		2.4	_	V

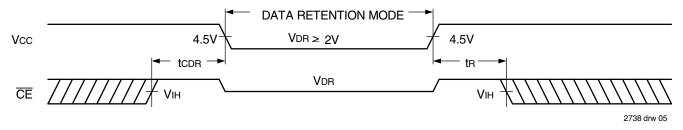
NOTE:

1. At Vcc < 2.0V input leakages are undefined.

2738 tbl 08

Data Retention Characteristics Over All Temperature Ranges (L Version Only) (VLC = 0.2V, VHC = VCC - 0.2V)

Symbol	Parameter	Test Condition	Test Condition			Max.	Unit
Vdr	Vcc for Data Retention	Vcc = 2V	Vcc = 2V		_	_	V
ICCDR	Data Retention Current	¯CĒ ≥ VHC	Mil. & Ind.	_	100	4000	μA
		$V_{IN} \ge V_{HC} \text{ or } \le V_{LC}$	Com'l.	_	100	1500	
tCDR ⁽³⁾	Chip Deselect to Data Retention Time	<u>SEM</u> ≥ VHC		0		_	ns
tR ⁽³⁾	Operation Recovery Time			tRC ⁽²⁾			ns
NOTES	•	-		_	-	- 2	738 tbl 09


NOTES:

1. TA = +25°C, Vcc = 2V, and are not production tested.

2. tRC = Read Cycle Time

3. This parameter is guaranteed by characterization, but is not production tested.

Data Retention Waveform

2738 tbl 10

2738 tbl 11

DC Electrical Characteristics Over the Operating <u>Temperature and Supply Voltage Range⁽¹⁾ (Vcc = 5.0V ± 10%)</u>

					7005 Com'l		7005 Com'l			5X20 I, Ind litary	7005 Com Mili		
Symbol	Parameter	Test Condition	Version	l	Typ. ⁽²⁾	Max.	Typ. ⁽²⁾	Max.	Typ. ⁽²⁾	Max.	Typ. ⁽²⁾	Max.	Unit
ICC	Dynamic Operating Current (Both Ports Active)	\overline{CE} = VIL, Outputs Disabled \overline{SEM} = VIH f = fMAX ⁽³⁾	COM'L	S L	170 160	310 260	170 160	310 260	160 150	290 240	155 145	265 220	mA
		t = 1MAX**	MIL & IND	S L					160 150	370 320	155 145	340 280	
ISB1	Standby Current (Both Ports - TTL	$\overline{\underline{CE}}_{L} = \overline{\underline{CE}}_{R} = VIH$ $\overline{SEMR}_{R} = \overline{SEML}_{L} = VIH$ (4.645)	COM'L	S L	20 10	60 60	20 10	60 50	20 10	60 50	16 10	60 50	mA
	Level Inputs) f = fMAX ⁽³⁾	T = TMAX**/	MIL & IND	S L			-		20 10	90 70	16 10	80 65	
ISB2	Standby Current (One Port - TTL Level Inputs)	\overline{CE} "A" = VIL and \overline{CE} "B" = VIH ⁽⁵⁾ Active Port Outputs Disabled f=fMAX ⁽³⁾	COM'L	S L	105 95	190 160	105 95	190 160	95 85	180 150	90 80	170 140	mA
		$\frac{1 = 100AX^{+}}{SEMR} = \overline{SEML} = VIH$	MIL & IND	S L	-				95 85	240 210	90 80	215 180	
ISB3	Full Standby Current (Both Ports - All CMOS Level Inputs)	Both Ports \overline{CE}_{L} and $\overline{CE}_{R} \ge V_{CC} - 0.2V$ $V_{IN} > V_{CC} - 0.2V$ or	COM'L	S L	1.0 0.2	15 5	1.0 0.2	15 5	1.0 0.2	15 5	1.0 0.2	15 5	mA
	inputs)	$\frac{\text{VIN} \le 0.2\text{V, f} = 0^{(4)}}{\text{SEMR} = \text{SEML} \ge \text{VCC} - 0.2\text{V}$	MIL & IND	S L					1.0 0.2	30 10	1.0 0.2	30 10	
ISB4	Full Standby Current (One Port - All CMOS Level Inputs)		COM'L	S L	100 90	170 140	100 90	170 140	90 80	155 130	85 75	145 120	mA
		SEMIR = SEMIL \geq VCC - 0.2V VIN \geq VCC - 0.2V or VIN \leq 0.2V Active Port Outputs Disabled f = fMAX ⁽³⁾	MIL & IND	S L	_				90 80	225 200	85 75	200 170	

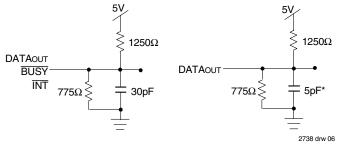
7005X35 7005X55 7005X70 Com'l, Ind Com'l, Ind Military & Military & Military Only Typ.⁽²⁾ Typ.⁽²⁾ Typ.⁽²⁾ Test Condition Max. Max. Max. Unit Symbol Parameter Version $\frac{\overline{CE}}{\overline{SEM}} = V_{\mathbb{H}}, \text{ Outputs Disabled}$ ICC Dynamic Operating COM'L s 150 250 150 250 mA Current L 140 210 140 210 (Both Ports Active) $f = fMAX^{(3)}$ MIL & s 150 300 150 300 140 300 IND L 140 250 140 250 130 250 $\overline{CE}L = \overline{CE}R = VIH$ COM'L Standby Current s ISB1 13 60 13 60 ____ mΑ 50 (Both Ports - TTL 10 10 50 SEMR = SEML = VIH L Level Inputs) $f = fMAX^{(3)}$ MIL & s 13 80 13 80 10 80 IND 65 65 65 L 10 10 8 \overline{CE} "A" = VL and \overline{CE} "B" = VH⁽⁵⁾ ISB2 Standby Current COM'L s 85 155 85 155 mA (One Port - TTL Active Port Outputs Disabled L 75 130 75 130 $\frac{f=fMAX^{(3)}}{\overline{SEM}R} = \overline{SEM}L = VH$ Level Inputs) MIL & s 85 190 85 190 80 190 75 IND 160 160 160 75 70 L Both Ports CEL and ISB3 Full Standby Current COM'L s 1.0 15 1.0 15 mA $\overline{CER} \ge VCC - 0.2V$ $VIN \ge VCC - 0.2V$ or (Both Ports - All CMOS Level Inputs) 1 02 5 02 5 $\frac{VN \leq 0.2V, f = 0^{(4)}}{SEMR = SEML \geq VCC - 0.2V}$ MIL & S 30 30 30 1.0 1.0 1.0 IND L 0.2 10 0.2 10 0.2 10 COM'L ISB4 Full Standby Current \overline{CE} "A" < 0.2V and s 80 135 80 135 mA ____ $\frac{OLA}{CE"B"} \ge \frac{Vcc}{SEMR} = \frac{Vcc}{SEML} \ge Vcc - 0.2V^{(5)}$ (One Port - All 70 110 70 110 L CMOS Level Inputs) $VIN \ge VCC - 0.2V$ or $VIN \le 0.2V$ MIL & s 80 175 80 175 75 175 Active Port Outputs Disabled $f = fMAX^{(3)}$ IND 1 70 150 70 150 65 150

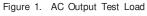
NOTES:

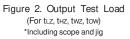
1. 'X' in part number indicates power rating (S or L)

2. Vcc = 5V, TA = $+25^{\circ}$ C and are not production tested. Icc pc = 120mA (typ)

3. At f = fMAX, address and I/O's are cycling at the maximum frequency read cycle of 1/tRc, and using "AC Test Conditions" of input levels of GND to 3V.


4. f = 0 means no address or control lines change.


5. Port "A" may be either left or right port. Port "B" is the port opposite port "A".



AC Test Conditions

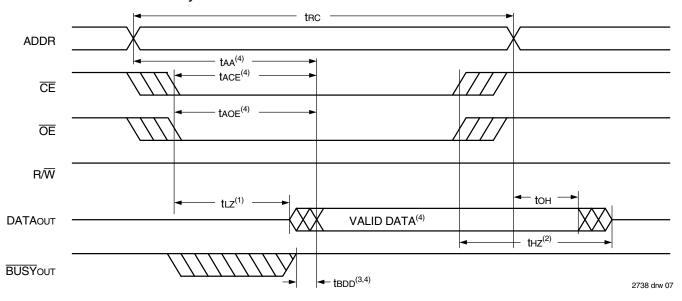
Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns Max.
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1 and 2
	2738 tbl 12

2738 tbl 13b

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁴⁾

PEAD CYCLE tric Read Cycle Time 15 17 20 25 rs ta Address Access Time ⁽³⁾ 15 17 20 25 rs tac Chip Enable Access Time ⁽³⁾ 15 17 20 25 rs tace Output Enable Access Time ⁽³⁾ 10 10 12 13 rs tace Output High-Z Time ^(1,2) 3 10 10 12 15 rs tac Output High-Z Time ^(1,2) 10 10 10 10 10 15 rs tac Output High-Z Time ^(1,2) Output High-Z Time ^(2,3) 0 10 10 10 10 10 10 10 10 10	·		700	5X15 I Only	700	5X17 'I Only	Com	5X20 'I, Ind ilitary	Con	5X25 n'I & itary	
bc Read Cycle Time 15 17 20 25 rs tAA Address Access Time 15 17 20 25 rs tAC Chip Enable Access Time 15 17 20 25 rs tAC Chip Enable Access Time 10 10 12 13 rs tAC Odput Hold from Address Change 3 3 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 1 13 1 13 13 13	Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
had Address Access Time 15 17 20 25 response hcc Chip Enable Access Time ⁽⁷⁾ 15 17 20 25 response hcc Output Enable Access Time 10	READ CYC	LE		-	-	-	-	-	-		-
koc Chip Enable Access Time ⁽¹⁾ 15 17 20 25 reg koc Output Enable Access Time 10 10 12 13 17 12 13 17 10 12 13 17 10 10 12 13 13 13 13 13 13 13 13 13 13 13 13 13 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	tRC	Read Cycle Time	15		17		20		25		ns
took Output Enable Access Time 10 10 12 12 13 ne torik Output Hold from Address Change 3 3<	tAA	Address Access Time		15		17		20		25	ns
NoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNote12Output Low Z Time (1.2)Output High-Z Time (1.2)Note <td>tACE</td> <td>Chip Enable Access Time⁽³⁾</td> <td></td> <td>15</td> <td></td> <td>17</td> <td></td> <td>20</td> <td></td> <td>25</td> <td>ns</td>	tACE	Chip Enable Access Time ⁽³⁾		15		17		20		25	ns
Lag Output Low-Z Time ^(1,2) O S I I<	taoe	Output Enable Access Time		10		10		12		13	ns
bit Output High-Z Time ^(1,2) 10 10 12 15 ns tru Chip Enable to Power Up Time ^(2,5) 0 15 10 20 25 ns tsop Semaphore Flag Update Pulse (OE or SEM) 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	toн	Output Hold from Address Change	3		3		3		3		ns
Pion Chip Enable to Power Up Time ^(2.5) O O	tLZ	Output Low-Z Time ^(1,2)	3		3		3		3		ns
$\begin{tabular}{ c c c c c c } \hline $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	tHZ	Output High-Z Time ^(1,2)		10		10		12		15	ns
Isop Semaphore Flag Update Pulse (OE or SEM) 10 - 10 10 10 10 10 <th10< th=""> <th10< th=""> 10</th10<></th10<>	tPU	Chip Enable to Power Up Time ^(2,5)	0		0		0		0		ns
Ising the formation of the second stress Access Time Image: formatic access Time Image: formation of the second	tPD	Chip Disable to Power Down Time ^(2,5)		15		17		20		25	ns
Symbol Parameter 35 7005X5 Com1, Ind & Military 7005X5 Com1, Ind & Military IDT705X70 Military Orly IDT705X70 Military Orly Max Min. Min. Max Min. Max Min. Max Min. Max Min. Max Min.	tSOP	Semaphore Flag Update Pulse (OE or SEM)	10	_	10		10		10		ns
Symbol Parameter $\frac{7005\times35}{Com^{11}, \lnd}$ $\frac{7005\times55}{Com^{11}, \lnd}$ $\frac{1DT/05X70}{Military}$ Number Normality READ CYCLE Min. Max.	tSAA	Semaphore Address Access Time	-	15		17		20		25	ns
Symbol Com'l, Ind & Miiitary Military Military<											
READ CYCLE Read Cycle Time 70 ns tac Address Access Time 35 55 70 ns taA Address Access Time 35 55 70 ns taCe Chip Enable Access Time ⁽³⁾ 35 55 70 ns taOE Output Enable Access Time ⁽³⁾ 35 30 35 ns taOE Output Enable Access Time 20 30 35 ns tAOE Output Hold from Address Change 3 3 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33											2738 tbl 13a
HRC Read Cycle Time 35 55 70 Instruction tAA Address Access Time 35 55 70 ns tACE Chip Enable Access Time ⁽³⁾ 35 55 70 ns tACE Output Enable Access Time ⁽³⁾ 30 35 70 ns tACE Output Enable Access Time 35 30 35 ns tACE Output Enable Access Time 20 30 35 ns tACE Output Hold from Address Change 3 3 33 33 33 33 30 30 30 30 30 30 30 30 <t< td=""><td></td><td></td><td></td><td></td><td>Com</td><td>ı'l, Ind</td><td>Com</td><td>'I, Ind</td><td>Mili</td><td>005X70 itary</td><td>2738 tbl 13a</td></t<>					Com	ı'l, Ind	Com	'I, Ind	Mili	005X70 itary	2738 tbl 13a
Interspective	Symbol	Parameter			Com & Mi	l'I, Ind litary	Com & Mi	'I, Ind Iitary	Mili Oi	005X70 itary nly	Unit
true Chip Enable Access Time ⁽³⁾ Component of the second s	-				Com & Mi	l'I, Ind litary	Com & Mi	'I, Ind Iitary	Mili Oi	005X70 itary nly	
tADE Output Enable Access Time $$ 20 $$ 30 $$ 35 ns tOH Output Hold from Address Change 3 $$ 3 $$ 3 $$ 3 $$ 3 $$ 3 $$ 3 $$ 3 $$ ns tLZ Output Low-Z Time ^(1,2) 3 $$ 3 $$ 3 $$ 3 $$ 3 $$ ns tHZ Output High-Z Time ^(1,2) $$ $$ 15 $$ 25 $$ 30 $$ ns tHZ Output High-Z Time ^(1,2) $$ $$ 15 $$ 25 $$ 30 $$ ns tPU Chip Enable to Power Up Time ^(2,5) $$	READ CYC	I LE I			Com & Mi Min.	i'l, Ind litary Max.	Com & Mi Min.	'l, Ind litary Max.	Mili Or Min.	005X70 itary nly Max.	
total Dependence of the constraint Dependence of the cons	READ CYC	LE Read Cycle Time			Com & Mi Min. 35	i'l, Ind litary Max.	Com & Mi Min.	'I, Ind litary Max.	Mili Oi Min. 70	005X70 itary nly Max.	Unit
LZ Output Low-Z Time ^(1,2) 3 3 3 ns tHZ Output High-Z Time ^(1,2) 15 25 30 ns tHZ Output High-Z Time ^(1,2) 15 25 30 ns tPU Chip Enable to Power Up Time ^(2,5) 0 0 0 ns tPD Chip Disable to Power Down Time ^(2,5) 35 50 50 ns	READ CYC trc taa	LE Read Cycle Time Address Access Time			Com & Mi Min. 35 	I'I, Ind litary Max. 35	Com & Mi Min. 55	'I, Ind litary Max. 55	Mili Or Min. 70 	005X70 itary nly Max.	Unit
Hz Output High-Z Time ^(1,2) S - 15 - 25 - 30 ns tPU Chip Enable to Power Up Time ^(2,5) 0 0 - 0 - 0 - 10 - 15 - 15 - 10 - 15 - 10 - <t< td=""><td>READ CYC trc taa tace</td><td>LE Read Cycle Time Address Access Time Chip Enable Access Time⁽³⁾</td><td></td><td></td><td>Com & Mi Min. 35 </td><td>1'l, Ind litary Max. </td><td>Com & Mi Min. 55 </td><td>'I, Ind litary Max. 55 55</td><td>Mili Or Min. 70 </td><td>005X70 itary Max. 70 70</td><td>Unit ns ns</td></t<>	READ CYC trc taa tace	LE Read Cycle Time Address Access Time Chip Enable Access Time ⁽³⁾			Com & Mi Min. 35 	1'l, Ind litary Max. 	Com & Mi Min. 55 	'I, Ind litary Max. 55 55	Mili Or Min. 70 	005X70 itary Max. 70 70	Unit ns ns
tPU Chip Enable to Power Up Time ^(2,5) 0 0 0 ns tPD Chip Disable to Power Down Time ^(2,5) 35 50 50 ns	READ CYC trc taa tace taoe	LE Read Cycle Time Address Access Time Chip Enable Access Time ⁽⁹⁾ Output Enable Access Time			Com & Mi Min. 35 	i'l, Ind litary Max. 35 35 20	Com & Mi Min. 55 	'l, Ind litary Max. 55 55 30	Mili O Min. 70 	005X70 itary nly Max. 70 70 35	Unit ns ns
tPD Chip Disable to Power Down Time ^(2,5) 35 50 50 ns	READ CYC tRC tAA tACE tAOE tOH	E Read Cycle Time Address Access Time Chip Enable Access Time ⁽³⁾ Output Enable Access Time Output Hold from Address Change			Com & Mi Min. 35 3	I'l, Ind litary Max. 35 35 20 ——	Com & Mi Min. 55 	"I, Ind litary Max. 55 55 30 	Mili OMin. 70 3	005X70 Itary Max. 70 70 35 	Unit ns ns ns
	READ CYC trc taa tace taoe toH tLz	Read Cycle Time Address Access Time Chip Enable Access Time ⁽³⁾ Output Enable Access Time Output Hold from Address Change Output Low-Z Time ^(1,2)			Com & Mi Min. 35 3 3 3	''I, Ind litary Max. 35 35 20 	Com & Mi Min. 555 3 3 3	'l, Ind litary Max. 55 55 30 	Mili OMin. 70 3 3	005X70 itary Max. 70 70 35 	Unit ns ns ns ns
tsop Semaphore Flag Update Pulse (OE or SEM) 15 15 15 ns	READ CYC tRC tAA tACE tAOE tOH tLZ tHZ	Read Cycle Time Address Access Time Chip Enable Access Time Output Enable Access Time Output Hold from Address Change Output Low-Z Time ^(1,2) Output High-Z Time ^(1,2)			Com & Mi Min. 35 3 3 3 	'l, Ind litary Max. 35 35 20 — 15	Com & Mi Min. 55 	"I, Ind litary Max. 55 55 30 25	Mili OMin. 70 	005X70 Itary nly Max. 70 70 35 30	Unit ns ns ns ns ns ns ns
	READ CYC trc taa taa tace taoe toH tuz thz thz	Read Cycle Time Address Access Time Chip Enable Access Time ⁽³⁾ Output Enable Access Time Output Hold from Address Change Output Low-Z Time ^(1,2) Output High-Z Time ^(1,2) Chip Enable to Power Up Time ^(2,5)			Com & Mi Min. 35 3 3 3 0	''I, Ind litary Max. 35 35 20 15 	Com & Mi 55 	'l, Ind litary Max. 55 55 30 25 	Mili Ol Min. 70 — 3 3 3 3 — 0	005X70 itary nly Max. 70 70 35 30 	Unit ns ns ns ns ns ns ns
tsaa Semaphore Address Access Time - 35 - 55 - 70 ns	READ CYC tRC tAA tACE tACE tACE tACE tACE tACE tACE	Read Cycle Time Address Access Time Chip Enable Access Time ⁽³⁾ Output Enable Access Time Output Hold from Address Change Output Hold from Address Change Output Low-Z Time ^(1,2) Output High-Z Time ^(1,2) Chip Enable to Power Up Time ^(2,5) Chip Disable to Power Down Time ^(2,5)			Com & Mi Min. 35 3 3 3 0 	''I, Ind litary Max. 35 35 20 15 	Com & Mi Min. 55 	'l, Ind litary Max. 55 55 30 25 	Mili OMin. 70 	005X70 itary nly Max. 70 70 35 30 	Unit ns ns ns ns ns ns ns ns ns

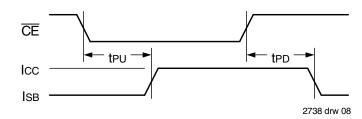
NOTES:


1. Transition is measured 0mV from Low or High impedance voltage with load (Figures 1 and 2).

4. 'X' in part number indicates power rating (S or L).

This parameter is guaranteed but not production tested.
 To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL.

Waveform of Read Cycles⁽⁵⁾



NOTES:

- 1. Timing depends on which signal is asserted last, \overline{OE} or \overline{CE} . 2. Timing depends on which signal is de-asserted first \overline{CE} or \overline{OE} .
- 3. TBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY has no relation to valid output data.
- 4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.

5. $\overline{\text{SEM}} = \text{VIH}.$

Timing of Power-Up Power-Down

Military, Industrial and Commercial Temperature Range

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage⁽⁵⁾

		7005X15 7005X17 Com'l Only Com'l On					7005X25 Com'l & Military			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE CY	CLE			-						
twc	Write Cycle Time	15		17		20		25		ns
tew	Chip Enable to End-of-Write ⁽³⁾	12		12		15		20	-	ns
taw	Address Valid to End-of-Write	12		12		15	_	20		ns
tas	Address Set-up Time ⁽³⁾	0		0		0		0		ns
twp	Write Pulse Width	12		12		15		20		ns
twR	Write Recovery Time	0		0	-	0		0	-	ns
tDW	Data Valid to End-of-Write	10		10		15	_	15		ns
tHZ	Output High-Z Time ^(1,2)		10		10		12		15	ns
tDH	Data Hold Time ⁽⁴⁾	0		0		0		0		ns
twz	Write Enable to Output in High-Z ^(1,2)		10		10		12		15	ns
tow	Output Active from End-of-Write ^(1,2,4)	0		0		0	_	0		ns
tswrd	SEM Flag Write to Read Time	5		5		5		5		ns
tsps	SEM Flag Contention Window	5		5		5		5		ns

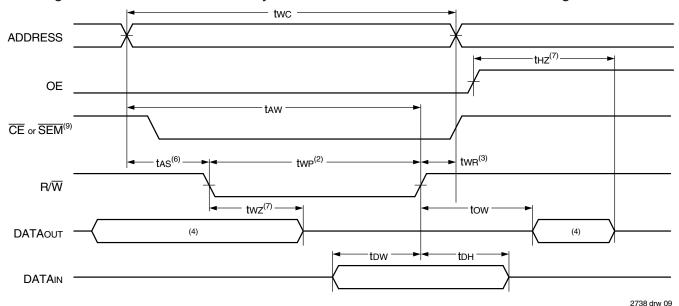
2738 tbl 14a

		Com	5X35 'I, Ind litary	Com	5X55 'I, Ind Iitary		5X70 y Only	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE CY	CLE		-	-			-	
twc	Write Cycle Time	35		55		70		ns
tew	Chip Enable to End-of-Write ⁽³⁾	30		45		50		ns
taw	Address Valid to End-of-Write	30		45	-	50		ns
tas	Address Set-up Time ⁽³⁾	0		0	_	0		ns
twp	Write Pulse Width	25		40		50		ns
twR	Write Recovery Time	0		0		0		ns
tDW	Data Valid to End-of-Write	15		30	-	40		ns
tнz	Output High-Z Time ^(1,2)		15		25	-	30	ns
tDH	Data Hold Time ⁽⁴⁾	0		0		0		ns
twz	Write Enable to Output in High- $Z^{(1,2)}$		15		25		30	ns
tow	Output Active from End-of-Write ^(1,2,4)	0		0		0		ns
tSWRD	SEM Flag Write to Read Time	5		5		5		ns
tSPS	SEM Flag Contention Window	5		5		5		ns
	•	-	-	-			27	38 tbl 14b

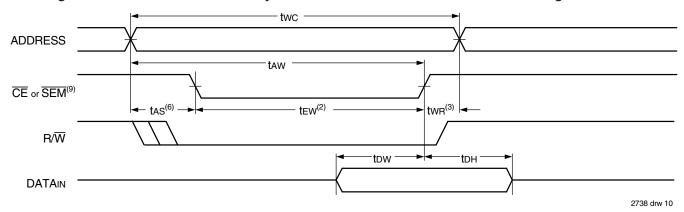
NOTES:

1. Transition is measured 0mV from Low or High-impedance voltage with load (Figure 2).

2. This parameter is guaranteed by device characterization but is not production tested.

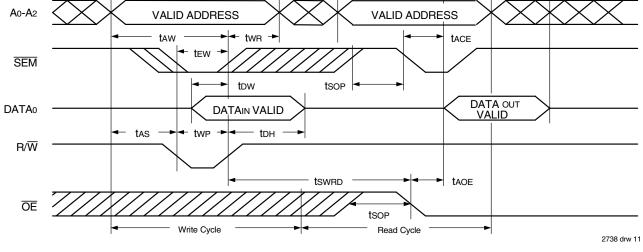

3. To access RAM, $\overline{CE} = VIL$, $\overline{SEM} = VIH$. To access semaphore, $\overline{CE} = VIH$ and $\overline{SEM} = VIL$. Either condition must be valid for the entire tew time.

4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tow values will vary over voltage and temperature, the actual tDH will always be smaller than the actual tow.


5. 'X' in part number indicates power rating (S or L).

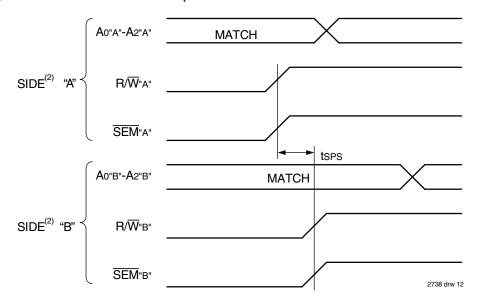
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing^(1,5,8)

Timing Waveform of Write Cycle No. 2, **CE** Controlled Timing^(1,5)



NOTES:

- 1. R/\overline{W} or \overline{CE} must be HIGH during all address transitions.
- 2. A write occurs during the overlap (tew or twp) of a LOW \overline{CE} and a LOW R/\overline{W} for memory array writing cycle.
- 3. twn is measured from the earlier of \overline{CE} or $\overline{R/W}$ (or \overline{SEM} or $\overline{R/W}$) going HIGH to the end of write cycle.
- 4. During this period, the I/O pins are in the output state and input signals must not be applied.
- 5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.
- 6. Timing depends on which enable signal is asserted last, $\overline{\text{CE}}$ or $\text{R}/\overline{\text{W}}.$
- 7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure 2).
- 8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of twp or (twz + tbw) to allow the I/O drivers to turn off and data to be placed on the bus for the required tbw. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.
- 9. To access RAM, $\overline{CE} = V_{IL}$ and $\overline{SEM} = V_{IH}$. To access semaphore, $\overline{CE} = V_{IH}$ and $\overline{SEM} = V_{IL}$. tew must be met for either condition.


Timing Waveform of Semaphore Read after Write Timing, Either Side⁽¹⁾

NOTE:

1. \overline{CE} = VIH for the duration of the above timing (both write and read cycle).

Timing Waveform of Semaphore Write Contention^(1,3,4)

NOTES:

1. DOR = DOL = VIL, $\overline{CE}_R = \overline{CE}_L = VIH$. Semaphore flag is released from both sides (reads as ones from both sides) at cycle start.

2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".

3. This parameter is measured from R/W-A" or SEM-A" going HIGH to R/W-B" or SEM-B" going HIGH.

4. If tsps is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁶⁾

Parameter

7005X15 7005X17

BUSY TIN	/ING (M/ S =Vін)									
tBAA	BUSY Access Time from Address Match		15		17		20		20	ns
tBDA	BUSY Disable Time from Address Not Matched		15		17		20		20	ns
tBAC	BUSY Access Time from Chip Enable Low		15		17		20		20	ns
tBDC	BUSY Access Time from Chip Enable High		15		17		17		17	ns
taps	Arbitration Priority Set-up Time ⁽²⁾	5		5		5		5		ns
tBDD	BUSY Disable to Valid Data ⁽³⁾		18		18		30		30	ns
twн	Write Hold After BUSY ⁽⁵⁾	12		13		15		17	-	ns
BUSY TIN	IING (M/S=VIL)									
twв	BUSY Input to Write ⁽⁴⁾	0		0		0		0		ns
twн	Write Hold After BUSY ⁽⁵⁾	12		13		15		17		ns
PORT-TO-	PORT DELAY TIMING									
twdd	Write Pulse to Data Delay ⁽¹⁾		30		30		45		50	ns
tDDD	Write Data Valid to Read Data Delay ⁽¹⁾		25		25		35		35	ns

Com'l Only

Max.

Min.

		7005X35 Com'l, Ind & Military		7005X55 Com'l, Ind & Military		7005X70 Military Only		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
	NG (MV S =VIH)							
tBAA	BUSY Access Time from Address Match		20		45		45	ns
tBDA	BUSY Disable Time from Address Not Matched		20		40		40	ns
tBAC	BUSY Access Time from Chip Enable Low		20		40		40	ns
tBDC	BUSY Access Time from Chip Enable High		20		35		35	ns
taps	Arbitration Priority Set-up Time ⁽²⁾	5		5		5		ns
tBDD	BUSY Disable to Valid Date ⁽³⁾		35		40		45	ns
twн	Write Hold After BUSY ⁽⁵⁾	25	_	25		25		ns
BUSY TIMIN	NG (M/S=VIL)							
twв	BUSY Input to Write ⁽⁴⁾	0		0		0		ns
twн	Write Hold After BUSY ⁽⁵⁾	25		25		25		ns
PORT-TO-PO	ORT DELAY TIMING							
twdd	Write Pulse to Data Delay ⁽¹⁾		60	-	80		95	ns
tDDD	Write Data Valid to Read Data Delay ⁽¹⁾		45	-	65		80	ns

NOTES:

Feb.14.20

1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY".

2. To ensure that the earlier of the two ports wins.

3. tBDD is a calculated parameter and is the greater of 0, twDD - twP (actual) or tDDD - tDw (actual).

4. To ensure that the write cycle is inhibited on port "B" during contention with port "A".

5. To ensure that a write cycle is completed on port "B" after contention on port "A".

6. 'X' in part number indicates power rating (S or L).

Symbol

7005X20

Com'l, Ind & Military

Max.

Min.

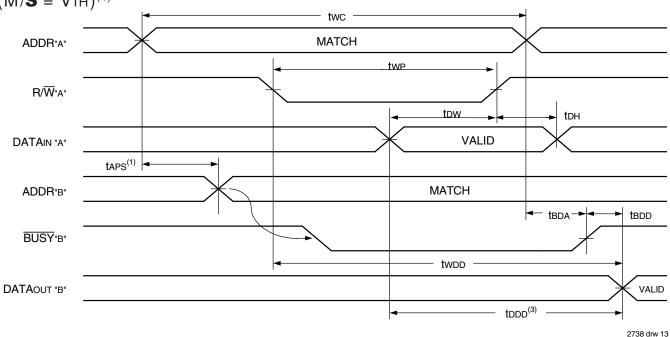
Com'l Only

Max.

Min.

7005X25

Com'l & Military

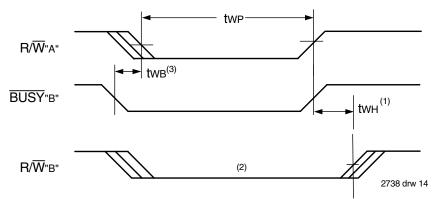

Max.

Unit

Min.

2738 tbl 15a

2738 tbl 15b



Timing Waveform of Write with Port-to-Port Read with $\overline{\text{BUSY}}^{(2,5)}$ $(M/\overline{\textbf{S}}=V\text{IH})^{(4)}$

NOTES:

- 1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (slave).
- 2. $\overline{CE}_{L} = \overline{CE}_{R} = VIL$
- 3. $\overline{OE} = V_{IL}$ for the reading port.
- 4. If $M/\overline{S} = V_{IL}$ (slave), then \overline{BUSY} is an input ($\overline{BUSY}^{"}A^{"} = V_{IH}$), and $\overline{BUSY}^{"}B^{"} =$ "don't care", for this example.
- 5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite port "A".

Timing Waveform of Write with **BUSY**

NOTES:

- 1. twh must be met for both $\overline{\text{BUSY}}$ input (slave) and output (master).
- 2. BUSY is asserted on Port "B", blocking R/W"B", until BUSY"B" goes HIGH
- 3. twb is only for the 'Slave' Version..

ADDR"B"	taps ⁽²⁾	ING ADDRESS "N	п			
BUSY"B"		ς	← tB		2738	8 drw 16
•	the same for left and right ports. Port "A" may be ϵ t satisfied, the $\overline{\text{BUSY}}$ signal will be asserted on one	• I				
	ctrical Characteristics ing Temperature and S		age Rang	e ⁽¹⁾		
		7005X15	7005X17	7005X20	7005X25	

tBAC

		Com'	Only	Com'l Only		Com'l, Ind & Military		Com'l & Military		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
INTERRUPT	INTERRUPT TIMING									
tas	Address Set-up Time	0		0		0		0		ns
twR	Write Recovery Time	0		0		0		0	-	ns
tins	Interrupt Set Time	-	15	-	15		20		20	ns
tinr	Interrupt Reset Time		15		15		20		20	ns
									:	2738 tbl 16a

		Con	95X35 n'I, Ind ilitary	Com	5X55 'I, Ind litary	Mil	5X70 itary nly	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
INTERRUF	PT TIMING	-						
tas	Address Set-up Time	0		0		0		ns
twr	Write Recovery Time	0		0		0		ns
tins	Interrupt Set Time		25		40		50	ns
tinr	Interrupt Reset Time		25		40		50	ns

NOTE:

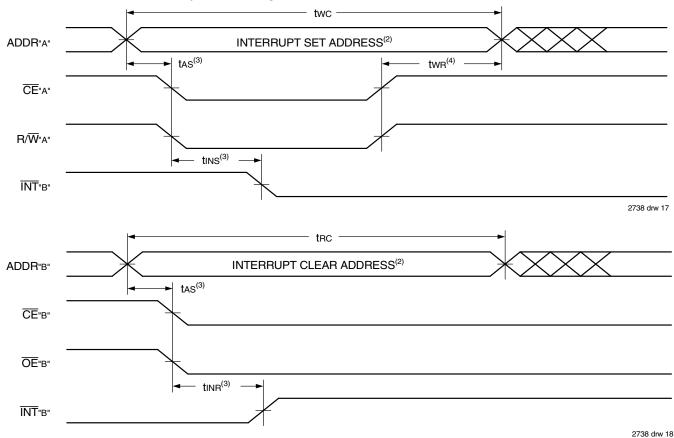
1. 'X' in part number indicates power rating (S or L).

CE"B"

- tBDC

Waveform of **BUSY** Arbitration Controlled by \overline{CE} Timing⁽¹⁾ (M/ \overline{S} = VIH) ADDR"A" ADDRESSES MATCH and "B" CE"A" taps⁽²⁾

BUSY"B" Waveform of **BUSY** Arbitration Cycle Controlled by Address Match $Timing^{(1)}(M/\overline{S} = VIH)$ ADDR"A" ADDRESS "N"


2738 drw 15

Waveform of Interrupt Timing⁽¹⁾

NOTES:

1. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".

2. See Interrupt Truth Table III.

- 3. Timing depends on which enable signal (\overline{CE} or $R\overline{W}$) asserted last. 4. Timing depends on which enable signal (\overline{CE} or $R\overline{W}$) is de-asserted first.

		Left Por	ť		Right Port					
R∕ W ∟	ĒĒ∟	ŌĒ∟	A12L-A0L	ĪNT∟	R∕ W r	CE R	OE R	A12R-A0R	ĪNT R	Function
L	L	Х	1FFF	Х	Х	х	Х	х	L ⁽²⁾	Set Right INTR Flag
х	Х	Х	х	Х	Х	L	L	1FFF	H ⁽³⁾	Reset Right INTR Flag
х	Х	Х	х	L ⁽³⁾	L	L	Х	1FFE	х	Set Left INTL Flag
х	L	L	1FFE	H ⁽²⁾	Х	х	Х	х	х	Reset Left INTL Flag

Truth Table III — Interrupt Flag^(1,4)

NOTES:

1. Assumes $\overline{\text{BUSY}}_{L} = \overline{\text{BUSY}}_{R} = \text{VIH}.$

2. If $\overline{\text{BUSY}}_{L} = V_{IL}$, then no change.

3. If $\overline{\text{BUSY}}_{R} = V_{IL}$, then no change.

4. \overline{INTR} and \overline{INTL} must be initialized at power-up.

2738 tbl 17

Truth Table IV — Address **BUSY** Arbitration

		In	puts	Out	puts	
ī	ĊĒ∟	CE R	AOL-A12L Aor-A12r	BUSYL ⁽¹⁾	BUSY R ⁽¹⁾	Function
	х	х	NO MATCH	Н	Н	Normal
	Н	х	MATCH	н	н	Normal
	х	Н	MATCH	Н	н	Normal
	L	L	MATCH	(2)	(2)	Write Inhibit ⁽³⁾

NOTES:

2738 tbl 18

 Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYx outputs on the IDT7005 are push-pull, not open drain outputs. On slaves the BUSYx input internally inhibits writes.

 'L' if the inputs to the opposite port were stable prior to the address and enable inputs of this port. 'H' if the inputs to the opposite port became stable after the address and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.

Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored when BUSYR outputs are driving LOW regardless of actual logic level on the pin.

Truth Table V — Example of Semaphore Procurement Sequence^(1,2,3)

Functions	Do - D7 Left	Do - D7 Right	Status
No Action	1	1	Semaphore free
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token
Right Port Writes "0" to Semaphore	0	1	No change. Right side has no write access to semaphore
Left Port Writes "1" to Semaphore	1	0	Right port obtains semaphore token
Left Port Writes "0" to Semaphore	1	0	No change. Left port has no write access to semaphore
Right Port Writes "1" to Semaphore	0	1	Left port obtains semaphore token
Left Port Writes "1" to Semaphore	1	1	Semaphore free
Right Port Writes "0" to Semaphore	1	0	Right port has semaphore token
Right Port Writes "1" to Semaphore	1	1	Semaphore free
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token
Left Port Writes "1" to Semaphore	1	1	Semaphore free

NOTES:

1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7005.

2. There are eight semaphore flags written to via I/Oo and read from all I/O's. These eight semaphores are addressed by Ao - Az.

3. TE=VIH, SEM=VIL to access the semaphores. Refer to the semaphore Read/Write Control Truth Table.

Functional Description

The IDT7005 provides two ports with separate control, address and I/O pins that permit independent access for reads or writes to any location in memory. The IDT7005 has an automatic power down feature controlled by \overline{CE} . The \overline{CE} controls on-chip power down circuitry that permits the respective port to go into a standby mode when not selected (\overline{CE} HIGH). When a port is enabled, access to the entire memory array is permitted.

Interrupts

If the user chooses the interrupt function, a memory location (mail box or message center) is assigned to each port. The left port interrupt flag $(\overline{INT}L)$ is asserted when the right port writes to memory location 1FFE

(HEX), where a write is defined as $\overline{CE} = R\overline{W} = VIL$ per Truth Table III. The left port clears the interrupt through access of address location 1FFE when $\overline{CE} = \overline{OE} = VIL$. For this example, R/\overline{W} is a "don't care". Likewise, the right port interrupt flag (INTR) is asserted when the left port writes to memory location 1FFF (HEX) and to clear the interrupt flag (INTR), the right port must read the memory location 1FFF. The message (8 bits) at 1FFE or 1FFF is user-defined, since it is an addressable SRAM location. If the interrupt function is not used, address locations 1FFE and 1FFF are not used as mail boxes, but as part of the random access memory. Refer to Truth Table III for the interrupt operation.

2738 tbl 19

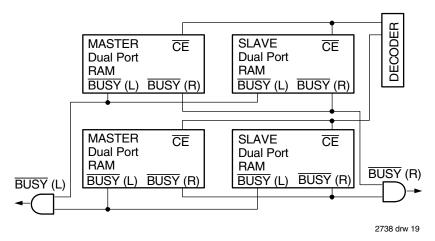


Figure 3. Busy and chip enable routing for both width and depth expansion with IDT7005 RAMs.

Busy Logic

Busy Logic provides a hardware indication that both ports of the RAM have accessed the same location at the same time. It also allows one of the two accesses to proceed and signals the other side that the RAM is "busy". The \overline{BUSY} pin can then be used to stall the access until the operation on the other side is completed. If a write operation has been attempted from the side that receives a \overline{BUSY} indication, the write signal is gated internally to prevent the write from proceeding.

The use of \overline{BUSY} logic is not required or desirable for all applications. In some cases it may be useful to logically OR the \overline{BUSY} outputs together and use any \overline{BUSY} indication as an interrupt source to flag the event of an illegal or illogical operation. If the write inhibit function of \overline{BUSY} logic is not desirable, the \overline{BUSY} logic can be disabled by placing the part in slave mode with the M/\overline{S} pin. Once in slave mode the \overline{BUSY} pin operates solely as a write inhibit input pin. Normal operation can be programmed by tying the \overline{BUSY} pins HIGH. If desired, unintended write operations can be prevented to a port by tying the \overline{BUSY} pin for that port LOW.

The BUSY outputs on the IDT 7005 RAM in master mode, are pushpull type outputs and do not require pull up resistors to operate. If these RAMs are being expanded in depth, then the BUSY indication for the resulting array requires the use of an external AND gate.

Width Expansion with Busy Logic Master/Slave Arrays

When expanding an IDT7005 RAM array in width while using \overline{BUSY} logic, one master part is used to decide which side of the RAM array will receive a \overline{BUSY} indication, and to output that indication. Any number of slaves to be addressed in the same address range as the master, use the \overline{BUSY} signal as a write inhibit signal. Thus on the IDT7005 RAM the \overline{BUSY} pin is an output if the part is used as a master (M/ \overline{S} pin = VIH), and the \overline{BUSY} pin is an input if the part used as a slave (M/ \overline{S} pin = VIL) as shown in Figure 3.

If two or more master parts were used when expanding in width, a split decision could result with one master indicating \overline{BUSY} on one side of the array and another master indicating \overline{BUSY} on one other side of the array. This would inhibit the write operations from one port for part of a word and inhibit the write operations from the other port for the other part of the word.

The BUSY arbitration on a master is based on the chip enable and

address signals only. It ignores whether an access is a read or write. In a master/slave array, both address and chip enable must be valid long enough for a $\overline{\text{BUSY}}$ flag to be output from the master before the actual write pulse can be initiated with the R/\overline{W} signal. Failure to observe this timing can result in a glitched internal write inhibit signal and corrupted data in the slave.

Semaphores

The IDT7005 is an extremely fast Dual-Port 8K x 8 CMOS Static RAM with an additional 8 address locations dedicated to binary semaphore flags. These flags allow either processor on the left or right side of the Dual-Port RAM to claim a privilege over the other processor for functions defined by the system designer's software. As an example, the semaphore can be used by one processor to inhibit the other from accessing a portion of the Dual-Port RAM or any other shared resource.

The Dual-Port RAM features a fast access time, and both ports are completely independent of each other. This means that the activity on the left port in no way slows the access time of the right port. Both ports are identical in function to standard CMOS Static RAM and can be read from, or written to, at the same time with the only possible conflict arising from the simultaneous writing of, or a simultaneous READ/WRITE of, a non-semaphore location. Semaphores are protected against such ambiguous situations and may be used by the system program to avoid any conflicts in the non-semaphore portion of the Dual-Port RAM. These devices have an automatic power-down feature controlled by \overline{CE} , the Dual-Port RAM enable, and \overline{SEM} , the semaphore enable. The \overline{CE} and \overline{SEM} pins control on-chip power down circuitry that permits the respective port to go into standby mode when not selected. This is the condition which is shown in Truth Table I where \overline{CE} and \overline{SEM} are both HIGH.

Systems which can best use the IDT7005 contain multiple processors or controllers and are typically very high-speed systems which are software controlled or software intensive. These systems can benefit from a performance increase offered by the IDT7005's hardware semaphores, which provide a lockout mechanism without requiring complex programming.

Software handshaking between processors offers the maximum in system flexibility by permitting shared resources to be allocated in varying

configurations. The IDT7005 does not use its semaphore flags to control any resources through hardware, thus allowing the system designer total flexibility in system architecture.

An advantage of using semaphores rather than the more common methods of hardware arbitration is that wait states are never incurred in either processor. This can prove to be a major advantage in very high-speed systems.

How the Semaphore Flags Work

The semaphore logic is a set of eight latches which are independent of the Dual-Port RAM. These latches can be used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphores provide a hardware assist for a use assignment method called "Token Passing Allocation." In this method, the state of a semaphore latch is used as a token indicating that shared resource is in use. If the left processor wants to use this resource, it requests the token by setting the latch. This processor then verifies its success in setting the latch by reading it. If it was successful, it proceeds to assume control over the shared resource. If it was not successful in setting the latch, it determines that the right side processor has set the latch first, has the token and is using the shared resource. The left processor can then either repeatedly request that semaphore's status or remove its request for that semaphore to perform another task and occasionally attempt again to gain control of the token via the set and test sequence. Once the right side has relinquished the token, the left side should succeed in gaining control.

The semaphore flags are active LOW. A token is requested by writing a zero into a semaphore latch and is released when the same side writes a one to that latch.

The eight semaphore flags reside within the IDT7005 in a separate memory space from the Dual-Port RAM. This address space is accessed by placing a LOW input on the \overline{SEM} pin (which acts as a chip select for the semaphore flags) and using the other control pins (Address, \overline{OE} , and R/\overline{W}) as they would be used in accessing a standard static RAM. Each of the flags has a unique address which can be accessed by either side through address pins A0–A2. When accessing the semaphores, none of the other address pins has any effect.

When writing to a semaphore, only data pin Dois used. If a LOW level is written into an unused semaphore location, that flag will be set to a zero on that side and a one on the other side (see Truth Table V). That semaphore can now only be modified by the side showing the zero. When a one is written into the same location from the same side, the flag will be set to a one for both sides (unless a semaphore request from the other side is pending) and then can be written to by both sides. The fact that the side which is able to write a zero into a semaphore flags useful in interprocessor communications. (A thorough discussion on the use of this feature follows shortly.) A zero written into the same location from the side until the semaphore is freed by the first side.

When a semaphore flag is read, its value is spread into all data bits so that a flag that is a one reads as a one in all data bits and a flag containing a zero reads as all zeros. The read value is latched into one side's output register when that side's semaphore select (\overline{SEM}) and output enable (\overline{OE}) signals go active. This serves to disallow the semaphore from changing state in the middle of a read cycle due to a write cycle from the other side. Because of this latch, a repeated read of a semaphore in a test loop must

cause either signal ($\overline{\text{SEM}}$ or $\overline{\text{OE}}$) to go inactive or the output will never change.

A sequence WRITE/READ must be used by the semaphore in order to guarantee that no system level contention will occur. A processor requests access to shared resources by attempting to write a zero into a semaphore location. If the semaphore is already in use, the semaphore request latch will contain a zero, yet the semaphore flag will appear as one, a fact which the processor will verify by the subsequent read (see Truth Table V). As an example, assume a processor writes a zero to the left port at a free semaphore location. On a subsequent read, the processor will verify that it has written successfully to that location and will assume control over the resource in question. Meanwhile, if a processor on the right side attempts to write a zero to the same semaphore flag it will fail, as will be verified by the fact that a one will be read from that semaphore on the right side during subsequent read. Had a sequence of READ/WRITE been used instead, system contention problems could have occurred during the gap between the read and write cycles.

It is important to note that a failed semaphore request must be followed by either repeated reads or by writing a one into the same location. The reason for this is easily understood by looking at the simple logic diagram of the semaphore flag in Figure 4. Two semaphore request latches feed into a semaphore flag. Whichever latch is first to present a zero to the semaphore flag will force its side of the semaphore flag LOW and the other side HIGH. This condition will continue until a one is written to the same semaphore request latch. Should the other side's semaphore request latch have been written to a zero in the meantime, the semaphore flag will flip over to the other side as soon as a one is written into the first side's request latch. The second side's flag will now stay LOW until its semaphore request latch is written to a one. From this it is easy to understand that, if a semaphore is requested and the processor which requested it no longer needs the resource, the entire system can hang up until a one is written into that semaphore request latch.

The critical case of semaphore timing is when both sides request a single token by attempting to write a zero into it at the same time. The semaphore logic is specially designed to resolve this problem. If simultaneous requests are made, the logic guarantees that only one side receives the token. If one side is earlier than the other in making the request, the first side to make the request will receive the token. If both requests arrive at the same time, the assignment will be arbitrarily made to one port or the other.

One caution that should be noted when using semaphores is that semaphores alone do not guarantee that access to a resource is secure. As with any powerful programming technique, if semaphores are misused or misinterpreted, a software error can easily happen.

Initialization of the semaphores is not automatic and must be handled via the initialization program at power-up. Since any semaphore request flag which contains a zero must be reset to a one, all semaphores on both sides should have a one written into them at initialization from both sides to assure that they will be free when needed.

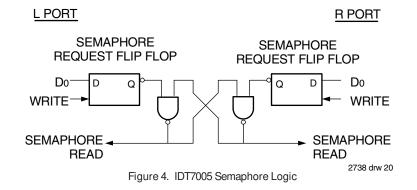
Using Semaphores—Some Examples

Perhaps the simplest application of semaphores is their application as resource markers for the IDT7005's Dual-Port RAM. Say the 8K x 8 RAM was to be divided into two 4K x 8 blocks which were to be dedicated at any one time to servicing either the left or right port. Semaphore 0 could be used to indicate the side which would control the lower section of memory, and

Military, Industrial and Commercial Temperature Range

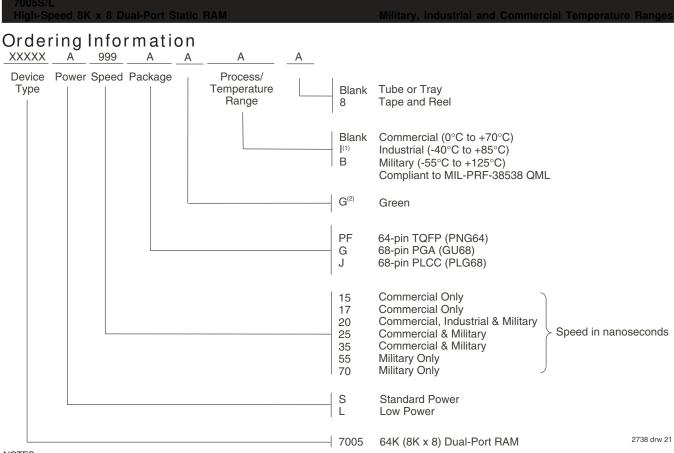
Semaphore 1 could be defined as the indicator for the upper section of memory.

To take a resource, in this example the lower 4K of Dual-Port RAM, the processor on the left port could write and then read a zero in to Semaphore 0. If this task were successfully completed (a zero was read back rather than a one), the left processor would assume control of the lower 4K. Meanwhile the right processor was attempting to gain control of the resource after the left processor, it would read back a one in response to the zero it had attempted to write into Semaphore 0. At this point, the software could choose to try and gain control of the second 4K section by writing, then reading a zero into Semaphore 1. If it succeeded in gaining control, it would lock out the left side.


Once the left side was finished with its task, it would write a one to Semaphore 0 and may then try to gain access to Semaphore 1. If Semaphore 1 was still occupied by the right side, the left side could undo its semaphore request and perform other tasks until it was able to write, then read a zero into Semaphore 1. If the right processor performs a similar task with Semaphore 0, this protocol would allow the two processors to swap 4K blocks of Dual-Port RAM with each other.

The blocks do not have to be any particular size and can even be variable, depending upon the complexity of the software using the semaphore flags. All eight semaphores could be used to divide the Dual-Port RAM or other shared resources into eight parts. Semaphores can even be assigned different meanings on different sides rather than being given a common meaning as was shown in the example above.

Semaphores are a useful form of arbitration in systems like disk interfaces where the CPU must be locked out of a section of memory during a transfer and the I/O device cannot tolerate any wait states. With the use of semaphores, once the two devices has determined which memory area was "off-limits" to the CPU, both the CPU and the I/O devices could access their assigned portions of memory continuously without any wait states.


Semaphores are also useful in applications where no memory "WAIT" state is available on one or both sides. Once a semaphore handshake has been performed, both processors can access their assigned RAM segments at full speed.

Another application is in the area of complex data structures. In this case, block arbitration is very important. For this application one processor may be responsible for building and updating a data structure. The other processor then reads and interprets that data structure. If the interpreting processor reads an incomplete data structure, a major error condition may exist. Therefore, some sort of arbitration must be used between the two different processors. The building processor arbitrates for the block, locks it and then is able to go in and update the data structure. When the update is completed, the data structure block is released. This allows the interpreting processor to come back and read the complete data structure, thereby guaranteeing a consistent data structure.

NOTES:

1. Contact your local sales office for industrial temp. range for other speeds, packages and powers.

 Green parts available. For specific speeds, packages and powers contact your local sales office LEAD FINISH (SnPb) parts are Obsolete excluding PGA. Product Discontinuation Notice - PDN# SP-17-02 Note that information regarding recently obsoleted parts are included in this datasheet for customer convenience.

Orderable	Part	Information
Orderable	ιαπ	mormation

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
15	7005L15JG	PLG68	PLCC	С
	7005L15JG8	PLG68	PLCC	С
	7005L15PFG	PNG64	TQFP	С
	7005L15PFG8	PNG64	TQFP	С
17	7005L17G	GU68	PGA	С
20	7005L20G	GU68	PGA	С
	7005L20GB	GU68	PGA	М
	7005L20JGI	PLG68	PLCC	I
	7005L20JGI8	PLG68	PLCC	I
	7005L20PFGI	PNG64	TQFP	I
	7005L20PFGl8	PNG64	TQFP	Ι
25	7005L25G	GU68	PGA	С
	7005L25GB	GU68	PGA	М
35	7005L35G	GU68	PGA	С
	7005L35GB	GU68	PGA	М
55	7005L55GB	GU68	PGA	М
70	7005L70GB	GU68	PGA	М

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
17	7005S17G	GU68	PGA	С
20	7005S20G	GU68	PGA	С
25	7005S25G	GU68	PGA	С
	7005S25GB	GU68	PGA	М
35	7005S35G	GU68	PGA	С
	7005S35GB	GU68	PGA	М
	7005S35PFG	PNG64	TQFP	С
	7005S35PFG8	PNG64	TQFP	С
55	7005S55GB	GU68	PGA	М
70	7005S70GB	GU68	PGA	М

Datasheet Document History

12/21/98:

		Converted to new format
		Cosmetic and typographical corrections
	Pages 2 & 3	Added additional notes to pin configurations
06/03/99:		Changed drawing format
11/10/99:		Replaced IDT logos
08/07/00:	Page 1	Added copyright info
		Fixed overbar errors
	Page 4	Increased storage temperature parameter
		Clarified TA Parameter
	Page 6	DC Electrical parameters-changed wording from "open" to "disabled"
		Changed ±500mV to 0mV in notes
09/18/01:	Page 2 & 3	Added date revision for pin configurations
	Page 14	Replaced one copy of table 13b with 13a for 15, 17,20 & 25ns speeds for AC Electrical
		Characteristics INTERRUPT TIMING
01/31/06:	Page 1	Added green availability to features
	Page 20	Added green indicator to ordering information
10/21/08:	Page 20	Removed "IDT" from orderable part number
09/17/12:	Pages 6,7,9,12,& 14	In all of the DC & AC Electrical tables the 7005X20 speed grade
		changed from 7005X20 Com'l & Military to include Ind making it
		Com'l, Ind & Military
	Page 20	Added T& R indicator to ordering information
06/10/16:	Pages 2 & 3	Changed diagram for the PN64 pin configuration by rotating package pin labels and pin
		numbers 90 degrees counter clockwise to reflect pin 1 orientation & added pin 1 dot at pin 1
		PN64 pin configuration: removed the PN64 chamfer, the arrow and the index indicator
		Added the IDT logo to all pin configurations and changed the text to be in
		alignment with new diagram marking specs
		Removed the date revision indicator from all pin configurations
		Updated footnote references for PN64 pin configuration
	Pages 2 & 20	The package codes PN64-1, G68-1 & J68-1 changed to PN64, G68 & J68 respectively to
		match standard package codes
03/20/18:		Product Discontinuation Notice - PDN# SP-17-02
		Last time buy expires June 15, 2018
02/14/20:	Pages 1 - 22	Rebranded as Renesas datasheet
	Pages 1 & 20	Deleted obsolete Industrial speed grades 35/55ns and Commercial speed grade 55ns
	Page 2	Correction for previous 06/10/16 update. Removed F68 (FP68) pin configuration from the datasheet
	Pages 2 & 3	Updated package codes
	Page 20	Added Orderable Part Information tables

Initiated datasheet document history

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>