
Adafruit 2.8" and 3.2" Color TFT Touchscreen Breakout v2
Created by lady ada

Last updated on 2020-06-19 03:59:40 PM EDT

Overview

Add some jazz & pizazz to your project with a color touchscreen LCD. These TFT displays are big (2.8" or 3.2"

diagonal) bright (4 or 6 white-LED backlight) and colorful! 240x320 pixels with individual RGB pixel control, this has way

more resolution than a black and white 128x64 display.

As a bonus, this display has either a resistive or capacitive touchscreen attached to it already, so you can detect finger

presses anywhere on the screen.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 4 of 73

http://learn.adafruit.com/adafruit-gfx-graphics-library
https://www.adafruit.com/product/3857

This display has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. The

display can be used in two modes: 8-bit or SPI. For 8-bit mode, you'll need 8 digital data lines and 4 or 5 digital control

lines to read and write to the display (12 lines total). SPI mode requires only 5 pins total (SPI data in, data out, clock,

select, and d/c) but is slower than 8-bit mode.

If you have the resistive touch version, 4 pins are required for the touch screen (2 digital, 2 analog) or you can

purchase and use our resistive touchscreen controller (not included) to use I2C or SPI (http://adafru.it/1571)

If you have the capacitive touch version, there is a capacitive touch controller chip already installed that communicates

of standard I2C plus an IRQ line.

Of course, we wouldn't just leave you with a datasheet and a "good luck!". For 8-bit interface fans we've written a full

open source graphics library that can draw pixels, lines, rectangles, circles, text, and more (https://adafru.it/aHk). For SPI

users, we have a library as well (https://adafru.it/d4d), its separate from the 8-bit library since both versions are heavily

optimized.

For resitive touch, we also have a touch screen library that detects x, y and z (pressure) (https://adafru.it/aT1) and

example code to demonstrate all of it.

For capacitive touch, we have an I2C interface library for the captouch chip. (https://adafru.it/dGG)

If you are using an Arduino-shaped microcontroller, check out our TFT shield version of this same display, with SPI

control and a touch screen controller as well (http://adafru.it/1651)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 5 of 73

http://www.adafruit.com/products/1571
https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/Adafruit_ILI9341
https://github.com/adafruit/Touch-Screen-Library
https://github.com/adafruit/Adafruit_FT6206_Library
http://www.adafruit.com/products/1651

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 6 of 73

Pinouts

The 2.8" and 3.2" TFT display on this breakout supports many different modes - so many that the display itself has 50

pins. However, we think most people really only use 2 different modes, either "SPI" mode or 8-bit mode (which includes

both 6800 and 8080). Each 'side' of the display has all the pins required for that mode. You can switch between

modes, by rewiring the display, but it cannot be used in two modes at the same time!

All logic pins, both 8-bit and SPI sides, are 3-5V logic level compatible, the 74LVX245 chips on the back perform fast

level shifting so you can use either kind of logic levels. If there's data output, the levels are at at 3.3V

SPI Mode
This is what we think will be a popular mode when speed is not of the utmost importance. It doesn't use as many pins

(only 4 to draw on the TFT if you skip the MISO pin), is fairly flexible, and easy to port to various microcontrollers. It also

allows using a microSD card socket on the same SPI bus. However, its slower than parallel 8-bit mode because you

We show the 2.8" version of this breakout in the photos below but the 3.2" TFT is identical, just a lil bit bigger�

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 7 of 73

have to send each bit at a time instead of 8-bits at a time. Tradeoffs!

GND - this is the power and signal ground pin

3-5V / Vin - this is the power pin, connect to 3-5VDC - it has reverse polarity protection but try to wire it right!

3.3Vout - this is the 3.3V output from the onboard regulator

CLK - this is the SPI clock input pin

MISO - this is the SPI Microcontroller In Serial Out pin, its used for the SD card mostly, and for debugging the TFT

display. It isn't necessary for using the TFT display which is write-only

MOSI - this is the SPI Microcontroller Out Serial In pin, it is used to send data from the microcontroller to the SD

card and/or TFT

CS - this is the TFT SPI chip select pin

D/C - this is the TFT SPI data or command selector pin

RST - this is the TFT reset pin. There's auto-reset circuitry on the breakout so this pin is not required but it can be

helpful sometimes to reset the TFT if your setup is not always resetting cleanly. Connect to ground to reset the

TFT

Lite - this is the PWM input for the backlight control. It is by default pulled high (backlight on) you can PWM at any

frequency or pull down to turn the backlight off

IM3 IM2 IM1 IM0 - these are interface control set pins. In general these breakouts aren't used, and instead the

onboard jumpers are used to fix the interface to SPI or 8-bit. However, we break these out for advanced use and

also for our test procedures

Card CS / CCS - this is the SD card chip select, used if you want to read from the SD card.

Card Detect / CD - this is the SD card detect pin, it floats when a card is inserted, and tied to ground when the

card is not inserted. We don't use this in our code but you can use this as a switch to detect if an SD card is in

place without trying to electrically query it. Don't forget to use a pullup on this pin if so!

Resistive touch pins

Y+ X+ Y- X- these are the 4 resistive touch screen pads, which can be read with analog pins to determine touch

points. They are completely separated from the TFT electrically (the overlay is glued on top)

Capacitive touch pins

SDA - this is the I2C data pin for the captouch chip, there's level shifting on this pin so you can use 3-5V logic.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 8 of 73

There's also a 10K pullup

SCL - this is the I2C clock pin for the captouch chip, there's level shifting on this pin so you can use 3-5V logic.

There's also a 10K pullup

IRQ - this is the captouch interrupt pin. When a touch is detected, this pin goes low.

8-Bit Mode

This mode is for when you have lots of pins and want more speed. In this mode we send 8 bits at a time, so it needs

way more pins, 12 or so (8 bits plus 4 control)! This isn't recommended because most microcontrollers don't have a ton

of pins and also we optimize our libraries for SPI!

GND - this is the power and signal ground pin

3-5V (Vin)- this is the power pin, connect to 3-5VDC - it has reverse polarity protection but try to wire it right!

CS - this is the TFT 8-bit chip select pin (it is also tied to the SPI mode CS pin)

C/D - this is the TFT 8-bit data or command selector pin. It is not the same as the SPI D/C pin! Instead, it's the

same as the SPI CLK pin.

WR - this is the TFT 8-bit write strobe pin. It is also connected to the SPI D/C pin

RD - this is the TFT 8-bit read strobe pin. You may not need this pin if you don't want to read data from the display

RST - this is the TFT reset pin. There's auto-reset circuitry on the breakout so this pin is not required but it can be

helpful sometimes to reset the TFT if your setup is not always resetting cleanly. Connect to ground to reset the

TFT

Backkite - this is the PWM input for the backlight control. It is by default pulled high (backlight on) you can PWM

at any frequency or pull down to turn the backlight off

D0 thru D7 - these are the 8 bits of parallel data sent to the TFT in 8-bit mode. D0 is the least-significant-bit and

D7 is the MSB

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 9 of 73

Wiring and
Test

We tried to make this TFT breakout useful for both high-pin microcontrollers that can handle 8-bit data transfer modes

as well as low-pincount micros like the Arduino UNO and Leonardo that are OK with SPI.

Essentially, the tradeoff is pins for speed. SPI is about 2-4 times slower than 8-bit mode, but that may not matter for

basic graphics!

In addition, SPI mode has the benefit of being able to use the onboard microSD card socket for reading images. We

don't have support for this in 8-bit mode so if you want to have an all-in-one image viewer type application, use SPI!

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 10 of 73

8-Bit Wiring and
Test

8-Bit Wiring

Wiring up the 8-bit mode is kind of a pain, so we really only recommend doing it for UNO (which we show) and Mega

(which we describe, and is pretty easy since its 8 pins in a row). Anything else, like a Leonardo or Micro, we strongly

recommend going with SPI mode since we don't have an example for that. Any other kind of 'Arduino compatible' that

isn't an Uno, try SPI first. The 8-bit mode is hand-tweaked in the Adafruit_TFTLCD pin_magic.h file. Its really only for

advanced users who are totally cool with figuring out bitmasks for various ports & pins.

Really, we'll show how to do the UNO but anything else? go with SPI!

Part 1 - Power & backlight test

Begin by wiring up the 3-5VDC and GND pins.

Connect the 3-5V pin to 5V and GND to GND on your Arduino. I'm using the breadboard rails but you can also just wire

directly.

We show the 2.8" version of this breakout in the photos below but the 3.2" TFT is identical, just a lil bit bigger�

Make sure you're soldering and connecting to the 8-bit side!�

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 11 of 73

Power it up and you should see the white backlight come on.

Part 2 - Data Bus Lines

Now that the backlight is working, we can get the TFT LCD working. There are many pins required, and to keep the

code running fairly fast, we have 'hardcoded' Arduino digital pins #2-#9 for the 8 data lines.

However, they are not in that order! D0 and D1 go to digital #8 and #9, then D2-D7 connect to #2 thru #7. This is

because Arduino pins #0 and #1 are used for serial data so we can't use them

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 12 of 73

Begin by connecting D0 and D1 to digital #8 and 9 respectively as seen above. If you're using a Mega, connect the TFT

Data Pins D0-D1 to Mega pins #22-23, in that order. Those Mega pins are on the 'double' header.

Now you can connect the remaining 6 pins over. Connect D2-D7 on the TFT pins to digital 2 thru 7 in that order. If

you're using a Mega, connect the TFT Data Pins D2-D7 to Mega pins #24-29, in that order. Those Mega pins are on

the 'double' header.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 13 of 73

In addition to the 8 data lines, you'll also need 4 or 5 control lines. These can later be reassigned to any digital pins,

they're just what we have in the tutorial by default.

Connect the third pin CS (Chip Select) to Analog 3

Connect the fourth pin C/D (Command/Data) to Analog 2

Connect the fifth pin WR (Write) to Analog 1

Connect the sixth pin RD (Read) to Analog 0

You can connect the seventh pin RST (Reset) to the Arduino Reset line if you'd like. This will reset the panel when the

Arduino is Reset. You can also use a digital pin for the LCD reset if you want to manually reset. There's auto-reset

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 14 of 73

circuitry on the board so you probably don't need to use this pin at all and leave it disconnected

The RD pin is used to read the chip ID off the TFT. Later, once you get it all working, you can remove this pin and the

ID test, although we suggest keeping it since its useful for debugging your wiring.

OK! Now we can run some code

8-Bit Library Install

We have example code ready to go for use with these TFTs. It's written for Arduino, which should be portable to any

microcontroller by adapting the C++ source.

Two libraries need to be downloaded and installed: the TFTLCD library (https://adafru.it/aHk) and the GFX

library. (https://adafru.it/aJa) You can install these libraries through the Arduino library manager.

Search for the Adafruit_GFX library and install it. If using an older Arduino IDE (pre-1.8.10), also locate and install

Adafruit_BusIO.

Search for the Adafruit TFTLCD library and install it

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 15 of 73

https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/Adafruit-GFX-Library
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

After restarting the Arduino software, you should see a new example folder called Adafruit_TFTLCD and inside, an

example called graphicstest. Upload that sketch to your Arduino. You may need to press the Reset button to reset the

arduino and TFT. You should see a collection of graphical tests draw out on the TFT.

(The images below shows SPI wiring but the graphical output should be similar!)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 16 of 73

If you're having difficulties, check the serial console.The first thing the sketch does is read the driver code from the TFT.

It should be 0x9341 (for the ILI9341 controller inside)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 17 of 73

If you Unknown Driver Chip then it's probably something with your wiring, double check and try again!

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 18 of 73

SPI Wiring and
Test

SPI Mode Jumpers
Before you start, we'll need to tell the display to put us in SPI mode so it will know which pins to listen to. To do that, we

have to connect tbe IM1, IM2 and IM3 pins to 3.3V. The easiest way to do that is to solder closed the IMx jumpers on

the back of the PCB. Turn over the PCB and find the solder jumpers

With your soldering iron, melt solder to close the three jumpers indicated IM1 IM2 and IM3 (do not solder closed IM0!)

We show the 2.8" version of this breakout in the photos below but the 3.2" TFT is identical, just a lil bit bigger�

Don't forget, we're using the SPI interface side of the PCB!�

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 19 of 73

If you really don't want to solder them, you can also wire the breakout pins to the 3vo pin, just make sure you don't tie

them to 5V by accident! For that reason, we suggest going with the solder-jumper route.

Wiring
Wiring up the display in SPI mode is much easier than 8-bit mode since there's way fewer wires. Start by connecting

the power pins

3-5V Vin connects to the Arduino 5V pin

GND connects to Arduino ground

CLK connects to SPI clock. On Arduino Uno/Duemilanove/328-based, thats Digital 13. On Mega's, its Digital 52

and on Leonardo/Due its ICSP-3 (See SPI Connections for more details (https://adafru.it/d5h))

MISO connects to SPI MISO. On Arduino Uno/Duemilanove/328-based, thats Digital 12. On Mega's, its Digital 50

and on Leonardo/Due its ICSP-1 (See SPI Connections for more details (https://adafru.it/d5h))

MOSI connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based, thats Digital 11. On Mega's, its Digital 51

and on Leonardo/Due its ICSP-4 (See SPI Connections for more details (https://adafru.it/d5h))

CS connects to our SPI Chip Select pin. We'll be using Digital 10 but you can later change this to any pin

D/C connects to our SPI data/command select pin. We'll be using Digital 9 but you can later change this pin too.

That's it! You do not need to connect the RST or other pins for now.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 20 of 73

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

Install Libraries

You'll need a few libraries to use this display

From within the Arduino IDE, open up the Library Manager...

Install Adafruit ILI9341 TFT Library

We have example code ready to go for use with these TFTs.

Two libraries need to be downloaded and installed: first is the Adafruit ILI9341 library (https://adafru.it/d4d) (this

contains the low-level code specific to this device), and second is the Adafruit GFX Library (https://adafru.it/aJa) (which

handles graphics operations common to many displays we carry). If you have Adafruit_GFX already, make sure its the

most recent version since we've made updates for better performance

Search for ILI9341 and install the Adafruit ILI9341 library that pops up!

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 21 of 73

https://github.com/adafruit/Adafruit_ILI9341
https://github.com/adafruit/Adafruit-GFX-Library

For more details, especially for first-time library installers, check out our great tutorial at

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

Next up, search for Adafruit GFX and locate the core library. A lot of libraries may pop up because we reference it in

the description so just make sure you see Adafruit GFX Library in bold at the top.

Install it!

If using an older Arduino IDE (pre-1.8.10), also locate and install Adafruit_BusIO.

After restarting the Arduino software, you should see a new example folder called Adafruit_ILI9341 and inside, an

example called graphicstest. Upload that sketch to your Arduino. You may need to press the Reset button to reset the

arduino and TFT. You should see a collection of graphical tests draw out on the TFT.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 22 of 73

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

If you're having difficulties, check the serial console.The first thing the sketch does is read the driver configuration from

the TFT, you should see the same numbers as below

If you did not connect up the MISO line to the TFT, you wont see the read configuation bytes so please make sure

you connect up the MISO line for easy debugging! Once its all working, you can remove the MISO line

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 23 of 73

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 24 of 73

Bitmaps (SPI
Mode)

There is a built in microSD card slot into the breakout, and we can use that to load bitmap images! You will need a

microSD card formatted FAT16 or FAT32 (they almost always are by default).

Its really easy to draw bitmaps. However, this is only supported when talking to the display in SPI mode, not 8-bit

mode!

It's really easy to draw bitmaps. We have a library for it, Adafruit_ImageReader, which can be installed through the

Arduino Library Manager (Sketch→Include Library→Manage Libraries…). Enter “imageread” in the search field and the

library is easy to spot:

Lets start by downloading this image of pretty flowers (pix by johngineer)

Copy purple.bmp into the base directory of a microSD card and insert it into the microSD socket in the breakout.

You'll need to connect up the CCS pin to Digital 4 on your Arduino as well. In the below image, its the extra purple wire

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 25 of 73

You may want to try the SD library examples before continuing, especially one that lists all the files on the SD card

Now upload the File→examples→Adafruit ImageReader Library→ShieldILI9341 example to your Arduino + breakout.

You will see the flowers appear!

To make new bitmaps, make sure they are less than 240 by 320 pixels and save them in 24-bit BMP format! They

must be in 24-bit format, even if they are not 24-bit color as that is the easiest format for the Arduino. You can rotate

images using the setRotation() procedure

You can draw as many images as you want - dont forget the names must be less than 8 characters long. Just copy the

BMP drawing routines below loop() and call

bmpDraw(bmpfilename, x, y);

For each bitmap. They can be smaller than 320x240 and placed in any location on the screen.

We show the 2.8" version of this breakout in the photos below but the 3.2" TFT is identical, just a lil bit bigger�

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 26 of 73

Adafruit GFX library

The Adafruit_GFX library for Arduino provides a common syntax and set of graphics functions for all of our TFT, LCD

and OLED displays. This allows Arduino sketches to easily be adapted between display types with minimal fuss…and

any new features, performance improvements and bug fixes will immediately apply across our complete offering of

color displays.

The GFX library is what lets you draw points, lines, rectangles, round-rects, triangles, text, etc.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 27 of 73

Check out our detailed tutorial here http://learn.adafruit.com/adafruit-gfx-graphics-library (https://adafru.it/aPx)

It covers the latest and greatest of the GFX library. The GFX library is used in both 8-bit and SPI modes so the

underlying commands (drawLine() for example) are identical!

 (https://adafru.it/aPx)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 28 of 73

http://learn.adafruit.com/adafruit-gfx-graphics-library

Resistive Touchscreen

The LCD has a 2.8" or 3.2" 4-wire resistive touch screen glued onto it. You can use this for detecting finger-presses,

stylus', etc. You'll need 4 pins to talk to the touch panel, and at least 2 must be analog inputs. The touch screen is a

completely separate part from the TFT, so be aware if you rotate the display or have the TFT off or reset, the touch

screen doesn't "know" about it - its just a couple resistors!

We have a demo for the touchscreen + TFT that lets you 'paint' simple graphics. There's versions for both SPI and 8-bit

mode and are included in the libraries. Just make sure you have gone thru the TFT test procedure already since this

builds on that.

Download Library

Begin by grabbing our analog/resistive touchscreen library (https://adafru.it/aT1) from the Arduino library manager.

Open up the Arduino library manager:

Remember, if you rotate the screen drawing with setRotation() you'll have to use map() or similar to flip around

the X/Y coordinates for the touchscreen as well! It doesn't know about drawing rotation�

We show the 2.8" version of this breakout in the photos below but the 3.2" TFT is identical, just a lil bit bigger�

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 29 of 73

https://github.com/adafruit/Touch-Screen-Library

Search for the Adafruit TouchScreen library and install it

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

Touchscreen Paint (SPI mode)
An additional 4 pins are required for the touchscreen. For the two analog pins, we'll use A2 and A3. For the other two

connections, you can pin any two digital pins but we'll be using D9 (shared with D/C) and D8 since they are available.

We can save the one pin by sharing with D/Cbut you can't share any other SPI pins. So basically you can get away with

using only three additional pins.

Wire the additional 4 pins as follows:

Y+ to Arduino A2

X+ to Arduino D9 (Same as D/C)

Y- to Arduino D8

X- to Arduino A3

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 30 of 73

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Load up the breakoutTouchPaint example from the Adafruit_ILI9341 library and try drawing with your fingernail! You

can select colors by touching the 'pallette' of colors on the right

Touchscreen Paint (8-Bit mode)

Another 4 pins seems like a lot since already 12 are taken up with the TFT but you can reuse some of the pins for the

TFT LCD! This is because the resistance of the panel is high enough that it doesn't interfere with the digital

input/output and we can query the panel in between TFT accesses, when the pins are not being used.

We'll be building on the wiring used in the previous drawing test for UNO

You can wire up the 4 touchscreen pins as follows. Starting from the top

Y- connects to digital #9 (also D1)

The next one down (X-) connects to Analog 2 (also C/D)

The next one over (Y+) connects to Analog 3 (also CS)

The last one (X+) connects to digital 8. (also D0)

The X- and Y+ pins pretty much have to connect to those analog pins (or to analog 4/5) but Y-/X+ can connect to any

digital or analog pins.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 31 of 73

Load up the tftpaint example from the Adafruit_TFTLCD library and try drawing with your fingernail! You can select

colors by touching the 'pallette' of colors on the right

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 32 of 73

Capacitive Touchscreen

We now have a super-fancy capacitive touch screen version of this shield. Instead of a resistive controller that needs

calibration and pressing down, the capacitive has a hard glass cover and can be used with a gentle fingertip. It is a

single-touch capacitive screen only!

The capacitive touch screen controller communicates over I2C, which uses two hardwire pins. However, you can share

these pins with other sensors and displays as long as they don't conflict with I2C address 0x38.

The capacitive touch chip shares the same power and ground as the display, the only new pins you must connect are

SDA and SCL - these must connect to the Arduino I2C pins.

Connect the SCL pin to the I2C clock SCL pin on your Arduino. On an UNO & '328 based Arduino, this is also

known as A5, on a Mega it is also known as digital 21 and on a Leonardo/Micro, digital 3

Connect the SDA pin to the I2C data SDA pin on your Arduino. On an UNO & '328 based Arduino, this is also

known as A4, on a Mega it is also known as digital 20 and on a Leonardo/Micro, digital 2

This demo uses the SPI 'side' of the display so get the SPI drawing demos working before you continue! You can

adapt the code for use with the 8-bit side, just instantiate the FT6206 library and see the reference below!

Download the FT6206 Library

To control the touchscreen you'll need one more library (https://adafru.it/dGG) - the FT6206 controller library which

does all the low level chatting with the FT6206 driver chip. Use the library manager and search for FT6206 and select

the Adafruit FT6206 library:

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 33 of 73

https://github.com/adafruit/Adafruit_FT6206_Library

Once you have the library installed, restart the IDE. Now from the examples->Adafruit_FT6206 menu select

CapTouchPaint and upload it to your Arduino.

FT6206 Library Reference

Getting data from the touchscreen is fairly straight forward. Start by creating the touchscreen object with

Adafruit_FT6206 ts = Adafruit_FT6206();

We're using hardware I2C which is fixed in hardware so no pins are defined.

Then you can start the touchscreen with

ts.begin()

Check to make sure this returns a True value, which means the driver was found. You can also call begin(threshvalue)

wish a number from 0-255 to set the touch threshhold. The default works pretty well but if you're having too much

sensitivity (or not enought) you can try tweaking it

Now you can call

if (ts.touched())

to check if the display is being touched, if so call:

TS_Point p = ts.getPoint();

To get the touch point from the controller. TS_Point has .x and .y data points. The x and y points range from 0 to 240

and 0 to 320 respectively. This corresponds to each pixel on the display. The FT6206 does not need to be 'calibrated'

but it also doesn't know about rotation. So if you want to rotate the screen you'll need to manually rotate the x/y

points!

Touchscreen Interrupt pin

Advanced users may want to get an interrupt on a pin (or even, just test a pin rather than do a full SPI query) when the

touchscreen is pressed. That's the IRQ pin, which is a 3V logic output from the breakout, you can connect it to any

interrupt pin and use it like a 'button press' interrupt. We find that querying/polling the chip is fast enough for most

The touch screen is made of a thin glass sheet, and its very fragile - a small crack or break will make the

entire touch screen unusable. Don't drop or roughly handle the TFT and be especially careful of the corners

and edges. When pressing on the touchscreen, remember you cannot use a fingernail, it must be a fingerpad.

Do not press harder and harder until the screen cracks!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 34 of 73

beginner Arduino projects!

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 35 of 73

FT6206 Library
Reference

FT6206 Library Reference (https://adafru.it/Atz)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 36 of 73

https://adafruit.github.io/Adafruit_FT6206_Library/class_adafruit___f_t6206.html

CircuitPython Displayio Quickstart

You will need a board capable of running CircuitPython such as the Metro M0 Express or the Metro M4 Express. You

can also use boards such as the Feather M0 Express or the Feather M4 Express. We recommend either the Metro M4

or the Feather M4 Express because it's much faster and works better for driving a display. For this guide, we will be

using a Feather M4 Express. The steps should be about the same for the Feather M0 Express or either of the Metros. If

you haven't already, be sure to check out our Feather M4 Express (https://adafru.it/EEm) guide.

For this guide, we'll assume you have a Feather M4 Express. The steps should be about the same for the Feather M0

Express. To start, if you haven't already done so, follow the assembly instructions for the Feather M4 Express in

our Feather M4 Express guide (https://adafru.it/EEm).

Preparing the Breakout

Before using the TFT Breakout, you will need to solder the headers or some wires to it. Be sure to check out

the Adafruit Guide To Excellent Soldering (https://adafru.it/drI). Also, follow the SPI Wiring and Test page of this guide

to be sure your display is setup for SPI. After that, the breakout should be ready to go.

Wiring the Breakout to the Feather

3-5V Vin connects to the Feather 3V pin

GND connects toFeather ground

CLK connects to SPI clock. On the Feather that's SCK.

MISO connects to SPI MISO. On the Feather that's MI

MOSI connects to SPI MOSI. On the Feather that's MO

CS connects to our SPI Chip Select pin. We'll be using Digital 9 but you can later change this to any pin

D/C connects to our SPI data/command select pin. We'll be using Digital 10 but you can later change this pin too.

RST connects to our reset pin. We'll be using Digital 6 but you can later change this pin too.

Adafruit Feather M4 Express - Featuring ATSAMD51

OUT OF STOCK

Out Of Stock

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 37 of 73

https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://learn.adafruit.com/adafruit-guide-excellent-soldering

https://adafru.it/Fyk

https://adafru.it/Fyk

Required CircuitPython Libraries

To use this display with displayio , there is only one required library.

https://adafru.it/EGe

https://adafru.it/EGe

First, make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.

Next, you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install

these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our introduction guide has a great

page on how to install the library bundle (https://adafru.it/ABU) for both express and non-express boards.

Remember for non-express boards, you'll need to manually install the necessary libraries from the bundle:

adafruit_ili9341

Before continuing make sure your board's lib folder or root filesystem has the adafruit_ili9341 file copied over.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of a library so the code didn't get

overly complicated.

https://adafru.it/FiA

https://adafru.it/FiA

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 38 of 73

https://cdn-learn.adafruit.com/assets/assets/000/079/468/original/2.8-breakout-feather-m4.fzz?1565820316
https://github.com/adafruit/Adafruit_CircuitPython_ILI9341/releases
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text

Go ahead and install this in the same manner as the driver library by copying the adafruit_display_text folder over to

the lib folder on your CircuitPython device.

CircuitPython Code Example

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 39 of 73

"""

This test will initialize the display using displayio and draw a solid green

background, a smaller purple rectangle, and some yellow text. All drawing is done

using native displayio modules.

Pinouts are for the 2.4" TFT FeatherWing or Breakout with a Feather M4 or M0.

"""

import board

import terminalio

import displayio

from adafruit_display_text import label

import adafruit_ili9341

Release any resources currently in use for the displays

displayio.release_displays()

spi = board.SPI()

tft_cs = board.D9

tft_dc = board.D10

display_bus = displayio.FourWire(

 spi, command=tft_dc, chip_select=tft_cs, reset=board.D6

)

display = adafruit_ili9341.ILI9341(display_bus, width=320, height=240)

Make the display context

splash = displayio.Group(max_size=10)

display.show(splash)

Draw a green background

color_bitmap = displayio.Bitmap(320, 240, 1)

color_palette = displayio.Palette(1)

color_palette[0] = 0x00FF00 # Bright Green

bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0)

splash.append(bg_sprite)

Draw a smaller inner rectangle

inner_bitmap = displayio.Bitmap(280, 200, 1)

inner_palette = displayio.Palette(1)

inner_palette[0] = 0xAA0088 # Purple

inner_sprite = displayio.TileGrid(inner_bitmap, pixel_shader=inner_palette, x=20, y=20)

splash.append(inner_sprite)

Draw a label

text_group = displayio.Group(max_size=10, scale=3, x=57, y=120)

text = "Hello World!"

text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00)

text_group.append(text_area) # Subgroup for text scaling

splash.append(text_group)

while True:

 pass

Code Details

Let's take a look at the sections of code one by one. We start by importing the board so that we can initialize SPI ,

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 40 of 73

displayio , terminalio for the font, a label , and the adafruit_ili9341 driver.

import board

import displayio

import terminalio

from adafruit_display_text import label

import adafruit_ili9341

Next we release any previously used displays. This is important because if the Feather is reset, the display pins are not

automatically released and this makes them available for use again.

displayio.release_displays()

Next, we set the SPI object to the board's SPI with the easy shortcut function board.SPI() . By using this function, it

finds the SPI module and initializes using the default SPI parameters. Next we set the Chip Select and Data/Command

pins that will be used.

spi = board.SPI()

tft_cs = board.D9

tft_dc = board.D10

In the next line, we set the display bus to FourWire which makes use of the SPI bus.

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs, reset=board.D6)

Finally, we initialize the driver with a width of 320 and a height of 240. If we stopped at this point and ran the code, we

would have a terminal that we could type at and have the screen update.

display = adafruit_ili9341.ILI9341(display_bus, width=320, height=240)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 41 of 73

Next we create a background splash image. We do this by creating a group that we can add elements to and adding

that group to the display. In this example, we are limiting the maximum number of elements to 10, but this can be

increased if you would like. The display will automatically handle updating the group.

splash = displayio.Group(max_size=10)

display.show(splash)

Next we create a Bitmap which is like a canvas that we can draw on. In this case we are creating the Bitmap to be the

same size as the screen, but only have one color. The Bitmaps can currently handle up to 256 different colors. We

create a Palette with one color and set that color to 0x00FF00 which happens to be green. Colors are Hexadecimal

values in the format of RRGGBB. Even though the Bitmaps can only handle 256 colors at a time, you get to define what

those 256 different colors are.

color_bitmap = displayio.Bitmap(320, 240, 1)

color_palette = displayio.Palette(1)

color_palette[0] = 0x00FF00 # Bright Green

With all those pieces in place, we create a TileGrid by passing the bitmap and palette and draw it at (0, 0) which

represents the display's upper left.

bg_sprite = displayio.TileGrid(color_bitmap,

 pixel_shader=color_palette,

 x=0, y=0)

splash.append(bg_sprite)

This creates a solid green background which we will draw on top of.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 42 of 73

Next we will create a smaller purple rectangle. The easiest way to do this is the create a new bitmap that is a little

smaller than the full screen with a single color and place it in a specific location. In this case we will create a bitmap

that is 20 pixels smaller on each side. The screen is 320x240, so we'll want to subtract 40 from each of those numbers.

We'll also want to place it at the position (20, 20) so that it ends up centered.

inner_bitmap = displayio.Bitmap(280, 200, 1)

inner_palette = displayio.Palette(1)

inner_palette[0] = 0xAA0088 # Purple

inner_sprite = displayio.TileGrid(inner_bitmap,

 pixel_shader=inner_palette,

 x=20, y=20)

splash.append(inner_sprite)

Since we are adding this after the first rectangle, it's automatically drawn on top. Here's what it looks like now.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 43 of 73

Next let's add a label that says "Hello World!" on top of that. We're going to use the built-in Terminal Font and scale it

up by a factor of three. To scale the label only, we will make use of a subgroup, which we will then add to the main

group.

Labels are centered vertically, so we'll place it at 120 for the Y coordinate, and around 57 pixels make it appear to be

centered horizontally, but if you want to change the text, change this to whatever looks good to you. Let's go with

some yellow text, so we'll pass it a value of 0xFFFF00 .

text_group = displayio.Group(max_size=10, scale=3, x=57, y=120)

text = "Hello World!"

text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00)

text_group.append(text_area) # Subgroup for text scaling

splash.append(text_group)

Finally, we place an infinite loop at the end so that the graphics screen remains in place and isn't replaced by a

terminal.

while True:

 pass

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 44 of 73

Using Touch

We won't be covering how to use the touchscreen with CircuitPython in this guide, but the libraries required to use it

are:

For enabling capacitive touch use the Adafruit_CircuitPython_FocalTouch (https://adafru.it/Fsy) library.

For enabling resistive touch use the Adafruit_CircuitPython_STMPE610 (https://adafru.it/Fsz) library.

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using displayio (https://adafru.it/EGh)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 45 of 73

https://github.com/adafruit/Adafruit_CircuitPython_FocalTouch
https://github.com/adafruit/Adafruit_CircuitPython_STMPE610
https://learn.adafruit.com/circuitpython-display-support-using-displayio

Python Wiring and Setup

Wiring

It's easy to use display breakouts with Python and the Adafruit CircuitPython RGB Display (https://adafru.it/u1C) module.

This module allows you to easily write Python code to control the display.

We'll cover how to wire the display to your Raspberry Pi. First assemble your display.

Since there's dozens of Linux computers/boards you can use we will show wiring for Raspberry Pi. For other

platforms, please visit the guide for CircuitPython on Linux to see whether your platform is

supported (https://adafru.it/BSN).

Connect the display as shown below to your Raspberry Pi.

ILI9341 and HX-8357-based Displays

2.2" Display

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later.

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later as well.

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

Note this is not a kernel driver that will let you have the console appear on the TFT. However, this is handy

when you can't install an fbtft driver, and want to use the TFT purely from 'user Python' code!�

You can only use this technique with Linux/computer devices that have hardware SPI support, and not all

single board computers have an SPI device so check before continuing�

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 46 of 73

https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

https://adafru.it/H6C

https://adafru.it/H6C

2.4", 2.8", 3.2", and 3.5" Displays

These displays are set up to use the 8-bit data lines by default. We want to use them for SPI. To do that, you'll need to

either solder bridge some pads on the back or connect the appropriate IM lines to 3.3V with jumper wires. Check the

back of your display for the correct solder pads or IM lines to put it in SPI mode.

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later.

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later as well.

These larger displays are set to use 8-bit data lines by default and may need to be modified to use SPI.�

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 47 of 73

https://cdn-learn.adafruit.com/assets/assets/000/084/669/original/2.2_TFT.fzz?1574277335

https://adafru.it/H7a

https://adafru.it/H7a

ST7789 and ST7735-based Displays

1.3", 1.54", and 2.0" IPS TFT Display

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later as well.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 48 of 73

https://cdn-learn.adafruit.com/assets/assets/000/084/670/original/2.8_TFT.fzz?1574277361

https://adafru.it/H7d

https://adafru.it/H7d

0.96", 1.14", and 1.44" Displays

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later as well.

https://adafru.it/H7B

https://adafru.it/H7B

1.8" Display

GND connects to the Raspberry Pi's ground

Vin connects to the Raspberry Pi's 3V pin

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later as well.

CS connects to our SPI Chip Select pin. We'll be using CE0

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

LITE connects to the Raspberry Pi's 3V pin. This can be used to separately control the backlight.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 49 of 73

https://cdn-learn.adafruit.com/assets/assets/000/084/671/original/2.0_TFT.fzz?1574277392
https://cdn-learn.adafruit.com/assets/assets/000/084/672/original/1.44_TFT.fzz?1574277409

https://adafru.it/H8a

https://adafru.it/H8a

SSD1351-based Displays

1.27" and 1.5" OLED Displays

GND connects to the Raspberry Pi's ground

Vin connects to the Raspberry Pi's 3V pin

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later as well.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 50 of 73

https://cdn-learn.adafruit.com/assets/assets/000/084/673/original/1.8_TFT.fzz?1574277427

https://adafru.it/H8e

https://adafru.it/H8e

SSD1331-based Display

0.96" OLED Display

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later.

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later as well.

CS connects to our SPI Chip Select pin. We'll be using CE0

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 51 of 73

https://cdn-learn.adafruit.com/assets/assets/000/084/674/original/1.5_OLED.fzz?1574277454

https://adafru.it/H8D

https://adafru.it/H8D

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython support in Python. This may also require

enabling SPI on your platform and verifying you are running Python 3. Since each platform is a little different, and Linux

changes often, please visit the CircuitPython on Linux guide to get your computer ready (https://adafru.it/BSN)!

Python Installation of RGB Display Library

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-rgb-display

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to use

CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

DejaVu TTF Font

If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you will need to remove it first in

order to run this example.�

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 52 of 73

https://cdn-learn.adafruit.com/assets/assets/000/084/675/original/0.96_OLED.fzz?1574277476
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't, you can run the following to

install it:

sudo apt-get install ttf-dejavu

Pillow Library

We also need PIL, the Python Imaging Library, to allow graphics and using text with custom fonts. There are several

system libraries that PIL relies on, so installing via a package manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 53 of 73

Python Usage

Now that you have everything setup, we're going to look over three different examples. For the first, we'll take a look at

automatically scaling and cropping an image and then centering it on the display.

Displaying an Image

Here's the full code to the example. We will go through it section by section to help you better understand what is

going on. Let's start by downloading an image of Blinka. This image has enough border to allow resizing and cropping

with a variety of display sizes and rations to still look good.

Make sure you save it as blinka.jpg and place it in the same folder as your script. Here's the code we'll be loading onto

the Raspberry Pi. We'll go over the interesting parts.

import digitalio

import board

from PIL import Image, ImageDraw

import adafruit_rgb_display.ili9341 as ili9341

import adafruit_rgb_display.st7789 as st7789 # pylint: disable=unused-import

import adafruit_rgb_display.hx8357 as hx8357 # pylint: disable=unused-import

import adafruit_rgb_display.st7735 as st7735 # pylint: disable=unused-import

import adafruit_rgb_display.ssd1351 as ssd1351 # pylint: disable=unused-import

import adafruit_rgb_display.ssd1331 as ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

BAUDRATE = 24000000

If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you will need to remove it first in

order to run this example.�

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 54 of 73

Setup SPI bus using hardware SPI:

spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54" ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 1.14"

ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, # 1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image)

image = Image.open("blinka.jpg")

Scale the image to the smaller screen dimension

image_ratio = image.width / image.height

screen_ratio = width / height

if screen_ratio < image_ratio:

 scaled_width = image.width * height // image.height

 scaled_height = height

else:

 scaled_width = width

 scaled_height = image.height * width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Crop and center the image

x = scaled_width // 2 - width // 2

y = scaled_height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 55 of 73

image = image.crop((x, y, x + width, y + height))

Display image.

disp.image(image)

So we start with our usual imports including a couple of Pillow modules and the display drivers. That is followed by

defining a few pins here. The reason we chose these is because they allow you to use the same code with the PiTFT if

you chose to do so.

import digitalio

import board

from PIL import Image, ImageDraw

import adafruit_rgb_display.ili9341 as ili9341

import adafruit_rgb_display.st7789 as st7789

import adafruit_rgb_display.hx8357 as hx8357

import adafruit_rgb_display.st7735 as st7735

import adafruit_rgb_display.ssd1351 as ssd1351

import adafruit_rgb_display.ssd1331 as ssd1331

Configuration for CS and DC pins

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Next we'll set the baud rate from the default 24 MHz so that it works on a variety of displays. The exception to this is

the SSD1351 driver, which will automatically limit it to 16MHz even if you pass 24MHz. We'll set up out SPI bus and then

initialize the display.

We wanted to make these examples work on as many displays as possible with very few changes. The ILI9341 display

is selected by default. For other displays, go ahead and comment out the line that starts with:

disp = ili9341.ILI9341(spi,

and uncomment the line appropriate for your display. The displays have a rotation property so that it can be set in just

one place.

Config for display baudrate (default max is 24mhz):

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

#disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

#disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54" ST7789

#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 1.14" ST7789

#disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

#disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

#disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, # 1.44" ST7735R

#disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R

#disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

#disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

#disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(spi, rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin, dc=dc_pin, rst=reset_pin, baudrate=BAUDRATE)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 56 of 73

Next we read the current rotation setting of the display and if it is 90 or 270 degrees, we need to swap the width and

height for our calculations, otherwise we just grab the width and height. We will create an image with our dimensions

and use that to create a draw object. The draw object will have all of our drawing functions.

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new('RGB', (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Next we clear whatever is on the screen by drawing a black rectangle. This isn't strictly necessary since it will be

overwritten by the image, but it kind of sets the stage.

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image)

Next we open the Blinka image, which we've named blinka.jpg, which assumes it is in the same directory that you are

running the script from. Feel free to change it if it doesn't match your configuration.

image = Image.open("blinka.jpg")

Here's where it starts to get interesting. We want to scale the image so that it matches either the width or height of the

display, depending on which is smaller, so that we have some of the image to chop off when we crop it. So we start by

calculating the width to height ration of both the display and the image. If the height is the closer of the dimensions, we

want to match the image height to the display height and let it be a bit wider than the display. Otherwise, we want to

do the opposite.

Once we've figured out how we're going to scale it, we pass in the new dimensions and using a Bicubic rescaling

method, we reassign the newly rescaled image back to image . Pillow has quite a few different methods to choose

from, but Bicubic does a great job and is reasonably fast.

Scale the image to the smaller screen dimension

image_ratio = image.width / image.height

screen_ratio = width / height

if screen_ratio < image_ratio:

 scaled_width = image.width * height // image.height

 scaled_height = height

else:

 scaled_width = width

 scaled_height = image.height * width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we want to begin cropping it so that it ends up

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 57 of 73

centered. We do that by using a standard centering function, which is basically requesting the difference of the center

of the display and the center of the image. Just like with scaling, we replace the image variable with the newly

cropped image.

Crop and center the image

x = scaled_width // 2 - width // 2

y = scaled_height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

Finally, we take our image and display it. At this point, the image should have the exact same dimensions at the display

and fill it completely.

disp.image(image)

Drawing Shapes and Text

In the next example, we'll take a look at drawing shapes and text. This is very similar to the displayio example, but it

uses Pillow instead. Here's the code for that.

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

import adafruit_rgb_display.ili9341 as ili9341

import adafruit_rgb_display.st7789 as st7789 # pylint: disable=unused-import

import adafruit_rgb_display.hx8357 as hx8357 # pylint: disable=unused-import

import adafruit_rgb_display.st7735 as st7735 # pylint: disable=unused-import

import adafruit_rgb_display.ssd1351 as ssd1351 # pylint: disable=unused-import

import adafruit_rgb_display.ssd1331 as ssd1331 # pylint: disable=unused-import

First define some constants to allow easy resizing of shapes.

BORDER = 20

FONTSIZE = 24

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 58 of 73

FONTSIZE = 24

Configuration for CS and DC pins (these are PiTFT defaults):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54" ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 1.14"

ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, # 1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a green filled box as the background

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))

disp.image(image)

Draw a smaller inner purple rectangle

draw.rectangle(

 (BORDER, BORDER, width - BORDER - 1, height - BORDER - 1), fill=(170, 0, 136)

)

Load a TTF Font

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 59 of 73

Load a TTF Font

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", FONTSIZE)

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text(

 (width // 2 - font_width // 2, height // 2 - font_height // 2),

 text,

 font=font,

 fill=(255, 255, 0),

)

Display image.

disp.image(image)

Just like in the last example, we'll do our imports, but this time we're including the ImageFont Pillow module because

we'll be drawing some text this time.

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

import adafruit_rgb_display.ili9341 as ili9341

Next we'll define some parameters that we can tweak for various displays. The BORDER will be the size in pixels of

the green border between the edge of the display and the inner purple rectangle. The FONTSIZE will be the size of

the font in points so that we can adjust it easily for different displays.

BORDER = 20

FONTSIZE = 24

Next, just like in the previous example, we will set up the display, setup the rotation, and create a draw object. If you

have are using a different display than the ILI9341, go ahead and adjust your initializer as explained in the previous

example. After that, we will setup the background with a green rectangle that takes up the full screen. To get green,

we pass in a tuple that has our Red, Green, and Blue color values in it in that order which can be any integer from 0 to

255 .

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))

disp.image(image)

Next we will draw an inner purple rectangle. This is the same color value as our example in displayio quickstart, except

the hexadecimal values have been converted to decimal. We use the BORDER parameter to calculate the size and

position that we want to draw the rectangle.

draw.rectangle((BORDER, BORDER, width - BORDER - 1, height - BORDER - 1),

 fill=(170, 0, 136))

Next we'll load a TTF font. The DejaVuSans.ttf font should come preloaded on your Pi in the location in the code. We

also make use of the FONTSIZE parameter that we discussed earlier.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 60 of 73

Load a TTF Font

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', FONTSIZE)

Now we draw the text Hello World onto the center of the display. You may recognize the centering calculation was the

same one we used to center crop the image in the previous example. In this example though, we get the font size

values using the getsize() function of the font object.

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text((width//2 - font_width//2, height//2 - font_height//2),

 text, font=font, fill=(255, 255, 0))

Finally, just like before, we display the image.

disp.image(image)

Displaying System Information

In this last example we'll take a look at getting the system information and displaying it. This can be very handy for

system monitoring. Here's the code for that example:

import time

import subprocess

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

import adafruit_rgb_display.ili9341 as ili9341

import adafruit_rgb_display.st7789 as st7789 # pylint: disable=unused-import

import adafruit_rgb_display.hx8357 as hx8357 # pylint: disable=unused-import

import adafruit_rgb_display.st7735 as st7735 # pylint: disable=unused-import

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 61 of 73

import adafruit_rgb_display.st7735 as st7735 # pylint: disable=unused-import

import adafruit_rgb_display.ssd1351 as ssd1351 # pylint: disable=unused-import

import adafruit_rgb_display.ssd1331 as ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54" ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 1.14"

ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, # 1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image)

First define some constants to allow easy positioning of text.

padding = -2

x = 0

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 62 of 73

Load a TTF font. Make sure the .ttf font file is in the

same directory as the python script!

Some other nice fonts to try: http://www.dafont.com/bitmap.php

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 24)

while True:

 # Draw a black filled box to clear the image.

 draw.rectangle((0, 0, width, height), outline=0, fill=0)

 # Shell scripts for system monitoring from here:

 # https://unix.stackexchange.com/questions/119126/command-to-display-memory-usage-disk-usage-and-

cpu-load

 cmd = "hostname -I | cut -d' ' -f1"

 IP = "IP: " + subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

 CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"

 MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = 'df -h | awk \'$NF=="/"{printf "Disk: %d/%d GB %s", $3,$2,$5}\''

 Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk '{printf \"CPU Temp: %.1f C\", $(NF-0) /

1000}'" # pylint: disable=line-too-long

 Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

 # Write four lines of text.

 y = padding

 draw.text((x, y), IP, font=font, fill="#FFFFFF")

 y += font.getsize(IP)[1]

 draw.text((x, y), CPU, font=font, fill="#FFFF00")

 y += font.getsize(CPU)[1]

 draw.text((x, y), MemUsage, font=font, fill="#00FF00")

 y += font.getsize(MemUsage)[1]

 draw.text((x, y), Disk, font=font, fill="#0000FF")

 y += font.getsize(Disk)[1]

 draw.text((x, y), Temp, font=font, fill="#FF00FF")

 # Display image.

 disp.image(image)

 time.sleep(0.1)

Just like the last example, we'll start by importing everything we imported, but we're adding two more imports. The first

one is time so that we can add a small delay and the other is subprocess so we can gather some system information.

import time

import subprocess

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

import adafruit_rgb_display.ili9341 as ili9341

Next, just like in the first two examples, we will set up the display, setup the rotation, and create a draw object. If you

have are using a different display than the ILI9341, go ahead and adjust your initializer as explained in the previous

example.

Just like in the first example, we're going to draw a black rectangle to fill up the screen. After that, we're going to set up

a couple of constants to help with positioning text. The first is the padding and that will be the Y-position of the top-

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 63 of 73

most text and the other is x which is the X-Position and represents the left side of the text.

First define some constants to allow easy positioning of text.

padding = -2

x = 0

Next, we load a font just like in the second example.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)

Now we get to the main loop and by using while True: , it will loop until Control+C is pressed on the keyboard. The

first item inside here, we clear the screen, but notice that instead of giving it a tuple like before, we can just pass 0

and it will draw black.

draw.rectangle((0, 0, width, height), outline=0, fill=0)

Next, we run a few scripts using the subprocess function that get called to the Operating System to get information.

The in each command is passed through awk in order to be formatted better for the display. By having the OS do the

work, we don't have to. These little scripts came from https://unix.stackexchange.com/questions/119126/command-to-

display-memory-usage-disk-usage-and-cpu-load

cmd = "hostname -I | cut -d\' \' -f1"

IP = "IP: "+subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"

MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}'"

Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk \'{printf \"CPU Temp: %.1f C\", $(NF-0) /

1000}\'" # pylint: disable=line-too-long

Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

Now we display the information for the user. Here we use yet another way to pass color information. We can pass it as

a color string using the pound symbol, just like we would with HTML. With each line, we take the height of the line

using getsize() and move the pointer down by that much.

y = padding

draw.text((x, y), IP, font=font, fill="#FFFFFF")

y += font.getsize(IP)[1]

draw.text((x, y), CPU, font=font, fill="#FFFF00")

y += font.getsize(CPU)[1]

draw.text((x, y), MemUsage, font=font, fill="#00FF00")

y += font.getsize(MemUsage)[1]

draw.text((x, y), Disk, font=font, fill="#0000FF")

y += font.getsize(Disk)[1]

draw.text((x, y), Temp, font=font, fill="#FF00FF")

Finally, we write all the information out to the display using disp.image() . Since we are looping, we tell Python to sleep

for 0.1 seconds so that the CPU never gets too busy.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 64 of 73

disp.image(image)

time.sleep(.1)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 65 of 73

Downloads

Datasheets & Files

ILI9341 TFT controller chip datasheet (https://adafru.it/d4l) (this is what you want to refer to if porting or if you

want to look at the TFT command set)

Raw 2.8" Resistive TFT datasheet (https://adafru.it/sEt)

Raw 3.2" Resistive TFT datasheet (https://adafru.it/Edc)

Raw 2.8" Capacitive TFT datasheet (https://adafru.it/rwA)

FT6206 Datasheet (https://adafru.it/sEu) & App note (https://adafru.it/dRn) (capacitive chip)

Fritzing objects in Adafruit Fritzing Library (https://adafru.it/c7M)

2.8" TFT with Capacitive Touch EagleCAD files (https://adafru.it/pAr)

2.8" TFT with Resistive Touch EagleCAD files (https://adafru.it/pAs)

2.8" and 3.2" Resistive Touch Schematic

Capacitive Touch Schematic

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 66 of 73

http://www.adafruit.com/datasheets/ILI9341.pdf
http://www.adafruit.com/datasheets/MI0283QT-11%20V1.1.PDF
https://cdn-learn.adafruit.com/assets/assets/000/072/378/original/QC032TM50TP__REV.C___C3105-B__1_.pdf?1551893869
https://cdn-learn.adafruit.com/assets/assets/000/035/819/original/SPEC-DT280QV10-CT_Rev.B.pdf
http://www.adafruit.com/datasheets/FT6x06%20Datasheet_V0.1_Preliminary_20120723.pdf
http://www.adafruit.com/datasheets/FT6x06_AN_public_ver0.1.3.pdf
https://github.com/adafruit/Fritzing-Library/
https://github.com/adafruit/Adafruit-2.8-TFT-with-Capacitive-Touch-PCB
https://github.com/adafruit/2.8-TFT-Breakout-PCB

2.8" TFT Layout Diagram

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 67 of 73

3.2" TFT Layout Diagram

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 68 of 73

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 69 of 73

�

F.A.Q.

If I drive this display at very high speeds I get 'video tearing' effects, how can I synchronize the display
refreshes?

We don't break out the TE (tearing effect line) because we use these with small microcontrollers, but if you do need

to synchronize you can solder to the TE pad on the TFT using fine silicone wire. (See this forum thread)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 70 of 73

https://forums.adafruit.com/viewtopic.php?f=47&t=77714&p=404931#p404931

� Display does not work on initial power but does work after a reset.

The display driver circuit needs a small amount of time to be ready after initial power. If your code tries to write to the

display too soon, it may not be ready. It will work on reset since that typically does not cycle power. If you are having

this issue, try adding a small amount of delay before trying to write to the display.

In Arduino, use delay() to add a few milliseconds before calling tft.begin(). Adjust the amount of delay as needed to

see how little you can get away with for your specific setup.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 71 of 73

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 72 of 73

© Adafruit Industries Last Updated: 2020-06-19 03:59:40 PM EDT Page 73 of 73

	Guide Contents
	Overview
	Pinouts
	SPI Mode
	Resistive touch pins
	Capacitive touch pins
	8-Bit Mode
	Wiring and Test
	8-Bit Wiring and Test
	8-Bit Wiring
	Part 1 - Power & backlight test
	Part 2 - Data Bus Lines

	8-Bit Library Install
	SPI Wiring and Test
	SPI Mode Jumpers
	Wiring
	Install Libraries
	Install Adafruit ILI9341 TFT Library

	Bitmaps (SPI Mode)
	Adafruit GFX library
	Resistive Touchscreen
	Download Library
	Touchscreen Paint (SPI mode)
	Touchscreen Paint (8-Bit mode)
	Capacitive Touchscreen
	Download the FT6206 Library
	FT6206 Library Reference
	Touchscreen Interrupt pin
	FT6206 Library Reference
	CircuitPython Displayio Quickstart
	Adafruit Feather M4 Express - Featuring ATSAMD51
	Preparing the Breakout
	Wiring the Breakout to the Feather

	Required CircuitPython Libraries
	Code Example Additional Libraries

	CircuitPython Code Example
	Code Details
	Using Touch

	Where to go from here
	Python Wiring and Setup
	Wiring
	ILI9341 and HX-8357-based Displays
	2.2" Display
	2.4", 2.8", 3.2", and 3.5" Displays

	ST7789 and ST7735-based Displays
	1.3", 1.54", and 2.0" IPS TFT Display
	0.96", 1.14", and 1.44" Displays
	1.8" Display

	SSD1351-based Displays
	1.27" and 1.5" OLED Displays

	SSD1331-based Display
	0.96" OLED Display

	Setup
	Python Installation of RGB Display Library
	DejaVu TTF Font
	Pillow Library

	Python Usage
	Displaying an Image
	Drawing Shapes and Text
	Displaying System Information

	Downloads
	Datasheets & Files
	2.8" and 3.2" Resistive Touch Schematic
	Capacitive Touch Schematic
	2.8" TFT Layout Diagram
	3.2" TFT Layout Diagram
	F.A.Q.
	If I drive this display at very high speeds I get 'video tearing' effects, how can I synchronize the display refreshes?
	Display does not work on initial power but does work after a reset.

