

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

LC822973 - TV Image Viewer LSI

Overview

This LSI is TV image viewer. A 16Mbit SDRAM is built-in as image frame buffers, on which an external CPU is able to draw the images, then another part of this LSI displays the SDRAM images on TV in NTSC/PAL after video data encoding. This LSI equips H/V scaling circuit to scale up QVGA size image to VGA to display on the TV screen, for instance.

The main features of this LSI are specified as below.

Features

• NTSC/PAL video encoder is integrated.

Various format support

ITU-R601 (13.5MHz/NTSC&PAL) SQ (12.27MHz/NTSC, 14.75MHz/PAL)

NTSC-J, M/PAL-B, D, G, H, I/PAL-M, N

Various image adjustment

Y signal: brightness and contrast adjustment

C signal:U gain, V gain, HUE and Burst amplitude adjustment

Trap filter

Trap filters locate on the Y signal pass to reduce cross color interference. The trap strength is adjustable by register setup.

Built-in color bar

This is for system test and level adjustment.

10 bit DAC with 75Ω driver

A high accuracy video DAC of 10bit is built-in. Its DAC output is able to be connected to TV input or any image devices, thanks for its 75Ω driver built-in.

• It mounts 16Mbit SDRAM to store multiple VGA size images. Since it has the arbitration function built-in, the access timing from CPU for drawing can be used without any care of real-time access condition for TV display. VGA 30fps performance can be achieved with appropriate setting of system clock, the burst size of SDRAM, scaling ratio etc.

Continued to the next page.

- * I²C Bus is a trademark of Philips Corporation.
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc. , please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Continued from the previous page.

- The OSD function is installed. OSD images consist of binary pixel data to display over the original image. The Alfa-blend display is also available.
- Scaling from ×1 up to ×4 in two independent directions, horizontally and vertically, is available.

256 step arbitrary enlargement is given by register settings. The image rotation is available when writing as well.

- The high-speed clock for SDRAM is generated internally by built-in PLL.
- CPU-IF with 8/9/16/18/24 bit width data transfer is available.
- Built-in VIDEO-IF supports receiving video rate image input with Hsync/Vsync/Dotclcok signals. It accepts various digital image formats of 18bit-RGB666, 16bit-RGB565, 16bit-YUV422, 8bit-YUV422, 8bit-YUV422, 8bit-YUV422 (BT656) and so on. In addition, it accepts both interlace and non-interlace format.
- The Autoview function executes automatic writing/reading sequence. Once all the relevant commands are set, then this function properly updates the image banks to write and to read. This bank arbitration avoids well the tearing image (reading outruns writing).
- The FilckerFreeFilter effectively decreases the line flicker, a substantial phenomena of the interlace method.
- High performance C-signal band-limit filter is built-in. The thorny 'dot crawl' is thus decreased.
- CGMS-A/WSS data multiple functions are built-in.
- The I/O voltage of the CPU/Video interface is 1.6V-3.4V.
- Macrovision[™] Encoding (Revision 7.1.L1 in NTSC and PAL standards for Composite video output applications) are built-in. (LC822973-04VM-E only)*
- * This device is Protected by U.S. patents 5, 583, 936; 6, 516, 132; 6, 836, 549; and 7, 050, 698; and other intellectual property rights. The use of Macrovision's copy protection technology in the device must be authorized by Macrovision and is intended for home and other limited pay-per-view uses only, unless otherwise authorized in writing by Macrovision. Reverse engineering or disassembly is prohibited. This Device can only be sold or distributed to Authorized Buyers.

Parameter		Symbol	Conditions	Ratings	unit
Supply voltage		DV _{DD} 15 max		-0.3 to 1.8	V
		DV _{DD} IO max		-0.3 to 3.96	V
Input voltage		V _I IO		-0.3 to 3.96 *1	V
Output voltage		V _O IO		-0.3 to DV _{DD} IO+0.3	V
Operation surrounding temperature		Торд		-30 to 85	°C
Storage temperation	ature	Tstg		-55 to 125	°C
Soldering temperature	Hand soldering		For 3 seconds	350	°C
	Reflow		For 10 seconds	255	°C
In/Out current		l _l 15, l _O 15		±20 *2	mA
		I _I IO, I _O IO	1		

DC characteristics/AC characteristics

Absolute Maximum Ratings at $DV_{SS} = 0V$

*1 Input voltage of I/O basic cell in case of without P-ch protection diode.

*2 per 1 cell of I/O basic cell

Permissible Operation Range at Ta = -30 to $85^{\circ}C$, $DV_{SS} = 0V$

Parameter	Symbol	Conditions	min	typ	max	unit
Supply voltage	DV _{DD} 15		1.35	1.5	1.65	V
	DV _{DD} IO *3		2.5	3.0	3.4	V
	DV _{DD} IO *4		1.6	1.8	2.0	V
	DV _{DD} 3		2.7	3.0	3.4	V
	AV _{DD} 3		2.7	3.0	3.4	V
	AV _{DD} 15		1.35	1.5	1.65	V
Input range	V _{IN} IO		0		DV _{DD} IO	V

*3 at supply = 3.0V (Typical)

*4 at supply = 1.8V (Typical)

LC822973

I/O pin capacity at $V_{DD}3 = DV_{DD}IO = V_{I}15 = V_{I}IO = DV_{SS} = 0V$, Ta = -30 to 85°C

Parameter	Symbol	Conditions	min	typ	max	unit
Input pin	CIN	f = 1MHz			10	pF
Output pin	C _{OUT}				10	pF
I/O pin	C _{I/O}				10	pF

DC characteristics

I/O level / $V_{SS} = 0V$, $DV_{DD}IO = 2.5$ to 3.4V, Ta = -30 to $85^{\circ}C$

Parameter Sym		Symbol	Conditions	Applied pin *5	min	typ	max	unit
Input level	H V _{IH} IO CMOS	(1) (0)	2.0			V		
	L	V _{IL} IO		(1) (2)			0.3DV _{DD} IO	V
	Н	V _{IH} IO	CMOS schmit	(0)	2.0			V
	L	V _{IL} IO		(3)			0.3DV _{DD} IO	V
Output level	Н	V _{OH} IO	I _{OH} = -4mA	(0) (4)	DV _{DD} IO-0.4			V
	L	V _{OL} IO	I _{OL} = 4mA	(2) (4)			0.4	V
	н							V
	L	V _{OL} IO	$I_{OL} = 4mA$	(5)			0.4	V
Input leak current		۱ _{IL}	$V_I = DV_{DD}3$, DV_{SS}	(1) (2) (3)	-10		+10	μA
Output leak current I _{OZ}		loz	High impedance	(4) (5)	-10		+10	μΑ

*5 The applied pins correspond to the following names.

I/O level / V_{SS} = 0V, $DV_{DD}IO$ = 1.6 to 2.0V, Ta = -30 to 85°C

Parameter		Symbol	Conditions	Applied pin *6	min	typ	max	unit
Input level	Н	VIHIO	CMOS	(1) (2)	0.7DV _{DD} IO			V
	L	V _{IL} IO					0.25DV _{DD} IO	V
	Н	VIHIO	CMOS schmit		0.75DV _{DD} IO			V
	L	V _{IL} IO					0.2DV _{DD} IO	V
Output level	Н	V _{OH} IO	I _{OH} = -4mA	(0) (4)	DV _{DD} IO-0.4			V
	L	V _{OL} IO	I _{OL} = 4mA	(2) (4)			0.4	V
	Н			(=)				V
	L	V _{OL} IO	I _{OL} = 4mA	(5)			0.4	V
Input leak current	Input leak current		$V_I = DV_{DD}3$, DV_{SS}	(1) (2) (3)	-10		+10	μA
Output leak curren	Output leak current IOZ		High impedance	(4) (5)	-10		+10	μA

*6 The applied pins correspond to the following names.

(INPUT)

- (1) ... CKI, A0, CS, CONF3-CONF0, MODE2-MODE0
- (2) ... D15-D0, DB17, DB16
- (3) ... XRST, CS, RD, WR, SCL, SDA

(OUTPUT)

- (2) ... D15-D0
- (4) ... INT, MON
- (5) ... SDA (Open Drain)

DAC characteristics

The characteristics of DAC (10bitDAC) for video that features this LSI are illustrated.

Zero scale output voltage
Full scale output voltage
Maximum conversion speed
Linear line error
Differential linear line error
Voltage reference level

within 0V±15mV within 1.00V±80mV 30MHz within±4LSB (VQFN84 [-10B] : within±4.5LSB) within±1LSB 1.20±20mV

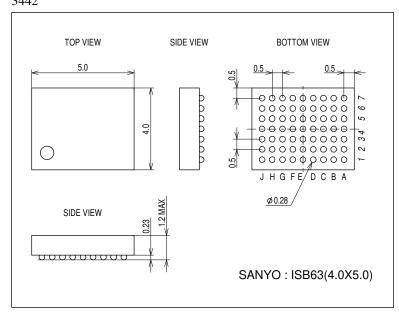
 $(Ta = +25^{\circ}C)$

Current consumption

*at the time of $DV_{DD}3 = DV_{DD}IO = 3V$ and $DV_{DD}15 = 1.5V$ and $AV_{DD}3 = 3V$ and $AV_{DD}15 = 1.5V$ and MCLK50MHz

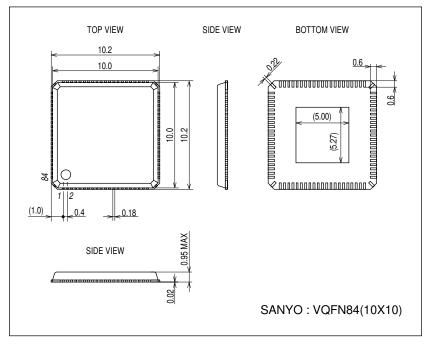
* at the time of still picture (640×480) + OSD1 All screens + OSD2 All screens

Parameter	min	typ	max	unit
AV _{DD} 15 (PLL operation current)		0.5	1	mA
DV _{DD} 15 (core operation current)		10	15	mA
AV _{DD} 3 (DAC operation current)*		35	35	mA
DV _{DD} IO (IO operation current)		2	5	mA
DV _{DD} 3 (SDRAM operation current)		8	13	mA
Standby current (clock input on)			300	μA
Standby current (input clock off)**			100	μA
Standby current (input clock off + SDRAM/SRAM off)**		6	18	μA


* 'typ' here implies only that DACOUT always outputs its maximum current.

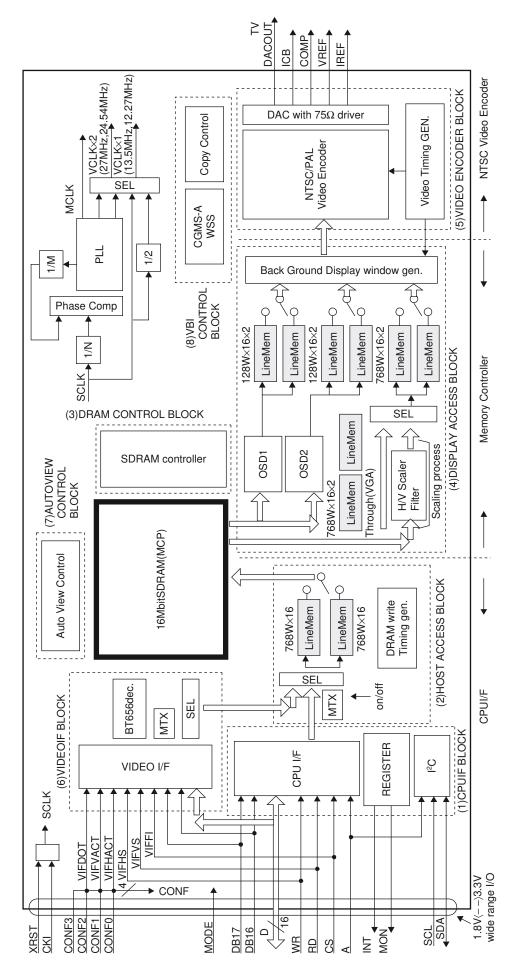
** Under the condition of tying input pin levels to H or L.

Standby current is at the condition of room temperature (+25°C)


Package Dimensions

unit : mm (typ) 3442

Package Dimensions


unit : mm (typ) 3443

Structure Outline Specification

Item	Outline
NTSC/PAL video encoder	Multi rate and multi format video encoder that supports NTSC/PAL and ITU-601/SQ (square pixel).
DAC	10bit-1chD/A converter that integrates 7Ω driver.
	Can be connected to TV directly without OP-amp or buffer.
CPU I/F	Support 8/9/16/18/24bit bus (D, WR, RD, CS, A0) of I80 type.
Video I/F	It corresponds to 5 format of RGB565, RGB666, YUV422 (8bit), YUV422 (8bit_BT656mode), and YUV422 (16bit). The writing operation is executed based on Sync signals.
Memory controller	Controls built-in (MCP) 16MbitSDRAM. Owns arbitration function and CPU access (drawing) is possible as needed.
Matrix (CPU I/F)	Performs RGB \rightarrow YUV conversion at the time of CPU \rightarrow memory writing.
Matrix (Video I/F)	Performs RGB \rightarrow YUV conversion at the time of video port \rightarrow memory writing.
PLL	Generates high-speed clock for SDRAM.
OSD	A reading binary image from SDRAM is displayed in TV. Because the Alfa blend function is installed, it is
	possible to select four stages by blend register.
Scaling function	×4 scaling processing at maximum is executed for reading image from SDRAM.
	Can be set to H and V direction independently.
Autoview function	The issue of the command of each screen is unnecessary. Writing/reading control in the image area (two
	bank or3 bank) set beforehand is executed automatically.
V-blanking period.	Can insert CGMS-A/WSS code into V-blanking period.
I/O	CMOS interface
Operation temperature	-30°C to 85°C
Package	ISB63 4mm × 5mm
	VQFN84 10mm × 10mm
Power voltage (IO)	DV _{DD} IO (1.6V - 3.4V)
	for ex. : 1.8V (1.6V - 2.0V), 3.0V (2.5V - 3.4V)
Power voltage	1.5V (1.35V - 1.65V)
(digital core)	
Power voltage (PLL)	1.5V (1.35V - 1.65V)
Power voltage	3.0V (2.7V - 3.4V)
(for stacked SDRAM)	
Power voltage	3.0V (2.7V - 3.4V)
(DAC analog part)	

Structure Block

This LSI consists of 9 function blocks in the structure block above.

(1) CPU interface (CPUIF BLOCK)

The parameter setup such as mode setup/image area setup/video encoder characteristic of this LSI is possible via bus from CPU. The image data writing to SDRAM achieves image port writing command that is in the same command class as regular register and the same command class and keep writing continuously. This is a double bank buffer structure and is able to write drawing data for 1 line without WAIT control.

(2) Host access (HOST ACCESS BLOCK)

The image writing is fulfilled from CPU interface for SDRAM.

This obtains line buffer in double bank buffer and the writing is carried out to SDRAM as accessing from CPU. It also mounts 90, 180, 270 degrees rotation writing and writing function with matrix conversion processing besides regular writing.

(3) SDRAM control (DRAM CONTROL BLOCK)

This LSI is MCP (multi chip) structure and has 16Mbit SDRAM built-in. This is the memory controller that controls writing from CPU, reading for real-time display to video encoder and refresh processing for this memory.

(4) Reading control for display (DISPLAY ACCESS BLOCK)

This is the SDRAM reading processing part that controls transferring real-time image data to NTSC/PAL video encoder.

This consists of scaling part that performs enlargement processing for image data that was read from SDRAM and the buffer controlling part that provides video signal continuously to video encoder. The background processing circuit that inserts fixed level is mounted in the buffer control part besides display window (image from SDRAM).

(5) Video encoder (VIDEO ENCODER BLOCK)

This supports both NTSC/PAL methods. All timing signals that are necessary for video signal are generated in this block. This operates as a sync master and generates transfer request of real-time image data for DISPLAY ACCESS BLOCK.

(6) Video interface (VIDEOIF BLOCK)

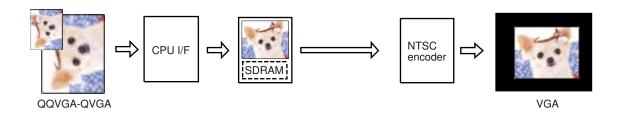
It is an interface part for the video rate writing. It writes based on a video sync signal and the dot clock. In case of RGB format (RGB565, RGB666 etc.), the image is input to the host access part by processing the matrix at valid period. The BT656 decoding is done if necessary at the YUV format. it supports both non-interlace and interlace format. When the video interface is used, the data bus (D15 - D0) is treated as a dedicated image bus. The command issue and the register access are executed with the I^2C bus. It has the I^2C bus control part in CPU interface part.

(7) Automatic image viewing (AUTOVIEW CONTROL BLOCK)

Automatic writing/reading sequence is executed by alternating the pre-defined image banks. Thus clean images without the scan passing (tearing image) are displayed. Consecutive image data transfer follows after one time command and parameter setting.

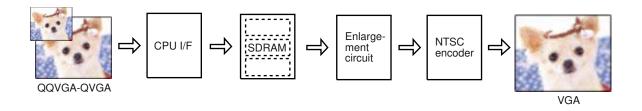
(8) VBI control (VBI CONTROL BLOCK)

The CGMS-A/WSS data is inserted. It has AUX function for the copy protect control etc.

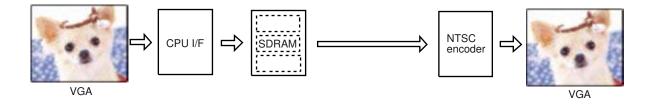

(9) Others

To combine drawing from CPU and real-time request (continuous video signal is provided to NTSC/PAL video encoder), SDRAM needs to be operated with high-speed clock. The high-speed master clock (MCLK) is created and supported by using PLL for input clock (CKI).

General Operation


[Operation 1.]

The rotation processing is performed at the time of SDRAM writing. As a result, a vertically long image of small size such as QQVGA, QVGA, etc. is rotated 90 degrees and it is possible to display on TV (VGA size image).


[Operation 2.]

The enlargement processing can be realized by filter processing that utilized line memory for reading data from SDRAM. The small size image such as QQVGA and QVGA can be displayed on TV screen fully (VGA size). An enlargement ratio can be set optionally $(2\times(n+1)/256, n: 128 \text{ to } 255)$. If the displayed image after enlargement is smaller than VGA size, other than target image can be set to background level (brightness/color setup possible). This operation can be combined with the above rotation function.

[Operation 3.]

The enlargement processing can be bypassed if writing image size from CPU fits VGA image size exactly. Degradation of broad area level due to filter processing can be prevented.

[Moving image processing]

This LSI is the system that supports moving image that made writing from CPU and competitive operation of TV display (real-time reading from SDRAM) possible by using high-speed clock operation.

The moving image performance (supportable frame rate) improves by raising SDRAM clock frequency through PLL setup. However, the current consumption increases significantly.

Corresponding video format

The video format that NTSC/PAL video encoder corresponds is described in the following tables.

((NTSC))

Mode	ITU-601	SQ	
Dot clock	13.500MHz	12.2727MHz	
Dot/line	858	780	
Horizontal valid period	720	640	
Vertical cycle	525 line	s/frames	
Vertical frequency	59.94Hz (field)		
Vertical blanking period	21 lines (line1-line21, line263-line284)		
Burst mask period	9 lines (line1-line9, line264-line272)		

((PAL))

Mode	ITU-601	SQ	
Dot clock	13.500MHz	14.750MHz	
Dot/ line	864	944	
Horizontal valid period	720	768	
Vertical cycle	625 line	s/frames	
Vertical frequency	50Hz	(field)	
Vertical blanking period	25 lines (line623-line22, line311-line335)		
Burst mask period	9 lines (line623-line	e6, line310-line318)	

*The video encoder is the component signal processing for Y and C of 8 bit each as an internal processing. The dot clock in the table above corresponds to the sampling clock at the time of 16bit processing of Y+C. To simplify post filter, the video encoder processing performs ×2 oversampling. Therefore, the operation clock in video encoder part is double of dot clock (27MHz, 24.54MHz, 29.5MHz, etc.).

Pin Description

analog DAC

> analog PLL

Pin name	Pol.	Dir	Description of function	at reset	Pin
СКІ	-	I	Master clock	-	1
XRST	L	I	Master reset, Low active	-	1
DB17	-	I	(bit17) extended bit. use at 18bit mode.	-	1
DB16	-	I	(bit16) extended bit. use at 18bit mode	-	1
D[15:0]/ VIFVD[15:0]	-	I/O	Data bus, needs pull-up resistance externally (unnecessary if either device always drives bus). This bus is sharing for the VIDEOIF.	-	16
A0/ (IDSEL)	-	I	Address/ (IDSEL at VIDEOIF).	-	1
RD/ (VIFVS)	L	I	Read pulse/ (Vsync in at VIDEOIF).	-	1
WR/ (VIFHS)	L	I	Write pulse/ (Hsync in at VIDEOIF).	-	1
CS/ (VIFFI)	L	I	Chip select/ (Field index in at VIDEOIF).	-	1
INT	L	0	Interrupt	"0"	1
MON	н	0	Monitor	"0"	1
USEVIF	н	I	Set "H" in case of VIDEOIF mode. The command issue is via I ² C bus.	-	1
SDA	-	I/O	SDA for I ² C bus.	-	1
SCL	-	I	SCL for I ² C bus.	-	1
DACOUT	Ana	0	DAC output	-	1
IOB	Ana	0	DAC_IOB pin	-	1
COMP	Ana	0	DAC_COMP pin	-	1
VREF	Ana	0	DAC_VREF pin	-	1
IREF	Ana	0	DAC_IREF pin	-	1
VCNT	Ana	I	VCNT pin	-	1
MODE[2:0]	-	I	For test *	-	3
CONF3	-	I	To decide input format	-	1
CONF2 / (VIFDOT)	-	I	To decide input format / (Dotclock in at VIDEOIF)	-	1
CONF1 / (VIFVACT)	-	I	To decide input format / (V-valid period flag in at VIDEOIF)	-	1
CONF0 / (VIFHACT)	-	Ι	To decide input format / (H-valid period flag in at VIDEOIF)	-	1
DV _{DD} 15	Pow	-	DV _{DD} for digital core (1.5V part)	-	4 (6)
dv _{dd} io	Pow	-	DV _{DD} for digital I/O part	-	4 (7)
DV _{DD} 3	Pow	-	DV _{DD} for stacked SDRAM (it's controlled by internal switch cell)	-	3 (4)
AV _{DD} 3	Pow	-	AV _{DD} for DAC analog (analog 3V)	-	1
AV _{DD} 15	Pow	-	AV _{DD} for PLL analog (analog 1.5V)	-	1
DV _{SS}	Pow	-	GND for digital part	-	6 (13)
AV _{SS}	Pow	-	GND for analog part	-	2
		•	Total		63 (76)

* MODE pins are for testing.

They should be fixed to "L" normally.

Pin assignment (ISB63/VQFN84/[SQFP100])

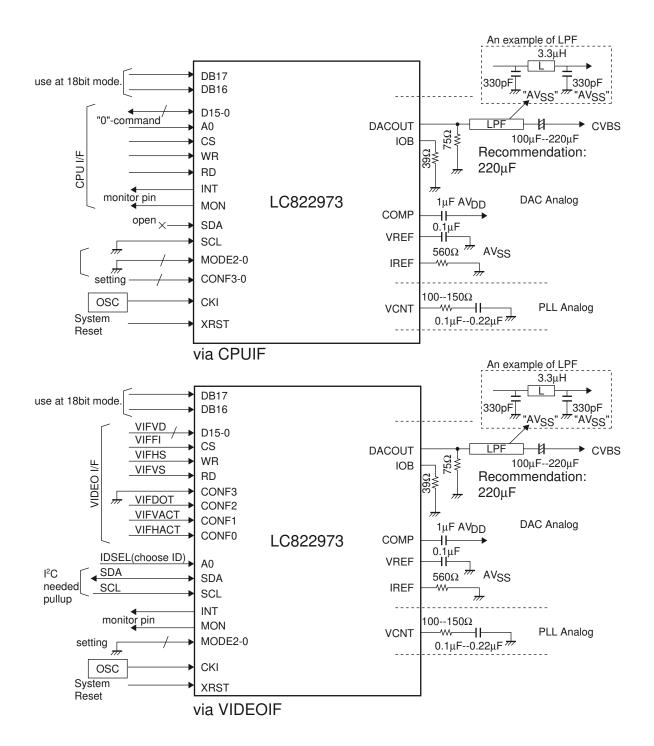
Ball [ISB]	Pin [VQFN]	Reference [SQFP]	Pin name	I/O	Application	
-	-	1	NC	-		
-	-	2	NC	-		
H5	1	3	DV _{SS}	Р	Digital GND	
G6	2	4	SDA	В	I ² C data / maintain open at CPUIF mode	
H7	3	5	SCL	I	I ² C clock / connect to GND at CPUIF mode.	
F4	4	6	DV _{DD} 15	Р	V _{DD} (digital core)	
F6	5	7	CONF3	I	For format setting at CPUIF (bit3). connect to GND at VIDEOIF mode.	
G7	6	8	CONF2/ (VIFDOT)	I	For format setting at CPUIF (bit2). / Dotclock in at VIDEOIF mode.	
F5	7	9	CONF1/ (VIFVACT)	I	For format setting at CPUIF (bit1). / V-valid flag in at VIDEOIF mode.	
F7	8	10	CONF0/ (VIFHACT)	I	For format setting at CPUIF (bit0). / H-valid flag in at VIDEOIF mode.	
E2	9	11	DV _{DD} 3	Р	V _{DD} (for stacked SDRAM)	
H5	10	12	DV _{SS}	Р	Digital GND	
E7	11	13	СКІ	I	System clock input	
E6	12	14	DV _{DD} IO	Р	V _{DD} (Digital IO)	
E4	13	15	XRST	I	System reset ("L"==reset)	
D7	14	16	INT	0	INT signal ("L"==interrupt generation)	
E5	15	17	MON	0	Monitor pin.	
H5	16	18	DV _{SS}	Р	Digital GND	
C7	17	19	A0/ (IDSEL)	ļ	Address/ID address select at VIDEOIF mode. (0 : 8'b0100_000_r, 1 : 8'b0100_001_r).	
D6	18	20	CS/ (VIFFI)	I	/CS signal/field index at VIDEOIF mode.	
B7	19	21	DV _{DD} 15	Р	V _{DD} (digital core)	
H5	20	22	DV _{SS}	Р	Digital GND	
-	-	23	NC	-		
-	-			-		
-	-	27	NC	-		
C6	21	28	DB17	1	bit17 for 18bit data transfer format.	
A7	22	29	DB16	1	bit16 for 17bit data transfer format.	
E6	23	30	DV _{DD} IO	Р	V _{DD} (Digital IO)	
B6	24	31	D15/ (VIFVD15)	В	CPU data bus/Video data bus. (MSB)	
A6	25	32	D14/ (VIFVD14)	В		
C5	26	33	D13/ (VIFVD13)	В		
B5	27	34	D12/ (VIFVD12)	В		
A5	28	35	D11/ (VIFVD11)	В		
D5	29	36	D10/ (VIFVD10)	В		
D4	30	37	D9/ (VIFVD9)	В		+
A4	31	38	D8/ (VIFVD8)	В		
B4	32	39	D7/ (VIFVD7)	В		
C4	33	40	WR/ (VIFHS)	I	/WR pulse/Hsync at VIDEOIF mode.	
A3	34	41	RD/ (VIFVS)	I	/RD pulse/Vsync at VIDEOIF mode.	\dashv
E3	35	42	DV _{DD} 15	Р	V _{DD} (digital core)	
B3	36	43	DV _{SS}	Р	Digital GND	
A2	37	44		Р	V _{DD} (Digital IO)	
C3	38	45	D6/ (VIFVD6)	В	CPU data bus/Video data bus.	
D3	39	46	D5/ (VIFVD5)	B		
B2	40	47	D4/ (VIFVD4)	В	· · · · · · · · · · · · · · · · · · ·	\neg
D2	1	1		1 -		
A1	41	48	D3/ (VIFVD3)	В		ļ

* The product version are ISB63 and VQFN84. SQFP100 is a package for our evaluation (reliability test).

Continued to the next page.

Ball	Pin	Reference	Pin name	I/O	Application	
[ISB]	[VQFN]	[SQFP]				∔
-	-	50	NC	-		Ŧ
-	-	1		-		ļ
-	43	54	NC	-		_
-	44	55	NC	-		_
D2	45	56	DV _{SS}	Р	Digital GND	
B1	46	57	D1/ (VIFVD1)	В	CPU data bus/Video data bus.	
C1	47	58	D0/ (VIFVD0)	В	CPU data bus/Video data bus. (LSB)	
E3	48	59	DV _{DD} 15	Р	V _{DD} (digital core)	
F1	49	60	DV _{DD} IO	Р	V _{DD} (Digital IO)	I
D1	50	61	DV _{SS}	Р	Digital GND	Ī
E1	51	62	DV _{DD} 3	Р	V _{DD} (for stacked SDRAM)	Ī
D1	52	63	DV _{SS}	Р	Digital GND	1
D1	53	64	DV _{SS}	Р	Digital GND	T
F1	54	65	DV _{DD} IO	Р	V _{DD} (Digital IO)	l
F2	55	66	DV _{SS}	Р	Digital GND	1
G1	56	67	DV _{DD} 3	P	V _{DD} (for stacked SDRAM)	+
G2	57	68	DV _{SS}	P	Digital GND	ł
H1		69		P	V _{DD} (digital core)	+
	58		DV _{DD} 15			+
G1	59	70	DV _{DD} 3	Р	V _{DD} (for stacked SDRAM)	4
F2	60	71	DV _{SS}	Р	Digital GND	1
-	-	72	NC	-		_
-	-	1		-		_
-	61	76	NC	-		_
-	62	77	NC	-		
-	63	78	NC	-		
-	64	79	NC	-		
J1	65	80	AV _{DD} 3	Р	AV _{DD} (DAC analog : 3V part)	I
	66		AV _{DD} 3	Р	AV _{DD} (DAC analog : 3V part)	I
H2	67	81	AV _{SS} 1	Р	GND (analog for DAC)	1
G3	68	82	VREF	Ana	DAC_VREF pin	1
J2	69	83	COMP	Ana	DAC_COMP pin	1
H3	70	84	IREF	Ana	DAC_IREF pin	1
F3	71	85	IOB	Ana	DAC_IOB pin	1
J3	72	86	DACOUT	Ana	DAC_ video output	-
F1	73	87	DV _{DD} IO	P	V _{DD} (Digital IO)	
J4	74	88	MODE2		mode setting (bit2), should be fixed "L"	4
H4	75	89	MODE1	1	mode setting (bit), should be fixed "L"	-
						-
G4	76	90	MODE0	1	mode setting (bit0), should be fixed "L"	-
J5	77	91	USEVIF		To use VIDEOIF mode ("H":select VIDEOIF)	
F4	78	92	DV _{DD} 15	Р	V _{DD} (digital core)	
H5	79	93	DV _{SS}	P	Digital GND	
J6	80	94	AV _{DD} 15	Р	AV _{DD} (PLL analog : 1.5V part)	
G5	81	95	AV _{SS} 2	Р	GND(PLL analog)	l
H6	82	96	VCNT	Ana	VCNT pin for PLL	
J7	83	97	DV _{DD} IO	Р	V _{DD} (Digital IO)	
-	84	98	NC	-		
-	-	99	NC	-		1
-	-	100	NC	_		1

* The product version are ISB63 and VQFN84. SQFP100 is a package for our evaluation (reliability test).


Pin Layout (ISB63)

A1 marking

\sum]						
A		DVDDIO	RD	D8	D11	D14	DB16
В	D1	D4	DV _{SS}	D7	D12	D15	DV _{DD} 15
С	D0	D2	D6	WR	D13	DB17	A0
D	DV _{SS}	DV _{SS}	D5	D9	D10	CS	INT
E	DV _{DD} 3	DV _{DD} 3	DV _{DD} 15	XRST	MON	DV _{DD} IO	СКІ
F	DV _{DD} IO	DV _{SS}	IOB	DV _{DD} 15	CONF1	CONF3	CONF0
G	DV _{DD} 3	DV _{SS}	VREF	MODE0	AV _{SS} 2	SDA	CONF2
Н	DV _{DD} 15	AV _{SS} 1	IREF	MODE1	DV _{SS}	VCNT	SCL
J	AV _{DD} 3	COMP	DACOUT	MODE2	USEVIF	AV _{DD} 15	DV _{DD} IO
	1	2	3	4	5	6	7

Top View

Peripheral Circuit Example

- * The MODE2:0 pins are for test use, so please tie them "L".
- * Please do not leave input pins OPEN.
- * Above figure shows in case of 27MHz (24.54MHz) clock input. When the dot clock is generated with PLL (.e.g.: CKI==26MHz), it is necessary to change in PLL loop filter's
- constant. Please refer to "7.12. Consideration of 26.0MHz clock input" paragraph for details.

Writing image format (via CPU I/F)

The hardware adopts 24/18/16/9/8bit RGB format and YUV422 format of 24/18/16/9/8 as a CPU writing via CPU-I/F. Input format is determined by CONF[3:0] pins.

CONF	[3:0]	0	1	1	2	3	3	4	ŀ		5	(6	7		8	3
Data	a	RGB565	YUV	/422				RG	B666						RGB	565	
Trans	fer	16bit	16	bit	18bit	18	bit	18	bit	1	8bit	18	bit	16b	pit	16	ibit
Form	lat	(×1)	(×	1)	(×1)	(×	2)	(×	2)	(:	×2)	(×	2)	(×2	2)	(×	2)
trans r	num	1	1	2	1	1	2	1	1	2	2	1	2	1	2	1	2
DB17	17	-	-	-	R5	-	-	-	-	-	-	-	-	-	-	-	-
DB16	16	-	-	-	R4	-	-	-	-	-	-	-	-	-	-	-	-
D[15]	15	R5	Ya7	Yb7	R3	R5	B1	R5	R3	R5	G2	-	-	R5	G2	-	-
D[14]	14	R4	Ya6	Yb6	R2	R4	B0	R4	R2	R4	G1	-	-	R4	G1	-	-
D[13]	13	R3	Ya5	Yb5	R1	R3	-	-	R1	R3	G0	-	-	R3	G0	-	-
D[12]	12	R2	Ya4	Yb4	R0	R2	-	-	R0	R2	B5	-	-	R2	B5	-	-
D[11]	11	R1	Ya3	Yb3	G5	R1	-	-	G5	R1	B4	-	-	R1	B4	-	-
D[10]	10	G5	Ya2	Yb2	G4	R0	-	-	G4	R0	B3	-	-	G5	B3	-	-
D[9]	9	G4	Ya1	Yb1	G3	G5	-	-	G3	G5	B2	-	-	G4	B2	-	-
D[8]	8	G3	Ya0	Yb0	G2	G4	-	-	G2	G4	B1	R5	G2	G3	B1	-	-
D[7]	7	G2	U7	V7	G1	G3	-	-	G1	G3	B0	R4	G1	-	-	R5	G2
D[6]	6	G1	U6	V6	G0	G2	-	-	G0	-	-	R3	G0	-	-	R4	G1
D[5]	5	G0	U5	V5	B5	G1	-	-	B5	-	-	R2	B5	-	-	R3	G0
D[4]	4	B5	U4	V4	B4	G0	-	-	B4	-	-	R1	B4	-	-	R2	B5
D[3]	3	B4	U3	V3	B3	B5	-	-	B3	-	-	R0	B3	-	-	R1	B4
D[2]	2	B3	U2	V2	B2	B4	-	-	B2	-	-	G5	B2	-	-	G5	B3
D[1]	1	B2	U1	V1	B1	B3	-	-	B1	-	-	G4	B1	-	-	G4	B2
D[0]	0	B1	U0	V0	B0	B2	-	-	B0	-	-	G3	B0	-	-	G3	B1

The RGB \rightarrow YUV matrix processing operates automatically when RGB input is formatted.

For CONF==2:RGB666_18bit mode, R5 and R4 correspond DB17 and DB16 pins, respectively. Otherwise, please connect DB17, 16 pins to GND.

CONF[3:0]	ç)	1	0		11			12			13		14			15		
Data	a		RGE	8888				RGE	3666						R	GB888				
Transfer F	ormat	24	bit	24	bit		18bit			18bit			24bit			24bit		24bit		
		(×	2)	(×	2)		(×3)			(×3)			(×3)			(×3)			(×3)	
trans n	um	1	2	1	2	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
DB17	17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DB16	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
D[15]	15	R7	B7	R7	G7	R5	G5	B5	-	-	-	Ra7	Ba7	Gb7	Ra7	Ga7	Ba7	-	-	-
D[14]	14	R6	B6	R6	G6	R4	G4	B4	-	-	-	Ra6	Ba6	Gb6	Ra6	Ga6	Ba6	-	-	-
D[13]	13	R5	B5	R5	G5	R3	G3	B3	-	-	1	Ra5	Ba5	Gb5	Ra5	Ga5	Ba5	-	I	-
D[12]	12	R4	B4	R4	G4	R2	G2	B2	-	-	1	Ra4	Ba4	Gb4	Ra4	Ga4	Ba4	-	1	-
D[11]	11	R3	B3	R3	G3	R1	G1	B1	-	-	1	Ra3	Ba3	Gb3	Ra3	Ga3	Ba3	-	1	-
D[10]	10	R2	B2	R2	G2	R0	G0	B0	-	-	-	Ra2	Ba2	Gb2	Ra2	Ga2	Ba2	-	-	-
D[9]	9	R1	B1	R1	G1	-	1	-	-	-	1	Ra1	Ba1	Gb1	Ra1	Ga1	Ba1	-	1	-
D[8]	8	R0	B0	R0	G0	-	-	-	-	-	-	Ra0	Ba0	Gb0	Ra0	Ga0	Ba0	-	1	-
D[7]	7	G7	-	-	B7	-	-	-	-	-	-	Ga7	Rb7	Bb7	Rb7	Gb7	Bb7	R7	G7	B7
D[6]	6	G6	-	-	B6	-	-	-	-	-	-	Ga6	Rb6	Bb6	Rb6	Gb6	Bb6	R6	G6	B6
D[5]	5	G5	-	-	B5	-	-	-	R5	G5	B5	Ga5	Rb5	Bb5	Rb5	Gb5	Bb5	R5	G5	B5
D[4]	4	G4	-	-	B4	-	-	-	R4	G4	B4	Ga4	Rb4	Bb4	Rb4	Gb4	Bb4	R4	G4	B4
D[3]	3	G3	-	-	B3	-	-	-	R3	G3	B3	Ga3	Rb3	Bb3	Rb3	Gb3	Bb3	R3	G3	B3
D[2]	2	G2	-	-	B2	-	-	-	R2	G2	B2	Ga2	Rb2	Bb2	R2	Gb2	Bb2	R2	G2	B2
D[1]	1	G1	-	-	B1	-	-	-	R1	G1	B1	Ga1	Rb1	Bb1	Rb1	Gb1	Bb1	R1	G1	B1
D[0]	0	G0	-	-	B0	-	-	-	R0	G0	B0	Ga0	Rb0	Bb0	Rb0	Gb0	Bb0	R0	G0	B0

* 16bit or 8bit command area is to be sent within heavy-lined area. CONF==5, 6, 7, 8, 11, 12, and 15 correspond 8bit command data, and the 16bit parameter register needs double transfer.

* Hatched area shows unused pins. "L" level is always output, so please keep them open.

* For CONF==14:24bit (×3) format, a dummy write of 0×0 data is required every time after sending all the frame data.

* For CONF==1:16bit-YUV422 format, RGB to YUV matrix conversion can be enabled by register setting, SYSCTL1 (bit5) MTXON, which is useful for the mixed format system of RGB565 and YUV422.

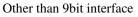
Writing image format (via VIDEO I/F)

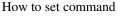
Writing from video IF corresponds to various entry formats such as YUV422 (8bit), YUV422 (8bitBT656decode), YUV422 (16bit), RGB565 (16bit), and RGB666 (18bit).

When video IF is used, the USEVIF pin is set to "H". The VIFFMT register is set and a necessary input format is decided at the same time. In this LSI, internal processing is YUV system.

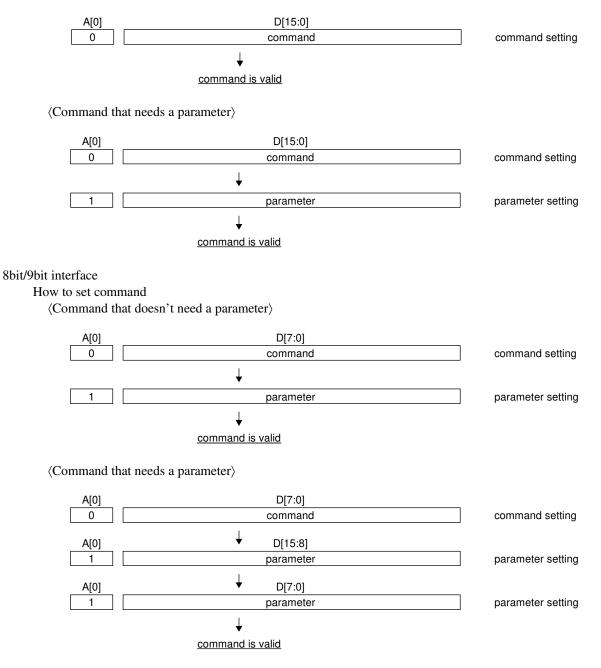
The RGB \rightarrow YUV matrix processing operates automatically when RGB is input.

USEVIF							1					
VIFFMT[3:0]		(D		1		2	:	3	4	5	6
Data Format			YUV	422			RGE	3565		YUV422	RGB565	RGB666
BT656decode		N	lo	Y	es					No		
Transfer		16	bit	16	ibit	16	Sbit	16	ibit	16bit	16bit	18bit
Format		(>	2)	(×	2)	(>	<2)	(>	2)	(×1)	(×1)	(×1)
Trans num		1	2	1	2	1	2	1	2	1	1	1
DB17	17	-	-	-	-	-	-	-	-	-	-	R5
DB16	16	-	-	-	-	-	-	-	-	-	-	R4
D15/VIFVD15	15	-	-	-	-	-	-	-	-	Y7	R5	R3
D14/VIFVD14	14	-	-	-	-	-	-	-	-	Y6	R4	R2
D13/VIFVD13	13	-	-	-	-	-	-	-	-	Y5	R3	R1
D12/VIFVD12	12	-	-	-	-	-	-	-	-	Y4	R2	R0
D11/VIFVD11	11	-	-	-	-	-	-	-	-	Y3	R1	G5
D10/VIFVD10	10	-	-	-	-	-	-	-	-	Y2	G5	G4
D9/VIFVD9	9	-	-	-	-	-	-	-	-	Y1	G4	G3
D8/VIFVD8	8	-	-	-	-	-	-	-	-	Y0	G3	G2
D7/VIFVD7	7	U7/V7	Y7	U7/V7	Y7	R5	G2	G2	R5	U7/V7	G2	G1
D6/VIFVD6	6	U6/V6	Y6	U6/V6	Y6	R4	G1	G1	R4	U6/V6	G1	G0
D5/VIFVD5	5	U5/V5	Y5	U5/V5	Y5	R3	G0	G0	R3	U5/V5	G0	B5
D4/VIFVD4	4	U4/V4	Y4	U4/V4	Y4	R2	B5	B5	R2	U4/V4	B5	B4
D3/VIFVD3	3	U3/V3	Y3	U3/V3	Y3	R1	B4	B4	R1	U3/V3	B4	B3
D2/VIFVD2	2	U2/V2	Y2	U2/V2	Y2	G5	B3	B3	G5	U2/V2	B3	B2
D1/VIFVD1	1	U1/V1	Y1	U1/V1	Y1	G4	B2	B2	G4	U1/V1	B2	B1
D0/VIFVD0	0	U0/V0	Y0	U0/V0	Y0	G3	B1	B1	G3	U0/V0	B1	B0


USEVIF							1					
VIFFMT[3:0]		1	7	~	3		9			10		
Data Format					RGB666	;				RGB888	3	
BT656decode		No										
Transfer		18bit		18	bit		18bit			24bit		
Format		(×	2)	(×	2)		(×3)			(×3)		
Trans num		1	2	1	2	1	2	3	1	2	3	
DB17	17	-	-	-	-	-	-	-	-	-	-	
DB16	16	-	-	-	-	-	-	-	-	-	-	
D15/VIFVD15	15	R5	B1	R5	R3	-	-	-	-	-	-	
D14/VIFVD14	14	R4	B0	R4	R2	-	-	-	-	-	-	
D13/VIFVD13	13	R3	-		R1	-	-	-	-	-	-	
D12/VIFVD12	12	R2	-	-	R0	-	-	-	-	-	-	
D11/VIFVD11	11	R1	-	-	G5	-	-	-	-	-	-	
D10/VIFVD10	10	R0	-	-	G4	-	-	-	-		-	
D9/VIFVD9	9	G5	-	-	G3	-	-	-	-	-	-	
D8/VIFVD8	8	G4	-	-	G2	-	-	-	-	-	-	
D7/VIFVD7	7	G3	-	-	G1	-	-	-	R7	G7	B7	
D6/VIFVD6	6	G2	-	-	G0	-	-	-	R6	G6	B6	
D5/VIFVD5	5	G1	-	-	B5	R5	G5	B5	R5	G5	B5	
D4/VIFVD4	4	G0	-	-	B4	R4	G4	B4	R4	G4	B4	
D3/VIFVD3	3	B5	-	-	B3	R3	G3	B3	R3	G3	B3	
D2/VIFVD2	2	B4	-	-	B2	R2	G2	B2	R2	G2	B2	
D1/VIFVD1	1	B3	-	-	B1	R1	G1	B1	R1	G1	B1	
D0/VIFVD0	0	B2	-	-	B0	R0	G0	B0	R0	G0	B0	


* The width of the bus at video IF is decided by the register setting. (USEVIF=="H").

All the image ports are set to the input at video IF. Please connect an unused bit with GND (It shows "-" in the table).


Command Command Type/Register Map

There are two types of command. One is to be able to operate by a command itself and the other needs a parameter. In case of writing a command, A0 should be set to 0 and A0 should be set to 1 in case of writing or reading a parameter. If other command is executed before setting a parameter, the command that is in the middle of setting is cancelled.

 $\langle Command that doesn't need a parameter \rangle$

* 9bit transfer CONF="5", 8bit transfer CONF="7"/CONF="11" : data bus[15:8] should be used.

* 9bit transfer CONF="6", 8bit transfer CONF="8"/CONF="12"/CONF="15" : data bus[7:0] should be used.

LC822973	
I ² C access	
When video I/F is used (USEVIF==1), the register access from the host uses the I^2C bus.	
One sending data size of the I^2C bus is 8bit.	
Additionally, $1^{2}C$ is not applicable the concept of the address (A0==0: the command and A	0==1: paramet
parallel CPUIF.	
Therefore, a special access way is necessary as follows respectively.	
Stand-alone command : not need parameterIMGWRITE, IMGREADGO etc.)	
write "00" into the target address	
target address+"00"	
(normal write : need 1word parameter)	
write sequentially "upper byte" \rightarrow "lower byte" into target address.	
address is "upper : normal address×2", "lower : normal address×2+1" in case of l	I^2C
target address(upper)+"writing data for upper byte"	
target address(lower)+"writing data for lower byte"	
*Please keep the order "upper byte \rightarrow lower byte".	
When the host accessing is finished, internal transfer with word align will start.	
(normal read : need 1word parameter)	
read sequentially "upper byte" \rightarrow "lower byte" from target address.	
address is "upper : normal address $\times 2$ ", "lower : normal address $\times 2$ +1" in case of l	I^2C
target address(upper)+["reading data for upper byte"]	IC.
target address(upper)+"reading data for lower byte"	
The read order from upper byte or lower byte doesn't especially have regulations.	
Only one byte accessing is also possible.	
(image writing command : AUTOVIEWON, IMGWRITE, OSDWRITE etc.)	
write via special image port (IMGPORT : 0×FD).	
After issuing the image writing command, the data writing is necessary	
in accurate the order. (upper \rightarrow lower \rightarrow upper \rightarrow lower)	
On the other hand, the data writing operation from the host is unnecessary	
because the automatic writing is done with a pin (image data/dot clock) at video	IF.
target address+"00" \leftarrow Issue AUTOVIEWON command etc.	
IMGPORT address+"data writing for upper byte : at 1st pixel"	
IMGPORT address+"data writing for lower byte : at 1st pixel"	
IMGPORT address+"data writing for upper byte : at 2nd pixel"	
IMGPORT address+"data writing for upper byte : at Nth pixel"	
IMGPORT address+"data writing for lower byte : at Nth pixel"	
(image reading command : IMGREAD)	
read via special image port (IMGPORT : 0×FD).	
The access order is same as parallel CPU IF : IMGREADGO \rightarrow IMGREAD \rightarrow in	nage reading.
$IMGREADGO+"00" \leftarrow Issue IMGREADGO command.$	
$IMGREAD+"00" \leftarrow Issue IMGREAD command.$	
IMGPORT address+"reading target pixel's upper byte"	
IMGPORT address+"reading target pixel's lower byte"	
Please keep the order "upper byte \rightarrow lower byte".	
Because the I ² C bus is low-speed, status read after IMGREADGO command is unnece	essarv.
(status read :)	
Status and a usual register are distinguished referring to the A0 address at parallel	IF
On the other hand, it corresponds in a special address in I^2C .	
(STAT upper : STATUP : 0×FE, STAT lower : STATDN : 0×FF).	
STATUP address+"reading upper byte of STATUS register"	
STATDN address+["reading upper byte of STATUS register"] The read order from upper byte or lower byte doesn't especially have regulations.	
The read order from hoper dyle of lower dyle doesn't especially have regulations	

and A0==1: parameter) used with

The read order from upper byte or lower byte doesn't especially have regulations. Only one byte accessing is also possible.

Description

List of Command (A0==0)

The following tables are memory maps for 16bitCPU bus with 16bit width parameters.

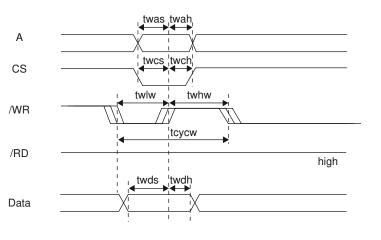
I²C takes Big ENDIAN system.

upper byte : $I^2C_address = Add \times 2$ lower byte : $I^2C_address = Add \times 2 + 1$

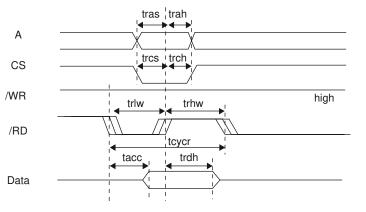
No Add Command name Function length 0×01 1 CLKCONT Clock control 1word VCLK_MODE, PLLON, DACON, DRAM sleep, Mode setting at VIDEOIF 0×02 DIV_M PLL control 1/M (12bit) 2 1word 3 0×03 DIV_N PLL control 1word 1/N (12bit)

0	0~00			Iword	
4	0×04	DIV_P	PLL control	1word	1/P (8bit), S0S3
5	0×05	reserved	-	-	-
6	0×06	INT	Interrupt	1word	INT factor
					*) this can be issued during memory writing
7	0×07	INTEN	Interrupt	1word	INT factor clear
					*) this can be issued during memory writing
8	0×08	SYSCTL1	System setup	1word	Scaler and Matrix ON/OFF, scan direction, display OFF, filter
	000		Quata as a stur		setup, enhancer setup, etc.
9	0×09	SYSCTL2	System setup	1word	Transfer mode setup, V sync setup, etc.
10	0×0a	SYSCTL3	System setup	1 word	Polarity, system control, etc. (others, spare)
11	0×0b	MEMSET1	MEMCTL setup	1word	SDRAM burst length, latency, mode, etc.
12	0×0c	MEMSET2	MEMCTL setup	1word	SDRAM refresh interval
13	0×0d	MEMSET3	MEMCTL setup	1word	SDRAM initial sequence setup
14	0×0e	IMGWRITE	CPU drawing	-	$CPU \rightarrow SDRAM$ Writing
15	0×0f	IMGREADGO	Image reading	-	SDRAM \rightarrow CPU Reading start
16	0×10	IMGREAD	Image reading	1word	$SDRAM \rightarrow CPU$ Reading (acquiring data)
17	0×11	IMGABORT	Drawing end	-	CPU drawing forced termination
18	0×12	SCALE	Scale up	1word	Scaling image ratio setup
19	0×13	reserved	-	-	-
20	0×14	reserved	-	-	-
21	0×15	WFBHLEN	Coordinate setup	1word	SDRAM address length for CPU drawing (H)
22	0×16	WFBVLEN	Coordinate setup	1word	SDRAM address length for CPU drawing (V)
23	0×17	WFBHSTART	Coordinate setup	1word	horizontal start point for SDRAM writing
24	0×18	WFBVSTART	Coordinate setup	1word	vertical start point for SDRAM writing
25	0×19	RFBHOFST	Coordinate setup	1word	Real-time reading SDRAM address offset (H)
26	0×1a	RFBVOFST	Coordinate setup	1word	Real-time reading SDRAM address offset (V)
27	0×1b	DSPHOFST	Coordinate setup	1word	Real-time reading display position offset (H)
28	0×1c	DSPVOFST	Coordinate setup	1word	Real-time reading display position offset (V)
29	0×1d	DSPHLEN	Coordinate setup	1word	Real-time reading display position length (H)
30	0×1e	DSPVLEN	Coordinate setup	1word	Real-time reading display position length (V)
31	0×1f	BGCOLOR1	Background color	1word	Background color Y signal (use only low 8bit)
32	0×20	BGCOLOR2	Background color	1word	Background color UV signal (U: upper, V: lower)
33	0×21	ENCMODE	VENC setup	1word	Operation mode, filter switch, interlace setup
34	0×22	ENCGAIN1	VENC setup	1word	Level setup, bright, contrast
35	0×23	ENCGAIN2	VENC setup	1word	Level setup, color gain
36	0×24	ENCBST1	VENC setup	1word	Burst gain setup
36 37	0×24 0×25	ENCBST1 ENCBST2	VENC setup	1word	Burst phase setup
		ENCBS12 ENCBBPLT	VENC setup		
38	0×26		· ·	1word	Blueback pallet setup
39	0×27	ENCRHVAL	Video timing	1word	Horizontal valid period signal to the memory controller adjustment
40	0×28	ENCHBLK	Video timing	1word	Horizontal Blanking period adjustment
41	0×29	ENCVBLK	Video timing	1 word	Vertical Blanking period adjustment
42	0×2a	VERSION	Other	1word	Version register
43	0×2b	TESTMODE	For test	1word	-
44	0×2c	OSDCONT_1	OSD1 setup	1word	SDRAM burst length,OSD1 ON/OFF, etc.

Contin	ued from	m the previous page.	T	1	
No	Add	Command name	Function	length	Description
45	0×2d	OSDWFBHSTART	OSD1, 2 setup	1word	SDRAM address offset for OSD drawing (H)
46	0×2e	OSDWFBVSTART	OSD1, 2 setup	1word	SDRAM address offset for OSD drawing (V)
47	0×2f	OSDWFBHLEN	OSD1, 2 setup	1word	SDRAM address length for OSD drawing (H)
48	0×30	OSDWFBVLEN	OSD1, 2 setup	1word	SDRAM address length for OSD drawing (V)
49	0×31	OSDRFBHOFST_1	OSD1 setup	1word	SDRAM reading address (H) offset for OSD1
50	0×32	OSDRFBVOFST_1	OSD1 setup	1word	SDRAM reading address (V) offset for OSD1
51	0×33	OSDHOFST_1	OSD1 setup	1word	display position offset (H) for OSD1
52	0×34	OSDVOFST_1	OSD1 setup	1word	display position offset (V) for OSD1
53	0×35	OSDHLEN_1	OSD1 setup	1word	display position length (H) for OSD1
54	0×36	OSDVLEN_1	OSD1 setup	1word	display position length (V) for OSD1
55	0×37	OSDCONT_2	OSD2 setup	1word	burst length (SDRAM), OSD2 ON/OFF, etc.
56	0×38	OSDRFBHOFST_2	OSD2 setup	1word	SDRAM reading address offset (H) for OSD2
57	0×39	OSDRFBVOFST_2	OSD2 setup	1word	SDRAM reading address offset (V) for OSD2
58	0×3a	OSDHOFST_2	OSD2 setup	1word	display position offset (H) for OSD2
59	0×3b	OSDVOFST_2	OSD2 setup	1word	display position offset (V) for OSD2
60	0×3c	OSDHLEN_2	OSD2 setup	1word	display position length (H) for OSD2
61	0×3d	OSDVLEN_1	OSD2 setup	1word	display position length (V) for OSD2
62	0×3e	OSDCOLOR_Y	OSD1,2 setup	1word	OSD Y adjustment (Up: OSD1/Down: OSD2)
63	0×3f	OSDCOLOR_U	OSD1,2 setup	1word	OSD U adjustment (Up: OSD1/Down: OSD2)
64	0×40	OSDCOLOR_V	OSD1,2 setup	1word	OSD V adjustment (Up: OSD1/Down: OSD2)
65	0×41	OSDWRITE	OSD drawing	-	$CPUOSD \to SDRAM \; DRAW$
66	0×42	OSDABORT	OSD drawing	-	$CPUOSD \to DRAW ABORT$
67	0×43	VIFSYS	VIDEOIF setup	1word	Data ordering, sync polarity, internal valid flag on/off etc.
68	0×44	VIFHACTSTA	VIDEOIF setup	1word	Internal valid flag (start position of H-flag)
69	0×45	VIFHACTEND	VIDEOIF setup	1word	Internal valid flag (end position of H-flag)
70	0×46	VIFVACTSTA	VIDEOIF setup	1word	Internal valid flag (start position of V-flag)
71	0×47	VIFVACTEND	VIDEOIF setup	1word	Internal valid flag (end position of V-flag)
72	0×48	AVIEWSYS	A-VIEW setup	1word	Num of bank at AUTOVIEW mode
73	0×49	AUTOVIEWON	A-VIEW start	-	Strat AUTOVIEWing
74	0×4a	AUTOVIEWOFF	A-VIEW stop	-	Stop AUTOVIEWing
75	0×4b	AVWFBHSTART_0	A-VIEW setup	1word	Start position of bank#0 (H)
76	0×4c	AVWFBVSTART_0	A-VIEW setup	1word	Start position of bank#0 (V)
77	0×4d	AVWFBHSTART_1	A-VIEW setup	1word	Start position of bank#1 (H)
78	0×4e	AVWFBVSTART_1	A-VIEW setup	1word	Start position of bank#1 (V)
79	0×4f	AVWFBHSTART_2	A-VIEW setup	1word	Start position of bank#2 (H)
80	0×50	AVWFBVSTART_2	A-VIEW setup	1word	Start position of bank#2 (V)
81	0×51	CGMSA_CODE	CGMSA setup	1word	CGMSA code setting
82	0×52	CGMSA_TRM	CGMSA setup	1word	CGMSA position setting
83	0×53	WSS_CODE	WSS setup	1word	WSS code setting
84	0×54	WSS_TRM	WSS setup	1word	WSS position setting
85	0×55				reserved
112	0×70				reserved


for I^2C

113	0×7E	0×FC (I ² C) : no use	Image port	
		0×FD (I ² C) : IMGPORT		
114	0×7F	0×FE (I ² C) : status (upper)	Status	
		0×FF (I ² C) : status (lower)		


AC characteristics (CPU bus timing)

Parallel I/F (I80 like)

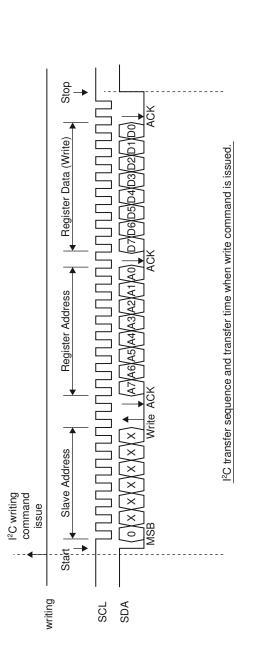
CPU WRITE

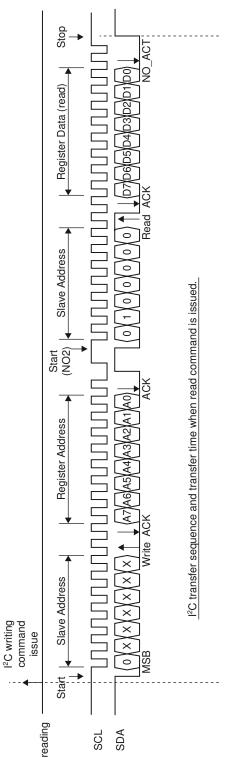
CPU READ

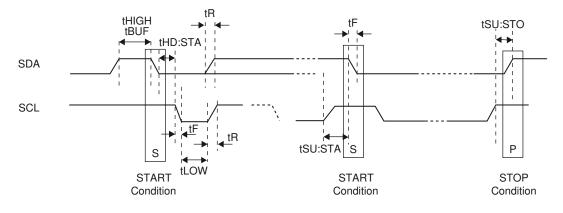
Item	Symbol	Condition	min	typ	max	unit
System cycle time (write) [×1 transfer]	tcycw	write	3T*			сус
System cycle time (read) [×1 transfer]	tcycr	read	3T*			сус
System cycle time (write) [x2, x3 transfer]	tcycw	write	2T*			сус
System cycle time (read) [×2, ×3 transfer]	tcycr	read	2T*			сус
Address setup time (write)	twas	A	15			ns
Address hold time (write)	twah	A	5			ns
Address setup time (read)	tras	A	25			ns
Address hold time (read)	trah	A	5			ns
CS setup time (write)	twcs	/CS	15			ns
CS hold time (write)	twch	/CS	5			ns
CS setup time (read)	trcs	/CS	25			ns
CS hold time (read)	trch	/CS	5			ns
/WR low side pulse width	twlw	/WR	20			ns
/WR high side pulse width	twhw	/WR	15			ns
/RD low side pulse width	trlw	/RD	25			ns
/RD high side pulse width	trhw	/RD	15			ns
Data setup time	twds	Data [15:0]	15			ns
Data hold time	twdh	Data [15:0]	5			ns
Read access time	tacc*	Data [15:0]			20	ns
Data hold time	Trdh	Data [15:0]			10	ns

* T \Rightarrow MCLK (master clock) 1 cycle .ex. MCLK: 50MHz \Rightarrow 1T is 20ns. *tacc \Rightarrow from (/RD) or (/CS) \downarrow

I²C transfer sequence and AC characteristics

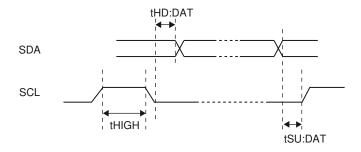

I²C slave circuit is equipped to the LSI for the Video-I/F mode, which enables to read and to write command registers via SDA and SCL pins.


IDSEL pin sets one of two pre-defined device ID's,

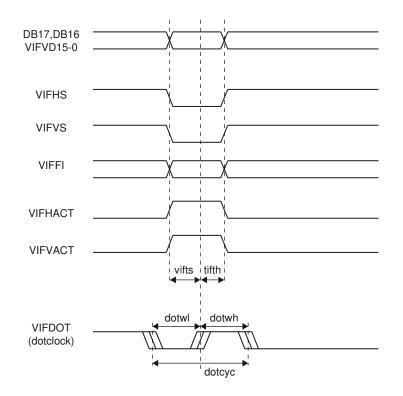

IDSEL: 0 then device ID=0×40 (0100_000_r)

IDSEL: 1 then device $ID=0\times42$ (0100_001_r)

The transfer sequence of I^2C is explained below.

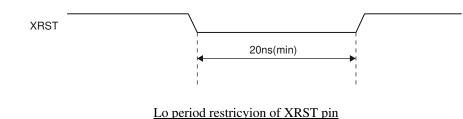


I/O timing of I²C bus (at the time of SCL 400kHz cycle mode)


Symbol	Item	min	max	Unit
tBUF	Bus open period	1.3		μs
tHD: STA	Hold time (Start)	0.6		μs
tLOW	SCL_Lo period	1.3		μs
tHIGH	SCL_Hi period	1.3		μs
tR	Data rising		300	μs
tF	Data falling		300	μs
tSU: STA	Setup time (Start)	0.6		μs
tSU: STO	Setup time (Stop)	0.6		μs

I/O timing of I²C bus (at the time of high speed operation)

Symbol	Item	min	max	Unit
tSU: DAT	Setup time (Data)	100		ns
tHD: DAT	Hold time (Data)	0		ns
tHIGH	SCL_Hi period	150		ns


AC characteristics (VIDEO I/F timing)

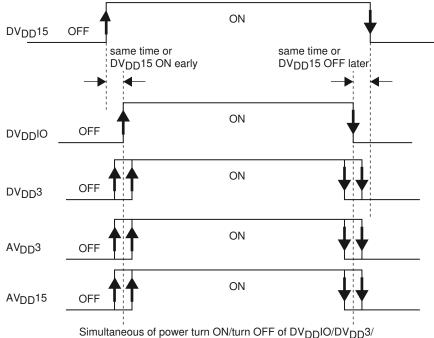
Symbolltem	Symbol	Condition	min	typ	max	unit
Data/Flag	vifts	DB17/16				
Setup time		VIFVD, VIFHS,				
		VIFVS, VIFFI	10			ns
		VIFHACT				
		VIFVACT				
Data/Flag	vifth	DB17/16				
Hold time		VIFVD, VIFHS,				
		VIFVS, VIFFI	5			ns
		VIFHACT				
		VIFVACT				
Clock low side pulse width	dotwl	VIFDOT	15			ns
Clock high side pulse width	dotwh	VIFDOT	15			ns
Clock cycle time	dotcyc	VIFDOT	30			ns

AC characteristics (Reset condition)

Fixing XRST pin to Lo level initializes the internal FF. The filter circuit that used delay device is embedded inside so that an error operation won't be performed even if a noise is on XRST pin. The condition of Lo period is as follows.

Power turn-ON/turn OFF-conditions

This LSI needs digital power (DV_{DD}15 [core], DV_{DD}3 [DRAM], DV_{DD}IO), analog power for DAC (AV_{DD}3) and analog power for PLL (AV_{DD}15). Power turn ON/turn OFF conditions is shown in the following sequence diagram.


It is desirable for $DV_{DD}15$ and $DV_{DD}IO/DV_{DD}3$ to maintain

 $DV_{DD}15 > = DV_{DD}IO/DV_{DD}3/AV_{DD}3/AV_{DD}15$ relation as below or at the same time.

However, the condition is acceptable when the period, which is the reversed relation, is within 1ms.

Simultaneous of power turn ON / turn OFF of $DV_{DD}IO/DV_{DD}3/AV_{DD}3/AV_{DD}15$ is all preferable. However, there is no problem even if the time difference is mutually generated.

However, please avoid keeping only a certain power supply in the state of power turn OFF.

AV_{DD}3/AV_{DD}15 is all preferable. However, there is no problem even if the time difference is mutually generated.

Power turn-ON/turn-OFF sequence

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- Regarding monolithic semiconductors, if you should intend to use this IC continuously under high temperature, high current, high voltage, or drastic temperature change, even if it is used within the range of absolute maximum ratings or operating conditions, there is a possibility of decrease reliability. Please contact us for a confirmation.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of October, 2012. Specifications and information herein are subject to change without notice.